R. Gambacorta, M. Iannario, R. Valliant (2014). Design-based inference in a mixture model for ordinal variables for a stage stratifies design. Australian & New Zealand Journal of Statistics, 56(2), 125-143.
M. Manisera, P. Zuccolotto (2014) Modelling “don’t know” responses in rating scales. Pattern Recognition Letters, 45, 226-234
M. Manisera, P. Zuccolotto (2014) Modelling rating data with Nonlinear CUB models. Computational Statistics and Data Analysis, 78, 100-118
M. Manisera, P. Zuccolotto (2013) Nonlinear CUB models: some stylized facts. QdS – Journal of Methodological and Applied Statistics, 15, 1-20
M. Iannario, D. Piccolo (2014) A theorem on CUB models for rank data. Statistics and Probability Letters, 91, 27-31
Capecchi, D. Piccolo (2014) Modelling the Latent components of Personal Happiness, in: Perna, M.Sibillo (eds.), Mathematical and Statistical Methods for Actuarial Sciences and Finance, Springer-Verlag, Berlin, pp.49-52
Pennoni, F., Vittadini, G. (2013). Two competing models for ordinal longitudinal data with time-varying latent effects: an application to evaluate hospital efficiency. QdS – Journal of Methodological and Applied Statistics, 15, 53-68.
R. Colombi, S. Giordano (2013). Nested continuation logit models for ordinal variables. QdS – Journal of Methodological and Applied Statistics, 15, 19-32
M. Iannario (2014). Detecting latent components in ordinal data with overdispersion by means of a mixture distribution. QUALITY AND QUANTITY, doi:10.1007/s11135-014-0113-9
Tutz G, Schneider M, Iannario M, Piccolo D (2014) Mixture Models for Ordinal Responses to Account for Uncertainty of Choice. Technical Report Number 175, Department of Statistics, University of Munich, http://www.stat.uni-muenchen.de
Capecchi, S., Ghiselli, S. (2014). Modelling Job Satisfaction of Italian Graduates, in Studies in Theoretical and Applied Statistics, pp. 37-48, Springer, Berlin. doi 10.1007/10104_2014__7
M. Iannario (2014). Testing overdispersion in CUBE models. Communications in Statistics. Simulation and Computation, forthcoming
Piccolo, D. (2014) Inferential issues on CUBE models with covariates. Communications in Statistics. Theory and Methods, 44, forthcoming
Capecchi, S., Piccolo, D. (2014). Investigating the determinants of job satisfaction of Italian graduates: a model-based approach, Journal of Applied Statistics., forthcoming
Corduas, M. (2014). Analyzing bivariate ordinal data with CUB margins. Statistical Modelling. doi: 10.1177/1471082X14558770
About
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.