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Abstract In recent years interest has been growing in testing for (non)linearity in eco-
nomic time series. Several tests are available in literature, some of them are designed to
distinguish linearity from a well specified parametric nonlinear model, while others have
been developed without a parametric nonlinear alternative in mind. In this paper we re-
view the issue of testing for (non)linearity and examine, via Monte Carlo experiments,
the power and size properties of the major linearity tests applied to different nonlinear
time series models.
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1. Introduction

Linear models have been the focus of theoretical and applied econometrics for most
of the 20th Century. Since the contribution by Box and Jenkins (1970), identification and
estimation of ARIMA models have become standard statistical tools for economic time
series analysis. It was only starting from the 1990s that nonlinear models were greatly
developed, also under the stimulus of the economic theory who frequently suggested
nonlinear relationships between variables. Consequently, it also emerged the interest in
testing whether or not a single economic series or group of series may be generated by
a linear model against the alternative that they were nonlinearly related instead.

Linear models have the advantage of being undoubtedly simple and intuitive. How-
ever, they also have several limitations, some of which can be overcome via nonlinear
modeling: i) linear models cannot allow for strong asymmetries in data, ii) they are not
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suitable for data characterized by sudden and irregular jumps, iii) they neglect nonlinear
dependence, useful for prediction iv) they are not suitable for series which are not time
reversible. Moreover, a failure to recognize and deal with the presence of nonlinearity in
the generating mechanism of a time series can often lead to poorly behaved parameter
estimates and to models which miss important serial dependencies altogether. On the
other hand, when nonlinear models are used for the analysis of economic time series,
the specification of the model is a critical issue. Departures from linearity can be in
many directions as nonlinear phenomena are characterized by a huge variety of features
and economic theory may be too vague to allow for complete specification.

To assess whether ARIMA models are incapable of fully capturing the dynamics
of linear phenomena and possibly to recognize the nonlinear feature, any preliminary
analysis should include a linearity check of the Data Generating Process (DGP). Many
nonlinearity tests are scattered through the literature' but often they do not provide a
general answer to the problem since they tend to be designed for detecting special types
of nonlinear structures. The purpose of our work is to provide both a review and a
comparison of the major tests for detecting nonlinearity in the generating mechanism
of an economic time series.? In particular, we want to shed some light on how these
tests work when applied to a variety of nonlinear models for economic time series via
an extensive Monte Carlo simulation experiment, in order to provide a new and fair
picture of the performance of the tests, also in comparative terms, while highlighting
some particular aspects of the nonlinearity tests.

To our knowledge, there is no recent contribute in literature that compares the tests
applied to a variety of parametric models. Of course, there is a number of reviews,
among which Davies and Petruccelli (1986), Lee ef al. (1993), Corduas (1994), Hansen
(1999), Terdsvirta (1996), Terdsvirta (2005), Patterson and Ashley (2000) and a very
recent one by Giannerini (2012), however they often do not compare via simulations the
tests and, in case they do it, the comparison is made only for a very restricted number of
tests and a few very specific data generating processes.’

A remark is at this stage in order. This survey is restricted to parametric models (for
a recent treatment of non parametric models, see Fan and Yao, 2003), and, anyway, to
stochastic processes, being chaotic processes beyond the scope of considerations.

The organization of this paper is as follows. Section 2 introduces some nonlinear

time series models. Section 3 reviews the most important linearity tests, that will be
considered in the Monte Carlo experiment, described in section 4. Section 5 concludes.

! The computer codes to implement the tests are often personally written by the researcher
and the quality of the codes varies a lot. This is another interesting issue that, however, will not
be discussed here, as it is beyond the scope of the paper.

2 We want to emphasize that in the recent literature there exists a large number of
(non)linearity tests, but in this paper we review only those of them that have found application
in the analysis of economic time series.

> While we are writing this paper some other works on specific nonlinearity topics have ap-
peared in the literature, e.g. Giannerini et al. (2015) and Chan et al. (2015).
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2. Some nonlinear time series models

In this Section we briefly review the main nonlinear models that are commonly used
in the time series literature.

2.1. Bilinear models

Given a stationary process X;, a parsimonious representation of X as a finite order
linear model in the class ARMA(p, q) is:

P q
Xe=c+) ¢iXewit ) Ojar; +a (M

=1 7=1

where a; ~ WN(0, 0?) and the autoregressive and moving average parts of the model
satisfy, respectively, the stationarity and invertibility conditions.

The simplest class of nonlinear models is the bilinear model, developed by control
engineers to describe the input-output relationship of a deterministic nonlinear system.
Indeed, bilinear models have the property that, although they involve only a finite num-
ber of parameters, they can approximate with arbitrary accuracy any “well-behaved”
non linear relationship (Priestley, 1978). Successively, bilinear models have been trans-
formed into stochastic models and studied by Granger and Andersen (1978), Rao (1981),
Rao and Gabr (1984).

The most general form of the bilinear model, BL(p, ¢, 7, s), as defined in Granger
and Andersen (1978), is

p q T s
Xi=c+ Z Gi Xy +ap + Z Oai—; + Z Z Bij Xi—iat—; (2)
i=1 j=1

i=1 j=1

where a; ~ 1ID(0,02). This model may be regarded as a direct non linear extension
of an ARM A(p, q) model, derived by adding the extra terms X; ja;_;. However,
because of the generality of model (2), it is very complex to analyze and consequently
theoretical properties, such as stationarity and invertibility conditions have been derived
only for special cases.

Although bilinear models are a natural extension of the ARMA models, in literature
there are only a few applications of these models. One of the most cited is Maravall
(1983), who analyses a Spanish currency time series using bilinear models. In Mar-
avall’s view, bilinear models seem particularly appropriate for series with occasional
outbursts, i.e. sequences of outliers that seem to require a different regime. Intuitively,
the bilinear part is mostly dormant when the usual regime operates, but it becomes oper-
ative in case of atypical behaviours, acting so as to smooth outliers. This could also be
useful to model, for example, seismological data. Recently, Ling et al. (2015) propose a
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generalized autoregressive conditional heteroskedasticity-type maximum likelihood es-
timator for estimating the unknown parameters for a special bilinear model. For some
recent developments on bilinear models see, for example, Rao and Terdik (2003).

2.2. Self-Exciting Threshold AutoRegressive models

Assuming that X, is expressed as a nonlinear function of its past
X =f(Xim1, X0, oo, Xy—p) +ay

where a; ~ 1ID(0, 02), Tong and Lim (1980) and Tong (1983) define the Self-Exciting
Threshold AutoRegressive model (SETAR) as a piecewise linear approximation of the
general nonlinear autoregression form

k
X =Y {6 + 6K+ 0P Xy, + 0 Daf I(Xima € 45) O
j=1

where a; ~ 1ID(0,1), d, p1, ..., p; are some unknown positive integers, oU) > 0 and

l(j ) are unknown parameters and A; forms a partition of R in the sense that UleAj =
Rand A;NA; =pforalli # j.

The SETAR model is nonlinear, provided that £ > 1 and its theoretical properties
are hard to obtain (Chan and Tong (1990); Chan (1993); Chan and Tsay (1998)). One
of the most interesting features of the SETAR model is that for some parameter values
it can generate limit cycles, amplitude dependent frequencies and jump phenomena. In-
tuitively, SETAR models exhibit two or more regimes that work as local data generating
processes while the X;_; variable takes a certain value.

A special case of SETAR is the very popular TAR (Threshold Autoregressive model)

k
X, = Z{ P+ oV X+ DX, + a(j)at} I(Z, € A) &

j=1

where the self-exiting threshod variable, X;_g4, is substituted by a weakly exogenous
threshold variable Z;.

In spite of its apparent simplicity, this model is general enough to capture features,
neglected by linear models, but commonly observed in practice, such as asymmetries in
declining and rising patterns of a process, or the presence of jumps.

In SETAR models a regime switch happens when the threshold variable crosses a
certain threshold, in other words its conditional mean equation is not continuous with
discontinuity points at the thresholds. As a consequence, the parameters change be-
tween regimes abruptly and this is quite unrealistic for many real time series. In some
cases it is reasonable to assume that the regime switch happens gradually in a smooth
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fashion. Chan and Tong (1986) were the first to propose and develop these soft thresh-
olding models, called Smooth Transition Autoregressive models (STAR), which allow
for “smooth” transitions between regimes (see also Terdsvirta (1994), van Dijk et al.
(2002)). Two popular choices for the smooth transition function are the logistic function
and the exponential function. To better understand similarities and differences between
SETAR and STAR model, consider, for simplicity, a SETAR(2) model:

Xy = { (()1) + ¢§1)Xt—1 +...+ (bf,ll)Xt_pl + O'(l)at} I(Xyqg<r)+ (5
* {¢82) +07 X+t O Xtpy + U(z)at} I(Xi—a =)

In model (5), the observations, x;, are generated either from the first regime when x;_4
is smaller than the threshold r, or from the second regime when z;_4 is greater than the
threshold. If the binary indicator function is replaced by a smooth transition function
0 < G(zt—q) < 1 which depends on a transition variable X;_, the model becomes a
smooth transition autoregressive (STAR) model :

Xoo= el + oV X+ 00Xy, + e Wa (1= GX) + (6)

2

+ { 82) + QZS(12)Xt_1 —|— R ¢I(’2)Xt_p2 + 0(2)at} G(Xt_d)

In model (6) the observations x; switch between two regimes smoothly in the sense that
the dynamics of x; may be determined by both regimes, with one regime having more
impacts in some times and the other regime having more impacts in other times. Another
interpretation is that STAR models actually allow for a continuum of regimes, each
associated with a different value of G(X;_4). Obviously, X;_,4 could be substituted by
an exogenous variable Z; as in TAR model. For recent and critic reviews about threshold
models in time series analysis, see Tong (2011) and Tong (2015).

2.3. Markov Switching models

Hamilton (1989) introduces Markov Switching model of order p, denoted by MS(p).
In case of two regimes, the model can take the following form:

X, — { ar+ Y b i X Far, ifs =1
=

Qo+ S0 o Xy +ag, ifs =2 7

where a; ; ~ 1ID(0, af) independent of each other, and s; assumes values 1, 2.
The state variable s; is unobservable and we assume that it is governed by a first
order Markov chain with transition probabilities:

P= [ P11 D12 }
P21 P22



10 L. Bisaglia and M. Gerolimetto

where p;j = P(s; = j|s;—1 = i) and p11 + pi2 = p21 + p22 = 1.
A small p;; means that the model tends to stay longer in state 7. The expected duration
of the process to stay in state ¢ is 1/p;;. The number of regime can be r > 2.

Although the MS(p) model looks very similar to the SETAR, there is a crucial dif-
ference. In particular, in the SETAR model the regimes are defined by the past values
of the time series itself and the transition between regimes are governed by a determin-
istic scheme, once X;_4 is observed. In the MS(p) model, instead, regimes are defined
by the exogenous state of the Markov chain; the transition scheme is stochastic, hence
one is never certain about which state X; belongs to in a MS model. This difference
has important practical implications in forecasting. In a MS(p) model, when the sample
size is large, one can use some filtering techniques to draw inferences on the state of
X, while in a SETAR model, as long as X;_; is observed, the regime of X, is known.
Thus, forecasts of a MS(p) model are always a linear combination of forecasts produced
by submodels of individual states. Those of a SETAR model, instead, only come from
a single regime provided that X,_, is observed. It is only when the forecast horizon ex-
ceeds the delay d also SETAR forecasts become a linear combination of those produced
by models of individual regimes.

Moreover, it is much harder to estimate a MS(p) model, because the states are not
directly observable. In order to estimate the parameters of a MS model with this un-
certainty, one must compute probabilities associated with each possible regime. Such
probabilities are estimated using Hamilton’s recursive filter (Hamilton, 1994).

Following McCulloch and Tsay (1993) it is possible to generalize the MS model by
considering the transition probabilities as logistic or probit functions of some explana-
tory variable available at time ¢ — 1.

2.4. Long-memory models

It is generally accepted that many time series of practical interest exhibit strong de-
pendence, i.e., long memory. For such series, the sample autocorrelations decay slowly
and the spectral density exhibits a pole at the origin. To describe these features, a partic-
ular class of models is required, one such is the class of the autoregressive fractionally
integrated moving average (ARFIMA) models. Although ARFIMA are linear models,
they are often considered nonlinear, because their features change dramatically the sta-
tistical behaviour of estimates and predictions. As a consequence, many of the theoret-
ical results and methodologies used for analyzing short memory linear time series (as
for example ARMA processes) are no longer appropriate for long memory models. For
these reasons we also consider the class of ARFIMA models as nonlinear.

There exist different definitions of long memory processes. In the time domain, a
stationary discrete time series is said to be long memory if its autocorrelation function
decays to zero like a power function. This definition implies that the dependence be-
tween successive observations decays slowly as the number of lags tends to infinity. On
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the other hand, in the frequency domain, a stationary discrete time series is said to be
long memory if its spectral density is unbounded at the zero frequency. Other definitions
are equivalent and can be found in Beran (1994). More recently Boutahar et al. (2007)
provides an updated review on the topic.

In this paper we consider one of the most popular long memory processes that takes
into account this particular behaviour of the autocorrelation and of the spectral density
function, i.e. the ARFIMA(p, d, q), independently introduced by Granger and Joyeux
(1980) and Hosking (1981). This process simply generalizes the usual ARIMA (p, d, q)
process by allowing d to assume any real value.

Let a; ~ WN(0,02.) The process {X;, t € Z} is said to be an ARFIMA(p, d, q)
process with d € (—0.5,0.5), if it is stationary and satisfies the difference equation

®(B)A(B) (X — n) = ©(B)ay, ®)

where ®(z) and ©(z) are polynomials of degree p and ¢, respectively, satisfying ®(z) #
0 and ©(z) # 0 for all z such that |z| < 1, B is the backward shift operator, A(B) =
(1-B)* =72 m;B? with mj = T'(j — d)/[T(j + 1)T(—d)], and T'(-) is the gamma
function.

The estimation of the long memory parameter d has been of interest for many authors
(see Palma (2007) for a good review). In the following we will concentrate on ARFIMA
processes with d € (0,0.5): for this range of values the process is stationary, invertible
and possesses long range dependence.

2.5. ARCH class models

Data in which the variances of the error terms change with the time ¢, suffer from
heteroskedasticity. The standard warning is that in the presence of heteroskedasticity,
the regression coefficients for an ordinary least squares regression are still unbiased, but
the standard errors and confidence intervals estimated by conventional procedures will
be too narrow, giving a false sense of precision. Instead of considering this as a problem
to be corrected, ARCH and GARCH models treat heteroskedasticity as a feature to be
modeled. As a result, not only are the deficiencies of least squares corrected, but a
prediction is computed for the variance of each error term.

The ARCH and GARCH models (AutoRegressive Conditional Heteroskedasticity
and Generalized AutoRegressive Conditional Heteroskedasticity) are designed to deal
with these issues. They have become widespread tools for dealing with time series
heteroskedastic models. The goal of such models is to provide a volatility measure
that can be used in financial decisions concerning risk analysis, portfolio selection and
derivative pricing.

The first model that provides a systematic framework for volatility modeling is the
ARCH model of Engle (1982), used to parametrize conditional heteroskedasticity in a
wage-price equation for the United Kingdom.
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Formally, let ¢; be a random variable that has a mean and a variance conditionally
on the information set F;_; (the o-field generated by €;_;, j > 1), an ARCH(p) model
assumes that:

P
_ 2 _ 2
€ = 0y, 0 = Qo+ Qi€

i=1

where a; ~ IID(0,1), a9 >0and o; >0, i =1,2,...,p.

The parameter restrictions form a necessary and sufficient condition for positivity of
the conditional variance. In practice a; is often assumed to follow the N(0,1) or a
standardized Student ¢-distribution. It is possible to prove that: (i) the unconditional
variance of €, is constant, that is, unconditionally the process is homoskedastic; (if) €,
have zero-autocovariances; (iii) €, has heavier tails than the Normal distribution (heavy
tails are a common feature of financial data, for this reason ARCH models are very
popular in this field). Besides that, other reasons for choosing ARCH models are that
they are simple and easy to handle, they take care of clustered errors, nonlinearities and
changes in the econometricians ability to forecast.

In spite of their simplicity, ARCH models often require many parameters to ade-
quately describe the volatility process of an asset return, thus Bollerslev (1986) proposes
a useful extension known as the Generalized ARCH (GARCH) model.

Formally a GARCH(p, ¢) model assumes that:

p q
2 E 2 E 2
€ = 0tQ¢, Of = Oy + Qi€ + Bjat—j (9)

i=1 j=1

where a; ~ IID(0,1), ag > 0, oy > 0, 3; > 0and 372" "D (o, + B;) < 1.

The latter constraint on «; + [3; implies that the unconditional variance of ¢; is fi-
nite, whereas its conditional variance atz evolves over time, a; is often assumed to be a
standard normal or standardized Student-¢ distribution.

A possible limitation of ARCH and GARCH models is that they assume that pos-
itive and negative shocks have the same effects on volatility as the latter depends on
the square of the previous shocks. Actually, many financial series respond differently
to positive and negative shocks and ARCH models do not provide any new insight for
understanding the source of variations of this type of time series. To overcome this many
others ARCH-type models IGARCH, EGARCH, GARCH-M, CHARMA, APARCH,
FIGARCH, ...) have been developed in literature (see, for example, Tsay, 2010). Fi-
nally, for nonlinear GARCH models see also Terdsvirta (2006) .
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3. Testing linearity

From a general and intuitive point of view*, to test for (non)linearity, the system of
hypotheses is:
Hy : linearity
{ Hy : nonlinearity

Sometimes, the DGP under H; is specifically prechosen and in this case testing for
nonlinearity is in fact testing for a specific nonlinear structure. In some other cases, the
DGP under H; is still relatively general and the problem of hypothesis testing is then
also generic.

3.1. Linearity against non specific nonlinear alternatives
McLeod and Li (1983) test

A portmanteau-test type statistic, based on the autocorrelation function of squared
residuals obtained from an ARMA model fit, has been proposed by McLeod and Li
(1983). The idea is to apply the Ljung-Box statistics to the squared residuals of an
ARMA (p, ¢) model to check for model inadequacy. Consequently, the null hypothesis
is Hy : ARMA(p, q) and the test statistic is:

m_o o0 2

Q(m) = n(n+2) Y BOEE (fti)

i=1
where n is the sample size, m is a properly chosen number of autocorrelations used in
the test, a; denotes the residual series, and p;(a?) is the lag-i ACF of a?. Under the null
hypothesis

Q(Wl)—>X3n_p_q
where the number of degrees of freedom is m — p — g since the statistic is computed from
the observed residuals and, typically, m is taken around 20. The motivation for using
squared data values to detect nonlinearity is provided by a result inherent in the work of
Granger and Newbold (1976). They showed that for a series X; which is normal (and
therefore linear)
pe(X7) = (pi(X0))?

Consequently, any departure from this result presumably would indicate a degree of
nonlinearity, as pointed out by Granger and Andersen (1978).

The Q-statistic is also useful in detecting conditional heteroskedasticity of a (returns)
series €; and is asymptotically equivalent to the Lagrange multiplier test statistic of Engle
(1982) for ARCH models illustrated in the next pages.

4 In the following subsections for each test the specific Ho vs H; settings will be clarified in
detail.
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Under this circumstance, the null hypothesis of the statistic is
HOIBI ="'=Bm=0

under the alternative that at least one of the 3;, i = 1,...,m, is significantly different
from zero, where 3; is the coefficient of €7_; in the linear regression

€t2:/30+/816?_1+"'+Bm€?_m+at, t=m+1,...,n

As shown by Davies and Petruccelli (1986) via simulations, ) has higher power when
the time series is really generated by an ARCH model, whereas it may result quite
ineffective with respect to other structures.

BDS test

The BDS test (Brock et al., 1987), developed within chaos theory, is one of the most
popular tests for nonlinearity. It is a nonparametric test, originally designed to test for
independence and identical distribution (iid), but shown to have also power against a
large gamma of linear and nonlinear alternatives, Brock et al. (1991). Moreover it can
be used as a portmanteau test or miss-specification test when applied to the residuals
from a fitted model.

The BDS statistics is based on the correlation integral, a measure of the number of
times with which temporal pattern are repeated in the data. Given a time series Xy,
t =1,2,...,n and define its m-history as X = (2, 2t_1, ..., Tt—m+1), the correlation
integral at the embedding dimension m is

m 2
Oumr(e) = D Lo (X", XT) {m}
t<s mAsm

where T, = T — (m — 1) and Ix; xm is an indicator function which equals 1 if
the sup norm || X" — X*|| < e and equals O otherwise. Basically, C,, r(€) counts
up the number of m-histories that lie within a hypercube of size € of each other. Put it
differently, the correlation integral estimates the probability that any two m-dimensional
points are within a distance of € of each other

P(|Xt - Xs| < 67|*X’t—1 - Xs—1| <6 7|Xt—m+1 - Xs—m+1| < 6)
If the X are iid, this probability should be equal to the following in the limiting case
Cir(e)" =P(| Xy — Xl < )™

Brock et al. (1996) define the BDS statistics to test the null hypothesis of linearity against
the alternative of nonlinearity, as follows

Ve = VT Emld = Cur(9”

Sm,T
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where s,,, 7 is the standard deviation and can be estimated consistently as documented
by Brock et al. (1987). Under fairly moderate regularity conditions, the BDS statistic
converges in distribution to N (0,1)

White (1989) and Terasvirta et al (1993) Neural Network tests

The Neural Network test (White, 1989) for neglected nonlinearity, NN test herafter,
is built on neural network models. One of the most common is the single hidden layer
feedforward network where unit inputs send a vector X of signals X;, i = 1,...,k
along links (connections) that attenuate or amplify the original signals by a factor -;;
(weights). The intermediate or hidden processing unit j receives the signals X;v;;,
t = 1,...,k and processes them. In general, incoming signals are summed by the
hidden units so that an output is produced by means of an activation function (X', Y5
where ® is typically the logistic function® and X = (1,X;,..., X}), passed to the
output layer

a
F(X,8)=Bo+ > Bi®(X'y), qeN (10)
j=1
where S, . . ., B, are hidden to output weights and 6 = (Bo, ..., B4, 715+, 7,)"-
The NN test in particular employs a single hidden layer network, augmented by
connections from input to output. The output o of the network is

q
o=X'0+Y B®(X'y)
j=1
and the null hypothesis of linearity is equivalent to the optimal weights of the network
being equal to zero, that is the null hypothesis of the NN testis 8} = Oforj = 1,2....,¢
for given ¢ and ;.
Operatively, the NN test can be implemented as a Lagrange multiplier test:

Hy: E(®ief) =0
Hy : B(®e}) £ 0
where the elements ®; = (®(X/T';),...,®(X;I',)) and ' = (T'y,...,T,) are chosen a

priori, independently of X and for given g. To practically carry out the test, the element
e, are replaced by the OLS residuals e; = y; — X'6, to obtain the test statistic

n ! n
]\Jn = (n_1/2 Z (I)tét> I;V,n_l (n_1/2 Z @tét)
t=1

t=1

5 By definition, ® belongs to a class of flexible functional forms. White (1989) showed that
for wide class of nonlinear functions ®, the neural network can provide arbitrarily accurate ap-
proximations to arbitrary functions in various normed function spaces if g is large enough.
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where W is a consistent estimator of W* = var(n=/23"1'" | ®,e}) and under Hy

M,, i Xz(q). To circumvent multicollinearity of ®; with themselves and X; as well as
computational issues when obtaining Wi, two practical solutions are adopted. First, the
test is conducted for ¢* < g principal components of ®;, ®.e;. Second, the following
equivalent test statistic is used to avoid calculation of W,,,

nR* % \2(q)

where R? is the uncentered squared multiple correlation from a standard linear regres-
sion of é; on P}, X’t.

Terdsvirta et al. (1993) proved that the result of this test is affected by the presence of
the intercept in the power of the logistic function chosen as activation function. More-
over, he documented a loss of power due to the random choice of the v parameters.
Building on this, Terésvirta et al. (1993) replaced the expression 23’:1 B;®(X';) in
(10) with an approximation based on the Taylor expansion and derived an alternative
LM test has been shown to have better power properties.

Ramsey (1969) RESET test

Ramsey (1969) proposes a specification test for linear least squares regression anal-
ysis, whose argument is that nonlinearity will be reflected in the diagnostics of a fitted
linear model if the residuals of the linear model are correlated with terms to a certain
power. In other words, this test, referred to as a RESET test, focuses on specification
errors in the linear regression, including those coming from unmodeled non-linearity
and is readily applicable to linear AR models.

Consider the linear AR(p) model:

Xi=¢po+ 01 Xo1+ -+ ¢pXi—p + ay.

The first step of the RESET test is to obtain the least squares estimate qE, compute
the residuals a; = X; — X}, and the sum of squared residuals:

n
SSRy= > a}
i=p+1

where n is the sample size.
In the second step, consider the linear regression

a; =X{_qa+M;_ b+

where X 1 = (1, X;_1,...,X;p) and My_; = (X2,..., X;™!) for some s > 1,
and compute the least squares residuals

by =a, — X, 14— M, ,b
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In the third step sum of squared residuals is computed
SSRy = > @}
1=p+1

If the linear AR(p) model is adequate, then a and b should be zero, so the null hypothesis
of linearity can be tested in the fourth step by the usual F statistic given by:

(SSRy — SSR1)/g
SSR1/(n—p—g)

= with g=s+p+1

which under linearity and normality, has an Iy ,_,_,.

Keenan’s (1985) test and Tsay’s (1986) test

Keenan (1985) proposes a nonlinearity test for time series that uses Xf only and
modifies the second step of the RESET test to avoid multicollinearity between X? and
X¢—1- In particular, Keenan assumes that the series can be approximated (Volterra ex-
pansion) as follows:

Xt:ﬂ"’_ Z Z Ouas—y + Z Z O Ot — Qg —o

U=—00 V=—00 U=—00 V=—00

Clearly, if Zu__oo Zf’:_w 0 @t—y Gty 18 Zero, the approximation is linear, so Keenan’s

idea shares the principle of an F' test. The procedure is in the same steps as Ramsey’s
test. Firstly, select (with a selection criterion, e.g. AIC) the value p of the number of lags
involved in the regression, then fit X; on (1, X;_1, ..., X;_, to obtain the fitted values
(X3), the residuals set (d;) and the residual sum of squares SSR. Then regress X2 on
(1, X;—1,...,X;_p) to obtain the residuals set (¢,). Finally calculate

N Zf p+]_ atCt
Zt=p+1 Ct

and the test statistic equals
o (=202
(SSR—n?)
Under the null hypothesis of linearity, i.e.

S e’
Z Z euvat—uat_,u =0

U=—00 V=—0C
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and the assumption that (a;) are [ID Gaussian, asymptotically F~ Fip—op—2.

Tsay (1986) improved on the power of the Keenan (1985) test by allowing for dis-
aggregated nonlinear variables (all cross products X;_; X;_;, 4,5 = 1,...,p) thus gen-
eralizing Keenan test by explicitly looking for quadratic serial dependence in the data.
While the first step of Keenan test is unchanged, in the second step of Tsay test, instead
of (Xt)z, the products X;_; X;_;,4,j7 =1,...,pareregressed on (1, X;_1,..., X;_,.
Hence, the corresponding test statistic Fis asymptotically distributed as Fy, ,,—pm—p—1,
where m = p(p — 1)/2.

3.2. Linearity against specific nonlinear alternatives
TAR-LR test

Chan and Tong (1986) propose a likelihood ratio (LR) test for discriminating a par-
ticular subset of the self-exciting TAR models, i.e. TAR(2, p, p), from linear AR models
when p, R and d are known (or assumed). Using the same notation as in the previous
section, Hy : X; ~ AR(p), is tested against Hq:

X, — { Sro+ iy ¢1iXiitary ifXa<r
¢ P20+ D0 2 iXe—i+asy Xy q>r

where 7 is the threshold. Assuming that a; is IID independent of X, s < ¢, the Chan
and Tong LR test is given by:

n—p+1

LRy = {o*(NL,r)/0?} 2

where 02(N L, ) and o2 are the respective estimators of the error variance from TAR(2; p, p)
and AR(p) models. Under the null hypothesis of linearity, the AR coefficients in the
TAR regimes will be not significantly different, i.e. Hy : ¢} = ¢? (i = 0,1,...,p), and
—2log(LRy) is asymptotically distributed as x3 ;. It is well-established that this kind
of test suffers from the Davies (1987) problem, since threshold parameter, 7, is not iden-
tified under the null hypothesis of linearity. The parameter r is referred to as a nuisance
parameter under the null hypothesis. Consequently, the asymptotic distribution of the
likelihood ratio is very different from that of the conventional likelihood ratio statistics.
Chan (1991), and Andrews and Ploberger (1994) provide further discussion on hypoth-
esis testing involving nuisance parameters under the null hypothesis. In practice, r is
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generally unknown and needs to be estimated.® The LR test then turns into:

n—pt1

LRy ={0*(NL)/o?} 2

As a consequence, the likelihood function is irregular and the asymptotic distribution
of the statistics is no longer x2. However, Chan and Tong (1986) propose a numerical
evaluation of the likelihood function and a likelihood ratio test based on that numerical
approximation. For the restricted case indicated above, theoretical results allow tabula-
tion of the asymptotic null distribution of L Rs (see Moeanaddin and Tong (1988), Chan
and Tong (1990), for details).

Engle (1982) LM test

The Lagrange multipliers (LM) test by Engle (1982) has been introduced to test for
ARCH effects mainly for its computational simplicity, as the LM test only demands
estimation of the linear model. It is equivalent to the F statistic to test for the null
hypothesis of coefficients not significantly different from zero in the regression of the
squared residuals from the fit of a linear model on the lagged (up to m) values of the
same squared residuals.

-2 ~2 -2
a; =g+ 105 1+ -Fopa;_+e, t=m+1,...,n

Once the quantities SSRy = >_,— (a7 —a)? and SSR; = Y.} ., € are com-
puted, the F statistic is easily obtained:

P (SSRy — SSRy)/m
- SSRi/(n—2m —1)

that is asymptotically distributed as y2,. Note that, as it is an LM test, it is possible to
resort to nR? that, asymptotically has the same distribution as F.

4. Monte Carlo experiment
The Monte Carlo experiment presented in this section has the aim of showing the

performance in terms of power and size of the (non)linearity tests illustrated in the pre-
vious section for various data generating processes (DGPs). The considered sample

6 Other solutions to this problem involve some sort of integrating out unidentified parameter
from the test statistic. In the context of TAR models the problem has been investigated, for exam-
ple, in Tong (1990) and Hansen (1996) that proposed to calculate test statistic for a grid of possible
values of r and then constructing a summary statistic. Tsay (1989) makes use of arranged autore-
gression and recursive estimation to derive an alternative test for threshold nonlinearity. Tsay test
seeks to transform testing threshold nonlinearity into detecting model changes. The idea behind
the test is that under the null hypothesis there is no model change.



20 L. Bisaglia and M. Gerolimetto

sizes are n = 100, 250, 500, 1000, for 2000 Monte Carlo simulations and the signifi-
cance level is « = 0.05. Simulations are conducted using the software R Development
Core Team (2011).

As both size and power are investigated for all considered tests, the Monte Carlo
experiment is two-fold. The considered linear DGPs are listed below, for all models the
innovations are distributed as N (0, 1):

1. White Noise

2. AR(1), where ¢ = —0.9, —0.5,0.5,0.9

3. MA(1), where § = —0.9, —0.5,0.5,0.9
4. ARMA(1,1), where ¢ = 0.6,0 = 0.3

5. ARFIMA(0,d,0), where d = 0.1,0.3,0.45

To study the power of the tests, data are generated under the alternative hypothesis of
nonlinearity. The following nonlinear DGPs are considered, innovations are distributed
as N(0,1):

1. ARCH(1), where X; = oyas, 02 = 0.01 + aX? ;,a =0.3,0.6,0.9
2. ARCH(2), where X; = oay, af =0.01 + 0.8Xt2_1 + 0.025Xt2_2
3. GARCH(1), where X; = o;ay, 07 = 0.011 + 0.12X2 | + 0.850%
4. TAR(1,1), where

Xt _ { —0.5Xt_1 + Q¢ Xt—l S 1

0.4Xt,1 + a¢ Xt,]_ >1

X, — 2+ 0.5Xt_1 + ay Xt—l S 1
7] 05—-04Xe 1 4+ar Xeq>1

X, — 1-— 0.5Xt_1 + ay Xt—l S 1
¢ 1+a; Xi1>1

5. MS(1), where

X, = _0.5Xt,1 +ar S = 1
ET) 04X +ar s =2

with p11 = p22 = 0.5, 0.9.
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As for the implementation of the tests, a few remarks are in order. The Tsay test
and Keenan test have been conducted for p = 2, 4. The BDS test has been implemented
form = 2,3 and € = 1. For the McLeod-Li test the parameter m has been set to /7
rounded to the closest integer. The Engle LM test has been run for m = 5. Finally the
TAR test has been implemented for d = 1 and a = 0.25, b = 0.75.

The results are presented in Tables 1-9 in the Appendix and several comments can
be made about both size and power performance of the tests.

As for the size (Tables 2-5), the results reveal that most of the tests have a good
behaviour with respect to all considered linear models. Indeed, the percentage of rejec-
tions of the null hypothesis is often quite close to nominal level of 0.05, meaning that
the examined tests tend to correctly recognize linearity of the time series. This holds
with the exception of the BDS test and the TAR-LR test whose empirical size is rather
large and, especially for the latter, barely reduces with the sample size. The size of the
BDS test, in fact, improves for sample sizes bigger than 500, this is in line with previous
results Patterson and Ashley (2000) according to which this test needs very long series
to work properly. The tendency of the TAR-LR test to overeject the null hypothesis of
linear model even when the DGP is in fact linear can be easily explained by considering
the piecewise linear nature of the TAR models.

In terms of power (Tables 6-10), we expect that tests designed to recognize non lin-
earity in mean (variance) perform better in case the DGP is nonlinear in mean (variance).
In general, this is confirmed by the results of the experiment. In case of ARCH/GARCH
DGPs the tests with the highest power are McLeod and Li test and Engle LM test, in
case of TAR DGPs the test with the largest power is the LR-TAR test, followed by
the tests Tsay, Keenan, Terasvirta and White. There is no big difference between the
power obtained by the LR-TAR test and Tsay, Keenan, Terasvirta and White. This in-
teresting result reveals that these tests work well in case of TAR models. The only test
that exhibits large power both for ARCH/GARCH and TAR DGPs is the BDS, without
forgetting that the sample size should be larger than 500.

In case of MS models, the performance of the tests changes. One could expect the
power results being similar to those obtained for TAR DGPs as these models share with
MSs the same regime switching nature. In fact, the responses of the tests are quite
different. Tsay, Keenan, Terasvirta and White test exhibits very poor power, while the
McLeod and Li test and Engle LM test (although they are designed to detect nonlinearity
in variance) are characterized by extremely good power that reaches high values at the
increase of the sample size.’

Finally, some ARFIMA models (Tables 11) have been included in the experiment to
find out whether some of the tests could capture their peculiarity compared to ARMA
models. In general the tests do not recognize elements of difference from the linearity.
It is only when d is close to 0.5 that Keenan’s test, Terasvirta and White tests, can
distinguish ARFIMA from ARMA linear models.

All in all, there is a great deal of variation of the power. As shown in the synoptic

7 These results are in line with those obtained by Patterson and Ashley (2000).
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Test Comment
BDS very good power starting from n = 100 in case of ARCH/GARCH DGPs
good power when n > 500 in case of TAR DPGs

good power starting from n = 100 in case of MS DPGs

McLeod-Li very good power starting from n = 100 in case of ARCH/GARCH DGPs
good power starting from n = 250 in case of MS DPGs

EngleLM very good power starting from n = 100 in case of ARCH/GARCH DGPs
good power starting from nn = 250 in case of MS DPGs

Tsay/Keenan acceptably good power in case of ARCH/GARCH DGPs (better Tsay than Keenan)
very good power starting from n = 100 in case of TAR DPGs

Terasvirta/White ~ acceptably good power in case of ARCH/GARCH DGPs (the test perform similarly)
very good power starting from n = 100 in case of TAR DPGs

TAR-LR very good power starting from n = 100 in case of TAR DPGs

Table 1. Summary of the power study

table below, several of the tests studied have a good power against a variety of alter-
natives, but no one of the tests dominates all others. The BDS test exhibits most often
the highest power in detecting nonlinearity, and for this reason it should be the first to
be used. On the other hand it does not provide indications about the type of nonlinear-
ity, hence some other tests must be necessarily employed afterwards. The simulations
results show that Tsay test stands as a possible marker for TAR models and has better
power properties than Keenan’s, hence it should be preferred. Terasvirta and White tests
perform similarly to the Tsay test, except for the MS DGP.

5. Conclusion

In this paper we provide a review and a comparative analysis of the main tests to
detect nonlinearity in economic time series.

As emphasized by Giannerini (2013), it is difficult to offer a unified framework
where all nonlinearity tests can be included. At the end of this comparative analysis
work, we can conclude almost all tests are influenced by the specific hypothesis under
which they have been conceived and there are few complementaries among the tests.
Every single test, in fact, works properly only in specific cases, in which, on the other
hand very high power is reached. Testing the presence of specific nonlinear features by
means of more than one test to detect nonlinearity, starting from the BDS test, appears
to be the safest strategy.

Some results have not been included in this paper. In particular, we did not cover
tests in the frequency domain, e.g. Hinich (1982), whose advantage is in their generality,
but they are relatively underused and for this reason we gave more space to other tests
that are effectively more utilized by practitioners.
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6. Appendix

Table 2. DGP: WN. Empirical size of tests (nominal level 0.05)

WN n=100 | n=250 | n=>500 | n = 1000
Tsay, p=2 4.8 5.0 4.5 55
Tsay, p=4 4.7 5.5 5.2 4.8
Keenan, p=2 4.5 6.1 4.2 5.6
Keenan, p=4 3.6 5.6 4.5 4.5
Terasvirta 5.6 4.4 3.8 5.4
White 5.5 5.1 3.5 6.0
BDS, m=2 13.9 6.9 5.5 6.3
BDS, m=3 14.0 8.0 6.6 6.5
McLeod-Li 4.4 5.1 5.2 4.7
EngleLM 2.7 4.0 39 4.6
TAR-LR 11.6 12.7 10.0 9.9
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Table 3. DGP: AR(1). Empirical size of tests (nominal level 0.05)

AR(D) =009 =05

n=100 n=250 mn=500 n=1000| n=100 n=250 m=>500 n=1000
Tsay, p=2 75 i3 i3 53 a1 51 53 78
Tsay, p=4 48 44 5.1 49 37 49 49 49
Keenan, p=2 52 5.1 3.8 4.9 52 5.7 49 4.6
Keenan, p=4 5.1 52 4.0 5.0 5.0 5.7 5.9 43
Terasvirta 4.8 53 4.2 5.6 5.8 54 52 4.7
White 55 53 338 55 6.1 54 49 5.0
BDS, m=2 12.0 6.9 7.0 54 134 8.0 5.8 56
BDS, m=3 133 65 6.7 5.7 146 73 6.0 56
McLeod-Li 47 52 45 5.8 45 53 39 52
EngleLM 31 44 40 45 32 37 4.0 54
TAR-LR 113 102 9.8 10.3 124 116 10.6 10.4
AR(D) $=09 $=05

n = 100 n = 250 n = 500 n = 1000 n = 100 n = 250 n = 500 n = 1000
Tsay, p=2 71 %) a8 51 75 38 37 a7
Tsay, p=4 41 48 54 50 38 33 42 43
Keenan, p=2 43 44 42 52 12 25 3.1 32
Keenan, p=4 46 47 42 54 11 2.7 32 32
Terasvirta 42 4.0 42 48 73 59 6.2 46
White 46 39 46 43 6.7 53 59 47
BDS, m=2 13.7 7.8 6.0 5.1 135 8.1 6.5 55
BDS, m=3 142 72 58 48 136 83 6.3 47
McLeod-Li 44 47 54 42 46 55 52 53
EngleLM 3.6 43 44 45 3.0 45 4.0 45
TAR-LR 135 10.9 104 95 12.1 10.9 109 103

Table 4. DGP: MA(1). Empirical size of tests (nominal level 0.05)

MA(T) =09 6=05

n=100 n=250 mn=500 n=1000 | n=100 n=250 n=2500 n=1000
Tsay, p=2 34 I1 38 32 16 79 39 Y]
Tsay, p=4 48 5.7 46 50 49 52 48 6.2
Keenan, p=2 1.5 2.0 1.5 1.4 3.4 34 35 3.7
Keenan, p=4 1.3 1.1 1.5 2.0 4.4 4.5 4.3 4.7
Terasvirta 8.0 7.0 6.1 5.9 5.9 6.4 53 6.3
White 72 72 6.9 57 6.3 6.6 6.0 5.8
BDS, m=2 138 7.0 6.2 50 136 77 6.6 55
BDS, m=3 142 7.1 6.4 49 14.7 8.6 6.6 57
McLeod-Li 43 46 48 47 5.0 49 5.7 53
EngleLM 34 53 47 5.1 3.1 4.1 46 53
TAR-LR 13.0 12.8 11.7 1.1 11.4 12,6 11.6 104
MA(D) =00 =05

n = 100 n = 250 n = 500 n = 1000 n = 100 n = 250 n = 500 n = 1000
Tsay, p=2 79 56 64 53 ) 61 i3 57
Tsay, p=4 47 44 56 3.6 49 52 53 6.5
Keenan, p=2 46 6.0 54 5.7 43 54 47 5.0
Keenan, p=4 4.6 4.9 5.8 52 5.1 54 4.9 4.0
Terasvirta 29 2.7 2.6 29 1.3 0.9 1.1 0.9
White 35 28 2.7 2.7 14 1.0 1.0 12
BDS, m=2 137 79 52 6.3 122 79 6.9 52
BDS, m=3 13.7 85 59 62 13.1 75 54 59
McLeod-Li 46 48 52 46 39 5.0 47 5.0
EngleLM 34 5.0 55 54 3.1 46 42 43
TAR-LR 133 105 8.5 8.9 13.0 10.8 92 9.6
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Table 5. DGP: ARMA(1,1). Empirical size of tests (nominal level 0.05)

ARMA(1,1) || n =100 | n =250 | n=>500 | n = 1000
Tsay, p=2 4.0 53 53 5.7
Tsay, p=4 4.3 4.8 4.7 5.4
Keenan, p=2 3.5 5.4 5.7 6.3
Keenan, p=4 33 5.0 5.2 5.2
Terasvirta 1.9 1.4 1.8 1.7
White 1.8 1.5 2.1 2.2
BDS, m=2 13.6 8.2 6.1 54
BDS, m=3 12.5 8.1 6.7 5.3
McLeod-Li 4.7 5.1 5.7 5.1
EngleLM 3.3 4.1 44 43
TAR-LR 10.8 9.6 9.3 8.9

Table 6. DGP: ARCH(1). Empirical power of tests

ARCH(1) - = 0.3 n = 100 n = 250 n = 500 n = 1000
Tsay, p=2 144 20.7 25.6 30.1
Tsay, p=4 12.8 20.5 26.3 30.5
Keenan, p=2 11.5 14.0 17.0 19.3
Keenan, p=4 8.6 10.0 13.0 13.5
Terasvirta 19.3 27.2 29.9 35.4
White 15.5 21.2 21.8 23.8
BDS, m=2 52.6 85.5 99.0 100.0
BDS, m=3 49.9 81.0 98.0 100.0
McLeod-Li 24.9 64.6 93.9 99.9
EngleLM 29.0 70.8 96.1 99.4
ARCH(1) - = 0.6 n = 100 n = 250 n = 500 n = 1000
Tsay, p=2 32.7 459 56.1 66.3
Tsay, p=4 355 53.7 66.8 71.6
Keenan, p=2 21.2 30.1 374 42.8
Keenan, p=4 18.0 26.4 323 38.0
Terasvirta 36.7 50.5 61.2 67.8
White 29.3 39.4 473 53.1
BDS, m=2 86.1 99.8 100 100
BDS, m=3 83.7 99.7 100 100
McLeod-Li 55.1 94.1 99.9 100
EngleLM 55.1 93.9 99.0 99.9
ARCH(1) -« = 0.9 n =100 | n =250 | n=>500 [ n=1000
Tsay, p=2 48.1 66.1 71.2 87.8
Tsay, p=4 58.0 71.6 89.5 96.7
Keenan, p=2 30.3 43.2 55.0 63.2
Keenan, p=4 27.7 39.1 49.6 61.1
Terasvirta 51.9 68.8 76.1 85.8
White 41.4 56.1 65.9 73.8
BDS, m=2 96.9 100.0 100.0 100.0
BDS, m=3 96.2 100.0 100.0 100.0
McLeod-Li 69.1 95.9 99.8 100.0
EngleLM 66.4 93.0 98.1 99.9
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Table 7. DGP: ARCH(2). Empirical power of tests

ARCH(2) n =100 | n =250 | n =500 | n = 1000
Tsay, p=2 45.8 64.4 74.8 84.1
Tsay, p=4 53.0 75.7 87.3 94.0
Keenan, p=2 29.9 41.1 48.6 583
Keenan, p=4 26.6 36.5 45.6 53.1
Terasvirta 51.0 63.5 72.4 81.6
White 41.3 50.8 59.4 67.9
BDS, m=2 95.0 100.0 100.0 100.0
BDS, m=3 94.2 100.0 100.0 100.0
McLeod-Li 66.1 96.2 99.9 100.0
EngleLM 69.0 98.0 99.1 100.0

Table 8. DGP: GARCH(1,1). Empirical power of tests

GARCH(1,1) || n =100 | n =250 | n =500 | n = 1000
Tsay, p=2 11.2 19.4 26.5 334
Tsay, p=4 16.1 34.0 454 58.4
Keenan, p=2 8.8 13.5 16.1 19.9
Keenan, p=4 7.8 13.2 15.0 20.4
Terasvirta 11.1 174 244 30.9
White 10.1 12.7 17.7 20.9
BDS, m=2 30.7 58.8 86.4 98.9
BDS, m=3 37.7 70.4 94.7 100
McLeod-Li 32.5 80.1 98.8 100
EngleLM 342 83.9 98.3 100
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Table 9. DGP: TAR(1,1). Empirical power of tests

TAR(1,1) n =100 | n=250 | n =500 | n = 1000
Tsay, p=2 77.0 99.6 100.0 100.0
Tsay, p=4 50.0 96.3 100.0 100.0
Keenan, p=2 65.3 88.4 96.6 99.9
Keenan, p=4 37.7 66.5 80.1 91.7
Terasvirta 86.8 99.9 100.0 100.0
White 91.5 100.0 100.0 100.0
BDS, m=2 41.7 69.9 91.6 99.6
BDS, m=3 38.9 66.0 89.4 99.3
McLeod-Li 8.9 14.1 244 43.9
EngleLM 9.1 16.9 28.0 53.7
TAR-LR 90.3 99.9 100 100
TAR(1, 1) with constant n =100 | n =250 | n =500 | n = 1000
Tsay, p=2 93.1 100 100 100
Tsay, p=4 73.1 99.5 100 100
Keenan, p=2 66.5 98.3 100 100
Keenan, p=4 12.2 31.1 59.6 89.3
Terasvirta 99.7 100 100 100
White 100 100 100 100
BDS, m=2 15.4 15.0 18.9 22.6
BDS, m=3 24.6 34.7 55.3 83.1
McLeod-Li 5.3 8.0 9.5 14.8
EngleLM 4.1 7.8 124 183
TAR-LR 100 100 100 100
TAR(1, 1) with WN n =100 | n =250 | n =500 | n = 1000
Tsay, p=2 18.1 46.5 77.8 98.3
Tsay, p=4 10.1 26.3 55.5 91.9
Keenan, p=2 40.7 73.2 93.7 99.8
Keenan, p=4 76.0 99.6 100.0 100.0
Terasvirta 33.0 66.7 93.5 99.9
White 36.8 73.5 96.5 99.9
BDS, m=2 13.9 13.9 15.0 222
BDS, m=3 14.3 12.8 133 19.4
McLeod-Li 4.3 53 7.6 9.5
EngleLM 43 5.7 7.4 8.7
TAR-LR 36.4 75.7 98.1 100
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Table 10. DGP: MS(1). Empirical power of tests

MS(1)p=q=0.5 | n=100 | n =250 | n =500 | n= 1000
Tsay, p=2 10.6 11.3 134 14.0
Tsay, p=4 9.0 10.9 12.9 14.3
Keenan, p=2 8.1 10.1 9.9 11.5
Keenan, p=4 6.5 7.6 8.6 10.5
Terasvirta 15.5 17.5 194 20.6
White 12.1 12.8 13.2 14.3
BDS, m=2 41.8 73.2 95.6 100
BDS, m=3 40.4 68.2 91.8 99.9
McLeod-Li 17.3 46.3 79.9 98.8
EngleLM 11.2 41.7 77.2 98.8
TAR-LR 14.8 12.9 14.3 13.7
MS(1)p=¢g=0.9 || n=100 | n =250 | n =500 | n= 1000
Tsay, p=2 10.0 11.5 12.5 13.3
Tsay, p=4 7.6 10.7 10.3 11.7
Keenan, p=2 5.5 5.1 4.6 3.8
Keenan, p=4 3.8 5.0 4.6 4.4
Terasvirta 14.0 20.3 23.9 27.3
White 11.5 14.6 16.5 21.6
BDS, m=2 34.1 68.4 89.8 99.2
BDS, m=3 33.9 64.0 86.6 98.4
McLeod-Li 13.9 38.4 68.8 93.3
EngleLM 8.4 354 67.0 92.2
TAR-LR 14.7 14.5 14.9 16.5
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Table 11. DGP: ARFIMA(0,d,0). Empirical size of tests (nominal level 0.05)

ARFIMA(0,d,0),d = 0.1 n =100 | n =250 | n =500 | n= 1000
Tsay, p=2 4.8 4.6 5.0 44
Tsay, p=4 43 4.1 4.7 4.0
Keenan, p=2 6.8 72 10.5 11.5
Keenan, p=4 53 5.8 9.1 9.4
Terasvirta 4.7 5.6 5.5 52
White 5.4 5.7 55 53
BDS, m=2 13.8 8.9 6.0 5.4
BDS, m=3 14.5 9.1 6.8 53
McLeod-Li 49 4.7 4.8 43
EngleLM 3.4 4.6 4.0 4.8
ARFIMA(0,d,0), d = 0.3 n =100 | n =250 | n =500 | n= 1000
Tsay, p=2 43 6.5 6.0 7.0
Tsay, p=4 3.5 52 5.0 5.8
Keenan, p=2 8.1 12.2 26.1 40.7
Keenan, p=4 5.2 6.4 15.8 274
Terasvirta 5.7 7.1 8.0 9.0
White 5.5 5.1 35 6.0
BDS, m=2 13.8 8.0 7.0 5.5
BDS, m=3 13.6 7.6 6.6 5.4
McLeod-Li 44 4.8 4.6 4.0
EngleLM 32 4.8 4.9 4.5
ARFIMA(0,d,0), d = 0.45 n =100 | n =250 | n =500 | n= 1000
Tsay, p=2 45 5.8 7.2 10.1
Tsay, p=4 42 42 49 6.4
Keenan, p=2 26.7 27.3 353 46.0
Keenan, p=4 225 23.8 28.1 35.6
Terasvirta 8.7 115 13.0 18.5
White 9.9 12.5 14.8 20.3
BDS, m=2 14.9 8.8 6.7 54
BDS, m=3 14.8 7.8 7.0 5.4
McLeod-Li 4.8 45 53 5.9
EngleLM 3.6 3.8 4.8 5.1




