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Summary:Performance analysis has become a strategic activity in managing complex
systems. The aim of this activity is often benchmarking, that is the comparison among
various units on the basis of perfomance. In statistical terms this corresponds to search
for an ordering of units described by a set ofp indicators. In this paper we propose
a new reduced ordering procedure for multivariate observations based on determining a
meaningful direction for the problem in the Euclideanp-dimensional space. Namely, the
direction is the one which goes from the “worst” performing units to the “best”, that is
the “worst-best” direction. Some proposals for the “worst”and “best” case construction
are offered along with the related reduced ordering procedure. Some geometric issues
and statistical properties of the proposal are discussed.
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1. Introduction

Nowadays considered a strategic activity for any organization, per-
formance analysis requires a system of indicators to measure inputs and
outputs of ongoing processes, and to synthesize the outcomes (Perrin,
1998).

One of the aims of performance analysis is to compare units inorder to
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search for best practices, thereby leading to improvements. This process
usually ends up in a benchmarking activity, i.e. looking forbest practices
and best performances on the one hand, and worst practices onthe other
(Camp, 1989; Chap.2). Benchmarking is mainly based on a preliminary
ranking of the units. This goal arises not only in business, but is widely
found in many other fields, such as those related to a country’s perfor-
mance with regard to society, economy, environment and health (Saisana,
2004).

Statistically speaking, ranking is achieved through an ordering of the
observations described by a set ofp indicators, i.e. it entails ordering mul-
tivariate observations in thep-dimensional Euclidean spaceEp. However,
due to lack of natural ordering inEp, this task cannot be pursued by sim-
ply extending univariate order concepts. Many approaches to multivariate
ordering have been proposed in the literature (Tukey, 1975;Barnett, 1976
and discussion therein; Friedman and Rafsky, 1979; Eddy, 1985; Korho-
nen and Siljamäki, 1998; Liuet al., 1999, Atkinson and Riani, 2000;
Gentle, 2002).

However, most of these approaches are not well suited to ordering
units measured through multivariate performance indicators, as they do
not take into account the nature of data and the specific goalsof bench-
marking. In this paper we propose an ordering procedure based on the
construction in theEp space of a direction meaningful for benchmarking
and for comparison among performers. Such a direction is built to coin-
cide with that going from the “worst” performer to the performance driver
- the “worst-best” direction.

The paper is organized as follows. In Section 2 we discuss theno-
tion and the proposals for multivariate ordering. Section 3provides our
proposal to construct units such that they are intrinsically “worst” and
“best”, and the steps of the ordering procedure. Two illustrative examples
and some concluding remarks are found in Sections 4 and 5, respectively.

2. On the notion of multivariate ordering

As is well known, a clear and unambiguous ordering of observations
can be achieved only in a one-dimensional space. Indeed, ifx1, x2, . . . , xn
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aren observations inE1, we can place them in increasing order asx(1) ≤
x(2) ≤ . . . ≤ x(n). For multivariate data, an ordering is usually obtained
by moving from the givenEp to a suitableE1. When all the multivariate
points lie in a one dimensional subspace, i.e. on a straight line, theE1 sub
space is uniquely determined, and an unambiguous ordering is given. In
all the other cases, the subspaceE1 is not unique and some information
will be lost in the mapping fromEp to E1.

Following the seminal work of Barnett (1976), several approaches for
choosing theE1 subspace can be adopted and different subordering prin-
ciples arise.

Given a data matrixX = {xij}, let Xj, j = 1, . . . , p, denote thej-th
variable, andx′

i = (xi1, . . . , xip)
′ denote the set of thep measurements

for the i-th statistical units,i = 1, . . . , n. A simple, yet not very useful,
ordering approach is the so-calledmarginal ordering, where theE1 space
is chosen to coincide with one of thep subspaces determined by one of
the p variablesXj. The observations will be marginally ordered on the
j-th variable asx(1)j ≤ x(2)j . . . ≤ x(n)j , and, hence,p different rankings
will be obtained.

Nowadays, a very popular ordering approach is based on the notion
of data depth. This is a type ofpartial ordering: the sample is partitioned
into subgroups and theE1 space is the associated space of depth function
values of each subgroup. Such partial ordering induces acenter-outward
ranking of the observations (see from the first work of Tukey, 1975 to
more recent works by Liuet al., 1999 and Zhang, 2002, and references
therein).

For the data we are dealing with (i.e. a set of units describedby perfor-
mance indicators) and for the main goal of benchmarking, thedata depth
approach is not adequate. Indeed, in our case the goal is not to order
observations with respect to a center (the deepest point), but to achieve
overall ordering of cases from the worst performance to the better ones.

More useful for our goals is the so-calledreduced ordering(or R-
ordering), which can be distinguished, according to Mardia (1976), into
distanceordering andprojectionordering. Distance ordering is however
again not suited for our type of data. In fact, it implies the use of some
generalized distance measure from a single fixed point (usually the cen-
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ter of the distribution) according to a specific metric, and the chosenE1

space coincides with the one spanned by such a distance. Thistype of
reduced ordering again yields a center-outward ranking and, as noted in
Barnett (1976), it fails to reduce to the conventional ordering principle
in one dimension. Another type of distance ordering is that based on
the minimum spanning tree (MST) (Friedman and Rafsky, 1979) which
yields two types of one-dimensional ranking: linear and radial. In both
cases theE1 space is given by the distances on theMST. For linear rank-
ing the computational effort can be prohibitive for large data sets (Gentle,
2002). Moreover, the point chosen as the starting node cannot be always
interpreted in terms of good or bad performance. Radial ranking produces
a center-outward ranking, and hence has the drawbacks previously listed
for our goals. Another type of reduced ordering, which resembles dis-
tance ordering, is based on convex hull volume variations (theE1 space
is the space of convex hull volumes): the convex hull of a dataset itera-
tively identifies points lying on the boundary, the most extreme of which
is the one whose removal from the data maximizes the reduction in the
convex hull volume (Tukey, 1975; Eddy, 1985; D’Esposito andRagozini,
1999). Such a procedure provides ordering of the data from the outside
in, and in more than 3 dimensions could be computationally expensive.

In projection ordering each multivariate observationx
′
i is reduced to

a single valuex∗
i by means of some combination of thexij component

values or, equivalently, by an appropriate projection rule. The chosenE1

space is the projection line. This approach does not have thedisadvantage
of distance ordering, and in the univariate case reproducesthe natural or-
dering. Hence, it is well suited for our purposes, i.e. building an ordering
criterion that ranks observations from “worst” performersto “best” ones.

The main issue here is to determine the directionu for such a pro-
jection. Commonly the first principal component is used. However, this
strategy, too, does not completely meet the declared goals as it provides
the most interesting direction in terms of variance and correlation with-
out purposively considering any ordering criterion. Furthermore, it is not
guaranteed that all performance indicators will be positively correlated
with the first principal component. In particular, if subgroups of indica-
tors are present, each one measuring different performanceaspects, it is
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likely that the first principal component is correlated withthe leading in-
dicator subgroup. To avoid the first drawback, Korhonen and Siljamäki
(1998) proposed to compute the ordinal principal componentdefined as
a new ordinal variable which maximizes the sum of the squaredrank-
correlation with respect to the original variables. However, the procedure
is very time consuming for real size problems, and also in this case the
first ordinal component could be determined by only some leading indi-
cators, neglecting the others.

Finally, with regard to projection ordering, it is worth noting that dif-
ferent criteria could yield very different rankings of the units. However,
if the p indicators are strongly correlated to each other, different types of
projections yield similar orderings.

3. The ordering procedure

Focusing our attention on projection ordering, we proposei) to deter-
mine a meaningful direction for ordering from the worst towards better
cases, the“worst-best” direction, ii) then to project data on it, andiii)
finally to rank our observations in the associated univariate space.

3.1. The “worst-best” direction

With the aim of determining the direction for the projectiontaking
into account the benchmarking goals, we have first of all to define the
cases which correspond to the “worst” and “best” performances, in the
following x

′
worst andx

′
best respectively. These two cases represent kinds

of ideal points combining all the “worst” or “best” achievable perfor-
mances and indicators are at the lowest/highest possible values. Hence,
in our framework the “worst” and “best” terms do not necessarily mean
worst and best quality.

In order to construct them, we propose a data-driven strategy that re-
lies on the use of convex hull andarchetypal points(Cutler and Breiman,
1994). The latter represent a sort of pure individual types and are few
points lying in the boundary of data scatter which synthesize the whole set
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of observed data. They are defined asm (with m chosen by the analyst)
p-dimensional vectorsa1, . . . , am whose convex combination

∑m

k=1 αkak

best approximates thex′
i’s by minimizing

n
∑

i=1

∥

∥

∥

∥

∥

x
′
i −

m
∑

k=1

αikak

∥

∥

∥

∥

∥

2

(1)

with αik ≥ 0,
∑m

k=1 αik = 1.
The archetypesa1, . . . , am are shown to a be mixture of thex′

i data
values, i.e.

ak =

n
∑

i=1

βkix
′
i, k = 1, . . . , m (2)

with βki ≥ 0,
∑n

i=1 βki = 1.
For m > 1, the archetypes fall on the convex hull of the data. Given

the properties of points lying on the convex hull, “they are extreme data
values such that all the data can be well represented as a convex mixture
of archetypes” (Cutler and Breiman, 1994).

Whenm = 2, the two most extreme two points on the convex hull
of the data are selected, i.e. the two points having the maximum distance
between them and the minimum distance with respect to the others. From
a theoretical point of view, these two archetypes coincide with the idea of
pure “worst” and “best” cases. Note that they are not necessarily actually
observed, and lie on the border of the data region. In order tobe sure that
these two points correspond to the worst and best performers, the ranks on
each variable of the two archetypes with respect to the otherdata values
should be inspected. The “worst” archetype should have low values for
most of the ranks, the opposite for the “best”.

Another possibility to construct the “worst” and the “best”perform-
ers could rely on the notion ofmultivariate extremes, i.e. points that are
the combinations of all the minima (or maxima) in the marginal order-
ings (Barnett, 1976). Hence, the vector of the minimum of each variable
defines the “worst” performer
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x
′
worst =

(

x(1)1, ..., x(1)p

)

(3)

and, analogously, the vector of the maximum determines the “best” per-
former

x
′
best =

(

x(n)1, ..., x(n)p

)

. (4)

It is worth noting that for some performance indicators (e.g. unem-
ployment rate, drop out rate, alumni/faculty rate,. . . ) theminimumx(1)j

does not correspond to the worst performance (and viceversafor the max-
imum). For such variables the ordering relation has to be reversed simply
by multiplying the variable by(−1). It is easy to show that the two ex-
treme points in (3) and (4) coincide with two vertices of the rectangular
hull of the data, i.e. the minimum hyperparallelotope containing the data.

However, when outliers are present, the rectangular hull may change
substantially. Hence, the “worst” and “best” performers, located on its
vertices, could be too extreme as combinations and not admissible as real
cases. To avoid this drawback, robust extreme values can be obtained
either by taking theα and the(1−α) quantiles on each marginal indicator,
i.e.

x
′
worst =

(

x(⌊αn⌋)1, ..., x(⌊αn⌋)p

)

x
′
best =

(

x(⌈(1−α)n⌉)1, ..., x(⌈(1−α)n⌉)p

)

, (5)

or by cleaning the data set by applying some peeling procedure (see for
example the rectangular trimming for bivariate data (Nath,1971; Dyer,
1973) or convex hull peeling procedures (Eddy, 1982; Porzioand Ragozini,
2000).

Even if the “worst” and “best” cases, constructed in this way, are very
simple to interpret with a clear meaning even for nonstatisticians, and are
very simple to compute, for particular data cloud shapes therectangular
hull could be completely misleading (Brooks, Carrol and Verdini,1988).
On the contrary, with respect tox′

worst =
(

x(1)1, ..., x(1)p

)

andx
′
best =

(

x(n)1, ..., x(n)p

)

in eqs. (3) and (4), the archetypal points are closer to
the observed data and depend on the actual data cloud shape. Hence, we
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believe that the archetypes represent a better solution to determine the
“worst” and “best” extremes.

In Figure 1(a), a set of 50 simulated bivariate normal data isshown
along with the two pairs of “worst” and “best” performers chosen as the
multivariate extremesx′

worst =
(

x(1)1, ..., x(1)p

)

andx′
best =

(

x(n)1, ..., x(n)p

)

,
or as the two archetypesx′

worst = a1 andx
′
best = a2 (Figure 1(b)) .
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Figure 1. A set of 50 simulated bivariate normal data (a). Therectangular
hull (dashed line) and the convex hull (solid line) are superimposed, along
with two pairs of “worst” and “best” performers chosen as multivariate
extremes in eqs. (3) and (4) (squares), and as the archetypes in eq. (1)
(triangles) (b).

3.2. The projection and ordering

Given the two extreme valuesx′
worst andx

′
best, the next step is to

determine a directionu′, with u ∈ Ep andu
′
u = 1, on which to project

the observationsx′
i. The set of projected valuesx∗

i will be the associated
one-dimensional subspace for ordering.

Given the vectorx′
w→b joining the two extreme performers,x

′
w→b =

(x′
worst − x

′
best), the projection ofx′

i on thex′
w→b vector will be:
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x∗
i =

x
′
i · xw→b

‖xw→b‖
= x

′
i ·

(xworst − xbest)

‖xworst − xbest‖
= x

′
i · u (6)

where the vectoru′ = (x′

best−x
′
worst)

‖x′
best−x

′
worst‖

is the direction cosines vector of
x
′
w→b, and where‖·‖ is the euclidean norm.

Ordering along the “worst-best” direction will be obtainedby simply
considering the ranksri of thex∗

i ’s. Each projected point can be written
as a convex combination ofx∗

(1) andx∗
(n), respectively the minimum and

maximum values of the projected data, i.e.x∗
i = λ1ix

∗
(1) + λ2ix

∗
(n) with

λ1i + λ2i = 1, i = 1, . . . , n. It is worth noting thatx∗
(1) andx∗

(n) do
not necessarily coincide with the projections ofx

′
worst andx

′
best. The

coefficientsλi1 andλi2 express the weights of the two extreme cases in
the composition of thex∗

i values (Figure 2(a)). If thex′
worst andx

′
best are

the two archetypes, the coefficientsλ1i andλ2i coincide with theα1i and
α2i coefficients in 1.

When reduced ordering based on projection is used, much informa-
tion about the original multivariate structure, such as data cloud shape or
existence of outlying data, could be lost by simply looking at the ranksri

of the ordered datax∗
(i). Part of this information can be recovered by look-

ing at the plot of thedi versusx∗
i , wheredi is the Euclidean distance of

a pointxi from the straight-line passing through the vectorx
′
w→b (Figure

2(b)).
It has to be noted that, in the case of the archetypal definitions for

x
′
worst andx

′
best, the directionu′ coincides with a diagonal of the convex

hull of the data. Such an interpretation ofu
′ suggests an advantage of our

reduced ordering procedure over the one which uses the first principal
component. Indeed, for spherical or non-elliptical data clouds the worst-
best ordering direction can always be determined, whilst this is not true
for the principal components.

Finally, if data are transformed, as is customary in many applications,
attention should be paid to the effect on ordering. Convex hull (and the
rectangular hull too) are affine invariant, hence none of thelinear trans-
formations affects the “worst” and “best” cases construction. On the con-
trary nonlinear transformations modify the data cloud shape, and convex
hull will also change.
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Figure 2. A set of 50 simulated bivariate normal data. The rectangular
hull (dashed line) along with two pairs of “worst” and “best”performers
chosen as in (3) and in (4) (squares), the projection directionu, a pro-
jected pointx∗

i , the distancedi, λi1 andλi2 (a). The distancesdi versus
the ordered projected pointsx∗

(i) are plotted (b).

4. Two illustrative examples

In order to show how our ordering procedure works, we apply itto
two real data sets. The first consists of six demographic indicators related
to age and family structure for the 103 Italian provinces (Figure 3). The
indicators were constructed through elaboration of data from the 2001
Italian census, and namely are: average family size (AFS), incidence of
families with 5 and more members (Fam5+), incidence of couples with
children (CwK), ratio between the number of couples legally married and
the number of couples not married (MC/nMC), ratio of old people to kids
(H/K), and, finally, the oldness indicator(HI ). The indicators have been
scaled with respect to the interquartile range in order to take into account
the different measurement unit and variability.

We know that nowadays the Italian population is tending to decrease
in size and is aging, with a strong tendency towards singleness or to
“empty cradles”. Such a situation is producing alarming forecasts for
Italy’s population decline. In such a case, without assigning any posi-
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tive or negative meaning to the words “worst” and “best”, we consider
as “best” the provinces that are younger and with larger families as they
profile provinces with increasing populations. Hence, in the following,
we revert the order of the last two variables by considering−H/K and
−HI. From the scatterplot matrix (Figure 3) the data cloud appears to be
very elongated in most of the directions, with some nonlinear structures
in the others. Instead, some variables are highly correlated.
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Figure 3. Six demographic indicators from 2001 the Italian Census.

We adopt the two data-driven constructions for the worst andbest
performances (in Figure 3 the multivariate extremes are represented as
squares, and the archetypes as triangles).

The squares lie in the corners of the data scatter and the “worst” case
combines theAFS, theCwK and theFam5+ values of Trieste, the value
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of MC/nMCof Aosta, the values of−H/K and−HI of Ferrara. On the
contrary the “best” case combines theAFS, the−H/K, the−HICwK
and theFam5+ values of Naples, the value ofCwK of Caserta and the
MC/nMC value of Potenza. Figure 3 exhibits that when a linear data
structure is present the archetypes and the multivariate extremes are on
the same direction, but the archetypes are in an inner position closer to the
majority of the data. On the other hand, in the case of a non linear struc-
ture archetypes and extremes lie on different directions, and archetypes
continue to be closer to the data. This feature is highlighted also by the
di’s distance behaviour plotted in Figure 4 for each of the three ordering
procedures.
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Figure 4. Distance plots for three orderings obtained starting from mul-
tivariate extremes (a), archetypes (b) and first principal component (c).

Denoting withRextr, Rarc and RACP respectively the ranking ob-
tained starting from the multivariate extremes, the archetypes and first
principal component, we compare the three rankings considering the pair-
wise differences (Figure 5) and the Kendall rank-correlation coefficients.
Looking at the differences it may be noted that three rankings mostly
agree with each other. For few provinces (highlighted in thegraphics) the
differences in the ranks are greater than 2. TheRarc andRACP seem to be
more similar with respect to theRextr. The three rank-correlation coeffi-
cients are all 0.999. Note that the provinces with the higherdifferences
are more or less the same in the three plots. These results agree with what
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was expected given the data cloud structure in Figure 3 whichis mostly
linear in many of thep dimensions of the Euclidean space.
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Figure 5. Comparison of three orderings for archetypes (Rarc), multivari-
ate extremes (Rextr) and first principal component (RACP ).

The second data set consists of the average bank deposit (BD) and the
unemployment rate (UR) (reverted in the order) for the 103 provincial
capitals in Italy (Figure 6). Also in this case the data have been scaled
by the interquartile range. The data appear to have a highly nonlinear
structure. In Figure 6 the two data driven solutions for the “best” and
“worst” cases are superimposed. In the case of the multivariate extremes,
the “worst” case corresponds to a hypothetical town withUR = 30.53
(Reggio Calabria) andBD = 3418.24 (Vibo Valentia), while the “best”
will correspond to a town withUR = 1.71 (Lecco) andBD = 20890.66
(Milan). It clearly appears that the bivariate extreme located in the upper
right corner is very far away from the majority of the data, and heavily
influences the ordering direction, whilst the two archetypes lie close to the
body of the data. Due to the data cloud shape, even if there areonly two
dimensions, overall ordering is difficult to sight and marginal ordering
could be misleading. By applying the proposed procedure to the values
we rank the 103 towns.

Figure 7, which portrays thedi values for the three ordering proce-
dures, highlights the nonlinear structure of data, the extremeness of Mi-
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Figure 6. 103 Italian provinces by average bank deposit and unemploy-
ment rate. The rectangular hull (dashed line) and the convexhull (solid
line) are superimposed, along with two pairs of “worst” and “best” per-
formers chosen as in eqs. (3) and (4) (squares), and as the archetypes in
eq. (1) (triangles).

lan and some clusters of towns. However, looking at thedi’s in Figure
7(a), it is worth noting that the ranking based on the multivariate extremes
is influenced by some outliers yielding overall high distances, while the
archetypes and the first principal component present overall low distances
except the ones corresponding to the far away data.

Looking at the differences between rankings (Figure 8), we note that
they are greater than in the first example. As noted in the plotof di’s,
Rarc andRACP are more similar with respect toRextr: only 7% of dif-
ferences are equal to or greater than 2 in absolute value. On the other
hand, on comparing theRextr with Rarc andRACP , respectively 53% and
45% of differences are equal or greater than 2 in absolute value.The
provinces with the higher differences are more or less the same in the
three comparisons. If the rank-correlation is used for comparison, the
values (ρarc,ACP = 0.999, ρarc,extr = 0.996, ρextr,ACP = 0.994) appear
to be very similar in contrast with what is evident from the graphics of
individual differences. This could suggest that procedures based on rank-
correlation, like the principal ordinal component, could not capture non
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Figure 7. Distance plots for three orderings obtained starting from mul-
tivariate extremes (a), archetypes (b) and principal component(c).

regular data structures.

5. Prospects

The proposed ordering method based on the archetypes seems to meet
the aim of obtaining an ordering that is simple to interpret and com-
putationally not expensive. Even if in the two proposed examples the
archetype-based ranking is similar to that based on the firstprincipal com-
ponent, the archetype ordering direction has a simple meaning in terms of
ranking, and avoids the possible drawbacks of principal components. On
the other hand, archetype-based ranking differs from the ones based on
multivariate extremes in the case of complex data structures, and it seems
to be close in case of linear data structures. Further comparisons with
other ordering criteria will be performed in future works through some
simulation studies. At the same time, the relationships with the compos-
ite indicator approach to ordering will be explored. As a matter of fact,
the R − ordering reduces all the performance indicators into a linear
combination with weights given by the components of theu. Finally, the
possibility to use nonlinear projection criteria and a modified version of
the archetypes are under study.
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Figure 8. 103 Italian provinces by average bank deposit and unemploy-
ment rate. Comparison of three orderings for archetypes (Rarc), multi-
variate extremes (Rextr) and principal component (RACP ).

Acknowledgements:The authors would like to thank Dr. Domenico Vistocco for the
MATLAB code to compute archetypes.

References

Atkinson A., Riani M. (2000),Robust Diagnostic Regression Analysis,
Springer-Verlag, New York.

Barnett V. (1976), The ordering of multivariate data,Journal of the Royal
Statistical Society, A, 139, 318–354 (with discussion).

Broocks D.G., Carroll S.S., Verdini W.A. (1988), Characterizing the domain
of regression models,The American Statistician, 42, 187–190.

Camp R.C. (1989),Benchmarking: the Search for Industries Best Practice
that Lead to Superior Performance, ASQC Quality Press, Milwaukee, WI.

Cutler A., Breiman L. (1994), Archetypal analysis,Technometrics, 36, 338–
347.

D’Esposito M.R., Ragozini G. (1999), Detection of multivariate outliers by
convex hulls, inClassification and Data Analysis. Theory and Application, M.
Vichi and O. Opitz Eds., Springer-Verlag, Heidelberg, 279–286.

Dyer D.D. (1973), On moments estimation of the parameters ofa truncated
bivariate normal distribution,Applied Statistics, 22, 287–291.



A NewR-Ordering Procedure to Rank Multivariate Performances 17

Eddy W.F. (1982), Convex Hull Peeling, inCompstat 1982: Proceedings
in Computational Statistics, Caussinus H., Ettinger P. and Tommasone R. Eds.,
Physica-Verlag, Wien, 42–47.

Eddy W.F. (1985), Ordering of multivariate data, inComputer Science and
Statistics: the Interface, L. Billard Ed., Amsterdam, North-Holland, 25–30.

Friedman J.H., Rafsky L.C. (1979), Multivariate generalization of Wald-
Wolfowitz and Smirnov two-sample tests,Annals of Statistics, 7, 697–717.

Gentle J. (2002),Elements of Computational Statistics, Springer-Verlag,
New York.
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