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Summary:Performance analysis has become a strategic activity iragiag complex
systems. The aim of this activity is often benchmarkingt thahe comparison among
various units on the basis of perfomance. In statisticahsathis corresponds to search
for an ordering of units described by a setyoindicators. In this paper we propose
a new reduced ordering procedure for multivariate obsemabased on determining a
meaningful direction for the problem in the Euclidgadimensional space. Namely, the
direction is the one which goes from the “worst” performingta to the “best”, that is
the “worst-best” direction. Some proposals for the “woesttl “best” case construction
are offered along with the related reduced ordering proed8ome geometric issues
and statistical properties of the proposal are discussed.
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1. Introduction

Nowadays considered a strategic activity for any orgaiunatper-
formance analysis requires a system of indicators to measputs and
outputs of ongoing processes, and to synthesize the ousc@Pezrin,
1998).

One of the aims of performance analysis is to compare unsier to
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search for best practices, thereby leading to improvemdihiis process
usually ends up in a benchmarking activity, i.e. lookingldest practices
and best performances on the one hand, and worst practides other
(Camp, 1989; Chap.2). Benchmarking is mainly based on anpirelry
ranking of the units. This goal arises not only in business idbwidely
found in many other fields, such as those related to a cosnperfor-
mance with regard to society, economy, environment andthésdisana,
2004).

Statistically speaking, ranking is achieved through areond) of the
observations described by a sepahdicators, i.e. it entails ordering mul-
tivariate observations in thedimensional Euclidean spaé#. However,
due to lack of natural ordering if”, this task cannot be pursued by sim-
ply extending univariate order concepts. Many approachesitivariate
ordering have been proposed in the literature (Tukey, 1B@mett, 1976
and discussion therein; Friedman and Rafsky, 1979; Edd@5;1Rorho-
nen and Siljamaki, 1998; Liet al., 1999, Atkinson and Riani, 2000;
Gentle, 2002).

However, most of these approaches are not well suited taiogde
units measured through multivariate performance indisatas they do
not take into account the nature of data and the specific gbdlench-
marking. In this paper we propose an ordering proceduredoasehe
construction in thé? space of a direction meaningful for benchmarking
and for comparison among performers. Such a direction i$ toutoin-
cide with that going from the “worst” performer to the perfaance driver
- the “worst-best” direction.

The paper is organized as follows. In Section 2 we discussithe
tion and the proposals for multivariate ordering. Sectigor@vides our
proposal to construct units such that they are intringicallorst” and
“best”, and the steps of the ordering procedure. Two ilaiste examples
and some concluding remarks are found in Sections 4 andgectgely.

2. On the notion of multivariate ordering

As is well known, a clear and unambiguous ordering of obsemsa
can be achieved only in a one-dimensional space. Indeedif, . . ., z,
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aren observations irt’!, we can place them in increasing ordergas <

r@9) < ... < x(,. For multivariate data, an ordering is usually obtained
by moving from the giverz? to a suitablel*. When all the multivariate
points lie in a one dimensional subspace, i.e. on a straighttheE* sub
space is uniquely determined, and an unambiguous ordexigigen. In

all the other cases, the subspdceis not unique and some information
will be lost in the mapping fronk? to E*.

Following the seminal work of Barnett (1976), several apgtees for
choosing theZ! subspace can be adopted and different subordering prin-
ciples arise.

Given a data matriX = {z;;}, let X, j = 1,...,p, denote thg-th
variable, andk’; = (z;1, ..., ;)" denote the set of the measurements
for thei-th statistical units; = 1,...,n. A simple, yet not very useful,
ordering approach is the so-calledhrginal ordering where thel;! space
is chosen to coincide with one of thesubspaces determined by one of
the p variablesX;. The observations will be marginally ordered on the
j-thvariable asr(1); < z(9); ... < 2(»);, and, hencey different rankings
will be obtained.

Nowadays, a very popular ordering approach is based on ti@nno
of data depth. This is a type pértial ordering the sample is partitioned
into subgroups and the! space is the associated space of depth function
values of each subgroup. Such partial ordering induaenger-outward
ranking of the observations (see from the first work of Tukey, 1975 to
more recent works by Liet al, 1999 and Zhang, 2002, and references
therein).

For the data we are dealing with (i.e. a set of units desciygukrfor-
mance indicators) and for the main goal of benchmarkingddta depth
approach is not adequate. Indeed, in our case the goal i®rater
observations with respect to a center (the deepest pomitYobachieve
overall ordering of cases from the worst performance to #teebones.

More useful for our goals is the so-calleeduced orderingor R-
ordering), which can be distinguished, according to Mardia (197&) i
distanceordering andprojectionordering. Distance ordering is however
again not suited for our type of data. In fact, it implies tise wf some
generalized distance measure from a single fixed point (lysha cen-
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ter of the distribution) according to a specific metric, and thosen!
space coincides with the one spanned by such a distance.typleisof
reduced ordering again yields a center-outward ranking asdoted in
Barnett (1976), it fails to reduce to the conventional oirttpiprinciple
in one dimension. Another type of distance ordering is tresell on
the minimum spanning tre@AST) (Friedman and Rafsky, 1979) which
yields two types of one-dimensional ranking: linear andaladn both
cases theZ! space is given by the distances on 8T. For linear rank-
ing the computational effort can be prohibitive for largeéadsets (Gentle,
2002). Moreover, the point chosen as the starting node ¢drenalways
interpreted in terms of good or bad performance. Radialirgnproduces
a center-outward ranking, and hence has the drawbacksopstyilisted
for our goals. Another type of reduced ordering, which reslesdis-
tance ordering, is based on convex hull volume variatioms ' space
is the space of convex hull volumes): the convex hull of a datatera-
tively identifies points lying on the boundary, the most erie of which
is the one whose removal from the data maximizes the reduatithe
convex hull volume (Tukey, 1975; Eddy, 1985; D’Esposito &adjozini,
1999). Such a procedure provides ordering of the data frenotitside
in, and in more than 3 dimensions could be computationalheazive.

In projection ordering each multivariate observationis reduced to
a single valuer; by means of some combination of thhg component
values or, equivalently, by an appropriate projection.riilee choser!
space is the projection line. This approach does not hawdishdvantage
of distance ordering, and in the univariate case reprodineesatural or-
dering. Hence, it is well suited for our purposes, i.e. baddan ordering
criterion that ranks observations from “worst” performersbest” ones.

The main issue here is to determine the direciiofor such a pro-
jection. Commonly the first principal component is used. ideer, this
strategy, too, does not completely meet the declared geatgpaovides
the most interesting direction in terms of variance andetation with-
out purposively considering any ordering criterion. Farthore, it is not
guaranteed that all performance indicators will be posiyivcorrelated
with the first principal component. In particular, if subgps of indica-
tors are present, each one measuring different performaspects, it is
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likely that the first principal component is correlated witie leading in-
dicator subgroup. To avoid the first drawback, Korhonen aitjdn$aki
(1998) proposed to compute the ordinal principal compodefihed as
a new ordinal variable which maximizes the sum of the squazed-
correlation with respect to the original variables. Howetlge procedure
is very time consuming for real size problems, and also is tlaise the
first ordinal component could be determined by only someitepithdi-
cators, neglecting the others.

Finally, with regard to projection ordering, it is worth g that dif-
ferent criteria could yield very different rankings of theits. However,
if the p indicators are strongly correlated to each other, diffetgmes of
projections yield similar orderings.

3. The ordering procedure

Focusing our attention on projection ordering, we proppse deter-
mine a meaningful direction for ordering from the worst todsabetter
cases, théworst-best” direction ii) then to project data on it, and)
finally to rank our observations in the associated univarsgiace.

3.1. The “worst-best” direction

With the aim of determining the direction for the projectitaking
into account the benchmarking goals, we have first of all tindethe
cases which correspond to the “worst” and “best” perforneanin the
following x’,,.-s: @aNdx’y.s; respectively. These two cases represent kinds
of ideal points combining all the “worst” or “best” achievalperfor-
mances and indicators are at the lowest/highest possihlestaHence,
in our framework the “worst” and “best” terms do not neceganean
worst and best quality.

In order to construct them, we propose a data-driven styates re-
lies on the use of convex hull ardchetypal point¢Cutler and Breiman,
1994). The latter represent a sort of pure individual types are few
points lying in the boundary of data scatter which synthetie whole set
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of observed data. They are definednagwith m chosen by the analyst)
p-dimensional vectors, . . ., a,, whose convex combination," | ajay,
best approximates the&’s by minimizing

n 2

D

i=1

1)

m

/

X; — E Qipay
k=1

with G > O, 221:1 oy, = 1.
The archetypes,, ..., a,, are shown to a be mixture of the data
values, i.e.

ak:ZﬁkiX;7 kzl)"'7m (2)
i=1

with B, > 0,37 | Bk = 1.

Form > 1, the archetypes fall on the convex hull of the data. Given
the properties of points lying on the convex hull, “they axeeeme data
values such that all the data can be well represented as axconxture
of archetypes” (Cutler and Breiman, 1994).

Whenm = 2, the two most extreme two points on the convex hull
of the data are selected, i.e. the two points having the maximlistance
between them and the minimum distance with respect to theatkrom
a theoretical point of view, these two archetypes coincidk the idea of
pure “worst” and “best” cases. Note that they are not necigsatually
observed, and lie on the border of the data region. In ordee tsure that
these two points correspond to the worst and best perforthersanks on
each variable of the two archetypes with respect to the athter values
should be inspected. The “worst” archetype should have lakves for
most of the ranks, the opposite for the “best”.

Another possibility to construct the “worst” and the “bep&rform-
ers could rely on the notion ahultivariate extremed.e. points that are
the combinations of all the minima (or maxima) in the margoraer-
ings (Barnett, 1976). Hence, the vector of the minimum oheariable
defines the “worst” performer
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X/worst = (l‘(l)l; EERE) :L‘(l)p) (3)

and, analogously, the vector of the maximum determineshibest" per-
former

X/best = (x(n)la X3 x(n)p) . (4)

It is worth noting that for some performance indicators (eugem-
ployment rate, drop out rate, alumni/faculty rate,...) tieimumz,);
does not correspond to the worst performance (and vicef@rae max-
imum). For such variables the ordering relation has to bersad simply
by multiplying the variable by—1). It is easy to show that the two ex-
treme points in (3) and (4) coincide with two vertices of tketangular
hull of the data, i.e. the minimum hyperparallelotope comitey the data.

However, when outliers are present, the rectangular hul change
substantially. Hence, the “worst” and “best” performers;dted on its
vertices, could be too extreme as combinations and not adrteésas real
cases. To avoid this drawback, robust extreme values carbtagned
either by taking ther and the(1—«) quantiles on each marginal indicator,
ie.

X/worst = (x(LanJ)la---ux(LanJ)p)

X'pest = (T([(a—a)n])1y s T([(1—a)n])p) » (5)

or by cleaning the data set by applying some peeling proeethee for
example the rectangular trimming for bivariate data (Na®/1; Dyer,
1973) or convex hull peeling procedures (Eddy, 1982; P@aamRagozini,
2000).

Even if the “worst” and “best” cases, constructed in this yveag very
simple to interpret with a clear meaning even for nonsiatssts, and are
very simple to compute, for particular data cloud shapesdhtangular
hull could be completely misleading (Brooks, Carrol anddier,1988).
On the contrary, with respect t0,,,, = (x(l)l, ...,x(l)p) andx’p. =
(x(n)l, ...,x(n)p) in egs. (3) and (4), the archetypal points are closer to
the observed data and depend on the actual data cloud shapee,hve
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believe that the archetypes represent a better solutiortermine the
“worst” and “best” extremes.

In Figure 1(a), a set of 50 simulated bivariate normal dashsvn
along with the two pairs of “worst” and “best” performers sea as the
multivariate extremes’ st = (T(1)1, - Z(1)p) ANAX pest = (Z(ny1, s Tnyp)
or as the two archetypes,,.,; = a; andx’;.; = as (Figure 1(b)) .

(@) (b)

Figure 1. A set of 50 simulated bivariate normal data (a). Téwtangular
hull (dashed line) and the convex hull (solid line) are supgosed, along
with two pairs of “worst” and “best” performers chosen as ntivariate
extremes in eqgs. (3) and (4yquares), and as the archetypes in eq. (1)
(triangles) (b).

3.2. The projection and ordering

Given the two extreme values,,,..; andx’..;, the next step is to
determine a direction’, with u € EP andu’u = 1, on which to project
the observations’;. The set of projected value$ will be the associated
one-dimensional subspace for ordering.

Given the vectox’,,_.; joining the two extreme performers’,,_, =
(x"worst — X'pest), the projection ok’; on thex’,, ., vector will be:
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[L‘:( _ X/i * Xw—b _ /i . (Xworst - Xbest) _ X/Z‘ ‘u (6)
wa—>b|| waorst - Xbest”
where the vecton’ = Xeesti=Xworst) 5 the direction cosines vector of

”x/best —X' worst ||

x'w—p, and wherg|-|| is the euclidean norm.

Ordering along the “worst-best” direction will be obtaineg simply
considering the ranks of thez}’s. Each projected point can be written
as a convex combination af,, andz,, respectively the minimum and
maximum values of the projected data, . = )\uxa) + /\Qixz*n) with
A+ X = 1,4 = 1,...,n. Itis worth noting thatxz‘l) and xz‘n) do
not necessarily coincide with the projectionssof,,.,; andx’;,.;. The
coefficients)\;; and ;> express the weights of the two extreme cases in
the composition of the values (Figure 2(a)). If the’,,,,..; andx’;.; are
the two archetypes, the coefficielts and\,; coincide with then; and
iy, coefficients in 1.

When reduced ordering based on projection is used, muchnafo
tion about the original multivariate structure, such asdddud shape or
existence of outlying data, could be lost by simply looking¢he ranks-;
of the ordered data(; . Part of this information can be recovered by look-
ing at the plot of thel; versusz}, whered; is the Euclidean distance of
a pointx; from the straight-line passing through the vecttr ., (Figure
2(b)).

It has to be noted that, in the case of the archetypal defnstfor
X! orse ANAX ., the directionu’ coincides with a diagonal of the convex
hull of the data. Such an interpretatiomdfsuggests an advantage of our
reduced ordering procedure over the one which uses the firstigal
component. Indeed, for spherical or non-elliptical dataudk the worst-
best ordering direction can always be determined, whiistighnot true
for the principal components.

Finally, if data are transformed, as is customary in manyiegipons,
attention should be paid to the effect on ordering. Convdk(had the
rectangular hull too) are affine invariant, hence none oflitrear trans-
formations affects the “worst” and “best” cases constarctioOn the con-
trary nonlinear transformations modify the data cloud shand convex
hull will also change.
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Figure 2. A set of 50 simulated bivariate normal data. Thaaegular
hull (dashed line) along with two pairs of “worst” and “besierformers
chosen as in (3) and in (4x{uares), the projection directioru, a pro-
jected pointz, the distancel;, \;; and \;» (a). The distances; versus
the ordered projected poinﬁ% are plotted (b).
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4. Two illustrative examples

In order to show how our ordering procedure works, we apptg it
two real data sets. The first consists of six demographicatdrs related
to age and family structure for the 103 Italian provinceg)(ife 3). The
indicators were constructed through elaboration of daienfthe 2001
Italian census, and namely are: average family side, incidence of
families with 5 and more membersgm5+), incidence of couples with
children CwK), ratio between the number of couples legally married and
the number of couples not marriedC/nMC), ratio of old people to kids
(H/K), and, finally, the oldness indicatét{). The indicators have been
scaled with respect to the interquartile range in orderke tato account
the different measurement unit and variability.

We know that nowadays the Italian population is tending twrel@se
in size and is aging, with a strong tendency towards singeme to
“empty cradles”. Such a situation is producing alarmingetasts for
Italy’s population decline. In such a case, without assigrany posi-
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tive or negative meaning to the words “worst” and “best”, vemsider
as “best” the provinces that are younger and with larger [famas they
profile provinces with increasing populations. Hence, ia fbllowing,

we revert the order of the last two variables by consideriid/ X and

—H 1. From the scatterplot matrix (Figure 3) the data cloud apptEsbe
very elongated in most of the directions, with some nonlirstaictures
in the others. Instead, some variables are highly cormtlate
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Figure 3. Six demographic indicators from 2001 the Italia@nGus.

We adopt the two data-driven constructions for the worst laest
performances (in Figure 3 the multivariate extremes areesgmted as
squares, and the archetypes as triangles).

The squares lie in the corners of the data scatter and thestircase
combines theAFS the CwK and theFam5+ values of Trieste, the value
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of MC/nMC of Aosta, the values of H/K and—H I of Ferrara. On the
contrary the “best” case combines tA€S the —H/K, the —HICwK

and theFam5+ values of Naples, the value @wK of Caserta and the
MC/nMC value of Potenza. Figure 3 exhibits that when a linear data
structure is present the archetypes and the multivaridterags are on
the same direction, but the archetypes are in an inner positoser to the
majority of the data. On the other hand, in the case of a n@atistruc-
ture archetypes and extremes lie on different directiond,achetypes
continue to be closer to the data. This feature is highliglaiso by the
d;’s distance behaviour plotted in Figure 4 for each of thedhoalering

procedures.

o
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Figure 4. Distance plots for three orderings obtained stagtfrom mul-
tivariate extremes (a), archetypes (b) and first principainponent (c).
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Denoting with R.,., R... and R cp respectively the ranking ob-
tained starting from the multivariate extremes, the angbet and first
principal component, we compare the three rankings conegithe pair-
wise differences (Figure 5) and the Kendall rank-correfatioefficients.
Looking at the differences it may be noted that three rarkimgpstly
agree with each other. For few provinces (highlighted ingtaphics) the
differences in the ranks are greater than 2. ®Rhe andR ,cp Seem to be
more similar with respect to thR,,;.. The three rank-correlation coeffi-
cients are all 0.999. Note that the provinces with the high#erences
are more or less the same in the three plots. These resudis agh what
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was expected given the data cloud structure in Figure 3 wikichostly
linear in many of the dimensions of the Euclidean space.

Ragusa ——1— catania Catania =——___
= —
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-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4
(@) Rarc — Racp (0) Rare — Rextr (€) Rewtr — Racp

Figure 5. Comparison of three orderings for archetyp&s,(), multivari-
ate extremesK,.;,) and first principal component{,cp).

The second data set consists of the average bank depdsjtand the
unemployment ratel{R) (reverted in the order) for the 103 provincial
capitals in Italy (Figure 6). Also in this case the data hagerbscaled
by the interquartile range. The data appear to have a higijinmear
structure. In Figure 6 the two data driven solutions for thest” and
“worst” cases are superimposed. In the case of the muliteaextremes,
the “worst” case corresponds to a hypothetical town WitR = 30.53
(Reggio Calabria) an®D = 3418.24 (Vibo Valentia), while the “best”
will correspond to a town witl/ R = 1.71 (Lecco) andBD = 20890.66
(Milan). It clearly appears that the bivariate extreme tedan the upper
right corner is very far away from the majority of the dataddreavily
influences the ordering direction, whilst the two arches/peclose to the
body of the data. Due to the data cloud shape, even if thererdyawo
dimensions, overall ordering is difficult to sight and maajiordering
could be misleading. By applying the proposed procedurédovalues
we rank the 103 towns.

Figure 7, which portrays thé; values for the three ordering proce-
dures, highlights the nonlinear structure of data, theeexémess of Mi-
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Figure 6. 103 Italian provinces by average bank deposit anenuploy-
ment rate. The rectangular hull (dashed line) and the comuék(solid
line) are superimposed, along with two pairs of “worst” antést” per-
formers chosen as in egs. (3) and (4)«ares), and as the archetypes in
ed. (1) ¢riangles).

lan and some clusters of towns. However, looking atdf®in Figure
7(a), itis worth noting that the ranking based on the muliate extremes
is influenced by some outliers yielding overall high disesovhile the
archetypes and the first principal component present dvevadistances
except the ones corresponding to the far away data.

Looking at the differences between rankings (Figure 8), oie that
they are greater than in the first example. As noted in thegflat’s,
R... and R cp are more similar with respect t8,.,.: only 7y of dif-
ferences are equal to or greater than 2 in absolute value.h®nother
hand, on comparing th&,..;. with R,,.. and R cp, respectively 53 and
45y, of differences are equal or greater than 2 in absolute valliee
provinces with the higher differences are more or less tineesa the
three comparisons. If the rank-correlation is used for camspn, the
values barc,ACP = 0.999, Parcextr = 0.996, Pextr, ACP = 0994) appear
to be very similar in contrast with what is evident from theygjnics of
individual differences. This could suggest that procesinased on rank-
correlation, like the principal ordinal component, coulat sapture non
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Figure 7. Distance plots for three orderings obtained stagtfrom mul-
tivariate extremes (a), archetypes (b) and principal congt(c).

regular data structures.

5. Prospects

The proposed ordering method based on the archetypes seemst
the aim of obtaining an ordering that is simple to interpret @om-
putationally not expensive. Even if in the two proposed eplas the
archetype-based ranking is similar to that based on thepfirstipal com-
ponent, the archetype ordering direction has a simple mganiterms of
ranking, and avoids the possible drawbacks of principalpmments. On
the other hand, archetype-based ranking differs from tles ddrased on
multivariate extremes in the case of complex data strustaned it seems
to be close in case of linear data structures. Further casgresr with
other ordering criteria will be performed in future worksabhgh some
simulation studies. At the same time, the relationships wie compos-
ite indicator approach to ordering will be explored. As a teabdf fact,
the R — ordering reduces all the performance indicators into a linear
combination with weights given by the components ofhé-inally, the
possibility to use nonlinear projection criteria and a nfiedi version of
the archetypes are under study.
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Figure 8. 103 Italian provinces by average bank deposit anenuploy-
ment rate. Comparison of three orderings for archetypes.{), multi-
variate extremesK,.:) and principal componenticp).
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