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Summary: Statistical social network analysis has become a very active and fertile area
of research in the recent past. Recent developments in Bayesian computational methods
have been successfully applied to estimate social network models. The Delayed rejec-
tion (DR) strategy is a modification of the Metropolis-Hastings (MH) algorithms that
reduces the variance of the resulting Markov chain Monte Carlo estimators and allows
partial adaptation of the proposal distribution. In this paper we show how the DR strat-
egy can be exploited to estimate dyadic independence social network models leading to
an average 40% variance reduction relative to the competing MH algorithm, confirming
that DR dominates, in terms of Peskun ordering, the MH algorithm.
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1. Dyadic independence network models

Statistical network models (see Salter-Townshend et al. (2012) for a recent review)
are widely used in many scientific areas as they give the possibility to investigate how an
observed network may be related to local relational structures. Social network analysis
is based on the study of social relations between actors so as to understand the creation
of global relational structure from the basic local relation. From a statistical viewpoint,
social networks are relational data represented as a graph consisting of a set of n nodes
and a set of m edges which define some sort of relations between pairs of nodes called
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dyads. The network structure is described by an n×n adjacency matrix y with elements:

yij =

{
1, if node i and node j are connected
0, otherwise.

If yij = yji then the adjacency matrix is symmetric and the graph is undirected, other-
wise the graph is directed and it is often called digraph.

The interest in network modeling began with a series of papers by Gilbert (1959) and
Erdös and Rényi (1961) who set up the definition of random graph under the basic as-
sumption that the presence of an edge between two nodes occurs with a fixed probability
θ:

p(y|θ) =
∏
i ̸=j

θyij (1− θ)1−yij

The likelihood of the model is a binomial distribution and implies a uniform distribution
over the sample space of possible graphs with exactly m edges. The expected probability
p of every edge is m/

(
n
2

)
and implies the expected number of edges p

(
n
2

)
. In essence,

this means that the model imposes that every node in a graph has approximately the same
number of neighbours. The simplicity of this assumption makes the model tractable but
inadequate to describe realistic phenomena as there are very few real-world networks
with such simple structure. The need of formal tools for assessing what kinds of models
are more appropriate has been at the basis of the development of models which led to
the definition of the exponential random graph models.

The beta model, recently defined by Blitzstein and Diaconis (2010) and Chatterjee
et al. (2011), is the natural heterogenous version of the random graph model and sat-
isfies the dyadic independence property according to which dyads are assumed to be
statistically independent. The model assumes that the nodal degree sequence captures
the information in a network so that different graphs with the same degree sequence are
considered equally likely.

The p1 model proposed by Holland and Leinhardt (1981) can be considered the
directed version of the beta model and expresses the presence of three tendencies: the
propensity with which a node i will be connected to j; the propensity with which a node
i will attract others; and the degree of reciprocated edges. The p2 model (van Duijn
et al., 2004) is a random effects version of the p1 model which recognises dependence
between dyads with same nodes.

All the models described above belong to exponential random graph models (Lusher
et al., 2012) that assume that the topological structure in an observed network y can
be explained by the relative prevalence of a set of overlapping sub-graph configurations
s(y) also called graph or network statistics. Each network statistic is assumed to have a
particular probability of being observed in the given network: higher is the probability
of being expressed in the graph, more are the chances of that statistic to occur and vice
versa. The probability of a network statistics being present a network is expressed in
terms of parameters θ. Statistics with a positive parameter value for θ have a greater
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than chance probability of being observed in any graph represented by the model and
vice versa. ERGMs can be expressed mathematically as:

p(y|θ) = exp{θts(y)}
z(θ)

(1)

where z(θ) is a normalising constant.

2. MCMC methods for Bayesian social networks

Bayesian inference aims at learning about model parameters θ that characterize the
data generating process given the observed data y allowing one to explicitly incorporate
prior beliefs and knowledge. In fact, in a Bayesian perspective the unknown parameters
are considered as random variables and therefore are treated probabilistically.

The quantity of interest is the posterior distribution which computed using the Bayes’
Theorem:

p(θ|y) = p(y|θ) p(θ)
p(y)

(2)

The posterior represents the conditional distribution of the parameters given the ob-
served data while the prior p(θ) represents the distribution of the parameters before
having observed the data. Therefore the posterior allows one to make probabilistic state-
ments about how likely parameter values are after observing the data.

The prior distribution contains all the a priori information about the parameters while
the posterior distribution has the function of translating the likelihood function p(y|θ)
into a probability distribution that can be summarised as any probability distribution
by computing expected values, standard deviations, quantiles, etc. Summarising the
posterior distribution analytically is often impossible due to the intractability of the prior
predictive distribution of the observed data:

p(y) =

∫
θ
p(y|θ) p(θ) dθ. (3)

Over the last twenty years, Monte Carlo methods have been used by Bayesian statisti-
cians to perform a numerical approximation of the posterior distribution.

Bayesian methods are becoming increasingly popular as techniques for modelling
social networks (Koskinen et al., (2010); Caimo and Friel, 2011; Caimo and Friel, 2013;
Caimo and Mira, 2015). Direct evaluation of p(θ|y) requires the calculation of both
the likelihood p(y|θ), which is computationally demanding if not intractable, and the
marginal likelihood p(y) which is typically intractable.



36 A. Caimo and A. Mira

2.1. Delayed rejection strategy

Markov chain Monte Carlo (MCMC) algorithms are general simulation methods for
sampling from posterior distributions and computing posterior quantities of interest.

Delayed rejection (DR) is a variation of the Metropolis-Hastings (MH) algorithm
(Tierney, 1994; Green and Mira, 2001; Mira, 2001a) aimed at improving efficiency of
the resulting MCMC estimators relative to Peskun (1973); Tierney (1998); and Mira
(2001b) asymptotic variance ordering.

The key idea behind the algorithm is that, upon rejection in a MH, instead of advanc-
ing time and retaining the same position, a second stage move is proposed. This way it
is possible to improve the MH algorithm by reducing the number of rejected candidates.
The acceptance probability of the second stage candidate preserves reversibility of the
Markov chain with respect to the target posterior density. This delaying rejection mech-
anism can be iterated for a fixed or random number of stages. The higher stage proposal
distributions are allowed to depend on the candidates so far proposed and rejected. Thus
DR allows partial local adaptation of the proposal within each time step of the Markov
chain still retaining reversibility and the Markovian property.

The advantage of DR over alternative ways of combining different MH proposals or
kernels such as mixing and cycling (Tierney, 1994), is that a hierarchy between kernels
can be exploited so that the kernels that computationally intensive kernels are tried first.
Or moves that are more “bold” (bigger variance of the proposal, for example) are tried
at earlier stages thus allowing the sampler to explore the state space more efficiently
following a sort of ‘first bold’ versus ‘second timid’ tennis-service strategy.

To simplify the notation indicate the posterior distribution of interest, p(θ|y), simply
as p(θ), dropping the conditioning on y. Suppose the current state of the Markov chain
is Xt = θ. As in a standard MH, a candidate move θ1 is generated from a proposal
q1(θ, ·) and accepted with probability

α1(θ,θ1) = 1 ∧ p(θ1)q1(θ1,θ)

p(θ)q1(θ,θ1)

= 1 ∧ N1

D1
.

Whenever a candidate θ1 is rejected, instead of retaining the current state of a
Markov chain as its new state Xt+1 = θ, a second stage move θ2 is generated from
a proposal distribution that is allowed to depend, not only on the current position of the
chain θ, but also on θ1: q2(θ,θ1, ·). The second stage acceptance probability can be
written as:
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α2(θ,θ1,θ2) = 1 ∧ p(θ2)q1(θ2,θ1)q2(θ2,θ1,θ)[1− α1(θ2,θ1)]

p(θ)q1(θ,θ1)q2(θ,θ1,θ2)[1− α1(θ,θ1)]

= 1 ∧ N2

D2
.

This process of delaying rejection can be iterated (Mira 2001a) and the i-th stage
acceptance probability is:

αi(θ,θ1 · · ·θi) = 1 ∧ Ni

Di

= 1 ∧
{
p(θi)q1(θi,θi−1)q2(θi,θi−1,θi−2) · · · qi(θi,θi−1 · · ·θ)

p(θ)q1(θ,θ1)q2(θ,θ1,θ2) · · · qi(θ,θ1 · · ·θi)

[1− α1(θi,θi−1)][1− α2(θi,θi−1,θi−2)] · · · [1− αi−1(θi, · · · ,θ1)]

[1− α1(θ,θ1)][1− α2(θ,θ1,θ2)] · · · [1− αi−1(θ,θ1, · · · ,θi−1)]

}
If i-th stage is reached, it means that Nj < Dj for j = 1, · · · , i − 1, therefore

αj(θ,θ1 · · ·θj) is simply Nj/Dj , j = 1, · · · , i − 1 and a recursive formula can be
obtained: Di = qi(θ · · ·θi)(Di−1 −Ni−1) which leads to:

Di = qi(θ · · ·θi)[qi−1(θ · · ·θi−1)[qi−2(θ, · · · ,θi−2) · · ·
[q2(θ,θ1,θ2)[q1(θ,θ1)p(θ)−N1]−N2]−N3] · · · −Ni−1].

Since reversibility with respect to p is preserved separately at each stage, the process
of delaying rejection can be interrupted at any stage. It is therefore possible to decide,
in advance, to try at most, a fixed number of moves away from the current state or,
alternatively, upon each rejection, move to a higher stage proposal with probability p or
otherwise stay in the current state. The DR strategy provides MCMC estimators with
smaller asymptotic variance than standard MH (Tierney and Mira, 1999).

3. Example

One of the most popular statistical network model for large network datasets is the
beta model. This can be formalised by saying that it is an exponential random graph
model with the degree sequence as a sufficient statistic vector.

If y is the observed network graph with degree sequence d1, . . . , dn the likelihood
of the beta model can be written as:

p(y|θ) =
exp

{∑n
i θ

i di
}∏

i<j(1 + exp {θi + θj})

where θi indicates the i-th parameter in the θ vector.
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The Zachary’s karate club network dataset (Figure 1, Zachary, 1977) represents the
social network of friendships between 34 members of a karate club at a US university in
the 1970.

Figure 1. Zachary karate club network graph: social network of friendships between 34
members of a karate club at a US university in the 1970. The more red the color of a
node, the greater its degree.

We will use this data to compare MH and DR in terms of efficiency. Each iteration
of the MH algorithm consists in generating a new vector of parameters θ1 from some
proposal distribution q1(·). A block-update sampler with normal proposal is used to
simultaneously update all the parameter of the posterior distribution.

The DR algorithm that we propose here consists of two stages. The first stage pro-
posal distribution is the same as the proposal used in the competing MH sampler and the
first stage acceptance probability is:

α1(θ,θ1) = 1 ∧ p(y|θ1)p(θ1)q1(θ,θ1)

p(y|θ)p(θ)q1(θ1,θ)
.

The second stage of the DR algorithm, consists in generating θ2 from a different
proposal distribution q2(·). The second stage acceptance probability is defined as:
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α2(θ,θ1, θ2) = 1 ∧ p(y|θ2)p(θ2)q1(θ1,θ2)q2(θ,θ1)[1− α1(θ2,θ1)]

p(y|θ)p(θ)q1(θ1,θ)q2(θ2,θ)[1− α1(θ,θ1)]
.

The posterior estimates displayed in Table 1 were obtained using very flat normal
prior for each parameter: p(θi) ∼ N (0, σ2) where σ2 = 100, a normal proposal dis-
tribution q1(θ1|θ) ∼ N (θ, σ2

h1In) where σ2
h1 = 0.06 (in order to reach an acceptance

rate of about 21%) and In is the n-dimensional identity matrix, and 10, 000 MCMC
iterations.

The second stage proposal is as a deterministic move in the opposite direction of
the move at first stage so that: θ2 = 2θ − θ1. We consider, as function of interest, the
identity function, i.e. f(θi) = θi, ∀i in other words, we focus on estimating the posterior
mean of each parameter of interest.

We report (Table 1) the effective sample sizes (Kass et al., 1998) of the DR (ESSDR)
and MH (ESSMH ) for each parameter of the model. The average ESS for the DR and
MH are about 157 and 74 respectively. The CPU simulation times obtained by the DR
and MH are respectively: TIMEDR = 69 secs and TIMEMH = 47 secs meaning the
MH is faster but less efficient than the DR.

The efficiency ratios can be calculated from the ESS and CPU simulation times:

ESSDR/ESSMH

TIMEDR/TIMEMH
.

In this example, the efficient ratio is about 1.4 meaning that the DR procedure is
40% more efficient than the MH algorithm. The analysis has been conducted with the
Bergm package for R (Caimo and Friel, 2014).

There are many other possible second stage proposal strategies that can be proposed.
In this example, if we vary the proposal variance σ2

h1 we can get different performance
results. Using this second stage proposal strategy, a high value for σ2

h1 implies a ‘bold’
move at the first stage and therefore a low first stage acceptance rate. This may result in a
decreasing performance of the DR algorithm because the second stage proposal defined
above involves the same bold move in the opposite direction. In this case, a ‘timid’
second stage proposal, for example, would work better.

The presence of effects associated to nodal degrees has an important impact in ex-
plaining the overall network structure. In fact, positive parameter values correspond to
nodes with high degree and negative parameter values correspond to nodes with low de-
gree. The results of Table 1 are consistent with previous results demonstrating the social
prominence of the actors associated to node 1 and 34. Zachary (1977) studied conflict
and fission in this network, as the karate club was split into two separate clubs, after long
disputes between two factions of the club, one led by John A. (node 34 in Figure 1), the
other by Mr. Hi (node 1 in Figure 1). The use of the beta model in this context is useful
as it allow us to understand how the relational structure is influenced by the popularity
of the two competing leaders and the behaviour of the other actors that eventually led to
the split into seperate clubs.
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Table 1. Posterior mean (PM), posterior standard deviation (PSD) and efficiency ratio
(ER) estimates for each parameter obtained by the DR algorithm. Effective sample sizes
(ESS) for both DR and MH.

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10

PM 1.42 0.13 0.37 -0.63 -1.71 -1.28 -1.28 -1.31 -0.89 -2.27
PSD 0.42 0.47 0.45 0.53 0.67 0.60 0.65 0.62 0.59 0.81
ESSMH 187 113 166 112 60 56 78 79 98 32
ESSDR 319 292 235 219 125 195 175 166 184 104

θ11 θ12 θ13 θ14 θ15 θ16 θ17 θ18 θ19 θ20

PM -1.78 -3.29 -2.44 -0.93 -2.35 -2.33 -2.37 -2.31 -2.31 -1.75
PSD 0.74 1.11 0.88 0.57 0.81 0.82 0.87 0.82 0.80 0.70
ESSMH 61 10 36 88 28 42 47 48 44 57
ESSDR 129 46 96 202 100 96 100 96 111 121

θ21 θ22 θ23 θ24 θ25 θ26 θ27 θ28 θ29 θ30

PM -2.28 -2.33 -2.39 -0.91 -1.81 -1.72 -2.31 -1.31 -1.77 -1.30
PSD 0.81 0.83 0.89 0.57 0.69 0.72 0.81 0.64 0.69 0.62
ESSMH 57 20 18 89 73 89 35 68 70 65
ESSDR 87 103 98 158 111 117 110 149 124 161

θ31 θ32 θ33 θ34

PM -1.31 -0.61 0.74 1.57
PSD 0.62 0.52 0.43 0.41
ESSDR 88 101 173 142
ESSMH 155 205 324 334

3.1. Goodness of fit diagnostics

Estimation procedures need to be tested for their accuracy through network sim-
ulation based on the estimated parameter values and comparison of simulated graphs
with the observed graph through the calculation of goodness of fit statistics. The sam-
ple graphs are analysed as a distribution of possible graphs. By comparing the network
statistics of the original observed graph with the graph statistics of the simulated net-
works it is possible to assess the goodness of fit of the social networks (Hunter et al.,
2008). This set of GOF statistics generally includes many measurable network statistics
contained in the observed and simulated graphs. This means that configurations that
are not included in the ERGM are actually still tested to see if they are similar in the
observed and simulated graphs.

In Figure 2 we can se that, based on various GoF statistics, the networks simulated
from the estimated posterior distribution are in reasonable agreement the observed net-
work. We can therefore conclude that the model is a reasonable fit to the data.
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Figure 2. GoF diagnostics: The solid red line displays the goodness of fit statistics
for the observed data together with boxplots of GoF network statistics based on 100
simulated networks from the posterior distribution.

4. Conclusions

The better performance of the delayed rejection strategy relative to the standard MH
sampler is demonstrated in the setting of dyadic independence Bayesian social network
models using the well known Zachary karate club network. A very simple deterministic
second stage proposal is considered for the delayed rejection algorithm but more creative
strategies could be elaborated. Performance comparison takes CPU simulation time
into account and considers the effective sample size of the two competing samplers.
For all the 34 parameters of the beta model, the DR algorithm leads to a decrease of
autocorrelation along the path of the simulated Markov chain which, in turn, translates
into a smaller asymptotic variance and a higher effective sample size. Averaging over
the different parameters, the efficiency ratio of the DR is higher than the one of the
corresponding MH by approximately 40%.
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