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Summary: The main issue of the present work is to pool data with objective to enhance
the sample size, in particular with reference to subnational (regional) estimates for which
sample sizes are usually too small. This introduces an additional issue of dealing with
correlations between samples from consecutive waves of a rotational panel such as EU-
SILC survey. The poverty status (and related indicators) of an individual are defined
independently for each cross-sectional sample; hence the direct way to estimate vari-
ance of a cumulative sample is to pool the cross-sectional samples and apply a suitably
adapted standard variance estimation procedure. Such direct estimation requires full in-
formation on the sample structure. At a minimum this includes specification at the micro
level of: sample weights, stratum, primary sampling unit (PSU), permitting linking of
data across waves. The SAS routines presented in this work have been developed for
application when full information on the sample structure is available. Our empirical
application is based on micro-data for the survey of Spain for year 2009, 2010 and 2011,
to which we have had a privileged access through a project with OECD. Unfortunately,
EU-SILC micro data available to researcher generally lack full information on sample
structure. In general, the variance estimation procedure would need adaptation (and
some additional assumptions) to deal with the situation when full information on sam-
ple structure is lacking. While this work does not address alternative procedures for the
purpose, we have developed and applied those in previous research. For completeness,
the technical steps involved have been outlined in the concluding section.
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1. Introduction

Poverty and social exclusion indicators are an essential monitoring tool, most useful
when comparable across countries.

However, the extent to which income inequality and poverty vary within countries
across different regions is actually relevant for policy decisions and monitoring. Sub-
national measures are scarce, given the complexity of producing indicators at the re-
gional level from the available data and the methodological issues related to cross-
countries comparability. Implementing informed policies often requires statistics dis-
aggregated to lower levels than those which meet national needs. National estimates
are particularly insufficient for monitoring poverty and social exclusion, as these fields
require complex statistics that take into account geographical distribution.

Distributional statistics are necessarily based on intensive and relatively small-scale
surveys of households and individuals.

Survey data can be used in different forms or manners to construct regional indica-
tors.

1. Direct estimation from survey data in the same way as done normally at the
national level provided that the regional sample sizes are adequate for the purpose.

2. Constructing alternative (but with a substantively similar meaning) indicators which
utilise the available survey data more intensively.

3. Cumulation of data over survey waves to increase precision of the direct estimates.

4. Using survey data in conjunction with data from other (especially administrative)
sources which are larger in size but less detailed in content than survey data in or-
der to produce improved estimates using small area estimation (SAE) techniques.

5. Going altogether beyond the survey by exploiting administrative and other sources.

In this paper poverty and inequality measures have been produced on the basis of the
so-called cumulation method (Verma et al. 2013).

The reference data for this purpose are based on EU Statistics on Income and Living
Conditions (EU-SILC), which is the major source of comparative statistics on income
and living conditions in Europe. EU-SILC covers data and data sources of various types:
cross-sectional and longitudinal; household-level and person-level; on income and so-
cial conditions; and from registers and interview surveys depending on the country. A
standard integrated design has been adopted by nearly all EU countries. It involves a
rotational panel in which a new sample of households and persons is introduced each
year to replace one quarter of the existing sample. Persons enumerated in each new
sample are followed-up in the survey for four years. The design yields each year a
cross-sectional sample, as well as longitudinal samples of various durations.
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The quantification of efficiency gains from averaging across multiple years is not straight-
forward in surveys, such as EU-SILC, that are based on a rotational panel. We have 
developed and tested two different methods to produce variance estimates for three-year 
averaged indicators in EU-SILC. A first, d irect approach defines a common structure 
of strata and PSUs for the three waves of the sample, and applies the standard Jack-
knife Repeated Replication (JRR) methodology to the union of the three cross-sectional 
samples. An alternative (indirect) method has been developed to approximate the corre-
lation across the cross-sectional waves using information from the longitudinal data of 
EU-SILC, which enables linking individuals and households across years when this is 
not possible in the cross-sectional datasets (Piacentini, 2014).

The issue of this paper is to develop efficient SAS routines for cumulation and stan-
dard errors estimation using JRR methodology when full information on sample struc-
ture is available. Section 2 presents the variances of cumulated measures. Section 3 
describes the methodology chosen to estimate such variances, namely the Jackknife Re-
peated Replication. Section 4 specifies some practical aspect in dealing with variance 
estimation. In Section 5 the gain in sampling precision from pooling over waves using 
EU-SILC survey is quantified. Section 6 describes the SAS routines developed for the 
presented methodologies. Section 7 presents some empirical results obtained using such 
routines. Finally Section 8 concludes.

2. Cumulative measures of poverty

Consider that for each wave of a survey like EU-SILC, a persons poverty status (poor 
or non-poor) is determined from his/her income within the income distribution of that 
wave, independently for each EU-SILC year, and then the proportion of poor at each 
wave is computed. These proportions are then averaged over a number of consecutive 
waves.

The issue is to quantify the gain in sampling precision from such pooling, compared 
to results based on a single wave.

The quantification of e fficiency ga ins from averaging ac ross multiple years is  not 
straightforward in surveys, such as EU-SILC, that are based on rotational panel, given 
that data from different waves of a rotational panel are highly correlated.

With a panel design, a new sample of households and individuals is introduced each 
year to replace only a fraction of the existing sample (1/4 in most of the EU-SILC coun-
try surveys, see Figure 1). A large proportion of the individuals are common in 
the different cross-sections. However, a certain proportion of individuals are different 
from one wave to the other. The cross-sectional samples are thus not independent, 
resulting in correlation between measures from different waves.

Apart from correlations at the individual level, we have to deal also with additional 
correlation that arises because of the common structure (stratification and clustering) of 
the waves of a panel. Such correlation would exist in, for instance, samples coming from
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Figure 1.

the same clusters even if there is no overlap in terms of individual households.
In order to quantify the gain in precision from averaging over waves of a rotational

panel, we provide the following simplified procedure that could be of help in better
clarifying the point. It illustrates the statistical mechanism of how the gain is achieved.

Indicating by pj and p′j the (1, 0) indicators of poverty of individual j over the two
adjacent waves, we have the following result for the population variances:

var(pj) =
∑

(pj − p)2 = p(1− p) = V ;

similarly,

var(p′j) = p′(1− p′) = V ′,

cov(pj , p
′
j) =

∑
(pj − p)(p′j − p′) = a − pp′ = c1 ,

where a is the persistent poverty rate over the two adjacent years.
Under the two waves model and in the extreme case of a completely full sample 

overlap and p′ = p, the variance VA of the average over two waves of the concerned 
poverty measure can be estimated as:

VA = (V/2)(1 + ρ), (2.1)

where ρ represents the correlation between the two waves that in our simplified case
can be quantified by
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ρ =
c1
V

=
(a− p2)
(p− p2)

Alternatively, if the overlap between the two waves is only partial like in the EU-
SILC survey, and cross-sectional variances are not necessarily equal, it is necessary to
allow for variations in cross-sectional sample sizes and partial overlaps:

VA =
1

2
(
V1 + V2

2
)(1 + ρ(

n

nH
)), (2.2)

where V1 and V2 are the variances in each of the two waves, n is the sample overlap,
nH is the harmonic mean of different waves sizes, ρ as above (Verma et al. 2013).

3. A replication method for variance estimation

In the previous section we have presented simplified formulae for variances when we
construct measures averaged over waves of a panel. Now the question is: how can these
variances be computed? In this section we present the variance estimation methodology
chosen in our work.

The Jackknife Repeated Replication (JRR) is one of the class of practical methods
for variance estimation in complex samples based on measures of observed variability
among replications of the full sample.

All replicated variance estimation procedures are based on comparisons among repli-
cations generated through repeated re-sampling of the same parent sample. Once the set
of replications has been appropriately defined for any complex design, the same variance
estimation algorithm can be applied to a statistic of any complexity.

The basic requirement is that the full sample is composed of a number of subsamples
or replications, each with the same design and reflecting complexity of the full sample,
enumerated using the same procedures. A replication differs from the full sample only in
size. But its own size should be large enough for it to reflect the structure of the full sam-
ple, and for any estimate based on a single replication to be close to the corresponding
estimate based on the full sample.

At the same time, the number of replications available should be large enough so
that comparison among replications gives a stable estimate of the sampling variability
in practice.

JRR provides a versatile and straightforward technique for variance estimation in
situations like the ones we are concerned with.

We have extended and applied this method for estimating variances for subpopula-
tions (including regions and other geographical domains), longitudinal measures such as
persistent poverty rates, and measures of net changes and averages over cross-sections
in rotational panel designs like EU-SILC.

Briefly, the standard JRR involves the following.
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Let z be a full-sample estimate of any complexity. We use the subscript i to indicate
a sample primary sampling unit (PSU) and h indicate its stratum; ah2 is the number
of PSUs in stratum h. Let z(hi) be the estimate produced using the same procedure
after eliminating primary unit i in stratum h and increasing the weight of the remaining
(ah − 1) units in the stratum by an appropriate factor gh (see below). Let z(h) be the
simple average of the z(hi) over the ah sample units in h. The variance of z is then
estimated as:

var(z) =
∑
h

[(1− fh)gh
∑
i

(z(hi) − zh)2], (3.1)

(1− fh) is the finite population correction and it is usually 1 for samples in typical
social surveys.

While one may take factor gh as

gh =
ah

ah − 1
, (3.2)

it is more appropriate to use

gh =
wh

wh − whi
, (3.3)

where wh =
∑

i whi, with whi =
∑

j whij as the sum of sample weights of ultimate
units j in primary selection units i. This means that in each replication (hi), the weights
for individual units are redefined and rescaled as follows:

• for unit j not in stratum h: w′
hij = whij ;

• for unit j in stratum h but not in PSU i: w′
hij = ghwhij ;

• unit j in stratum h and in PSU i: w′
hij = 0.

The second form for gh retains the total weight of the included sample cases un-
changed across the replications created, so as to have the same total as that for the full
sample. With the sample weights scaled such that their sum is equal (or proportional)
to some external more reliable population total, population aggregates from the sample
can be estimated more efficiently, often with the same precision as proportions or means
(Verma and Betti, 2011).

4. Practical aspects: specification of sample structure variables

Practical variance estimation methods need to make some basic assumptions about
the sample design because of the type and kind of sample design employed in social
surveys. These assumption are generally met or they can be reasonably approximated in
most population-based surveys.

These assumption are the following.
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a) The survey is based on a probability sample.

b) The sample size is large enough.

c) The sample structure meets (or has been redefined to meet) the following require-
ments:

c1) The sample selection is independent between strata.

c2) Two or more primary selections are drawn from each stratum.

c3) These primary selections are drawn at random, independently and with re-
placement.

c4) The number of primary selections is large enough (i.e. greater than 30) for
valid use of the approximations involved in the variance estimation equa-
tions. This assumption is needed to ensure that the sampling distribution of
the measures constructed from large enough samples tends towards normal
probability distribution, even if the distribution of variables like income (that
is the reference variable for the measures constructed in this work) is highly
skewed.

c5) The primary selections within the same stratum do not differ greatly in size,
meaning in the number of ultimate units selected and in the sum of the sam-
ple weights.

To these assumptions a final one should be added that, differently form the previous
ones, frequently is not met in practice. The assumption is:

d) essential information on sample structure is provided.

Sampling error computations need to take into account variations in the sampling
design. This is done through the definition of the sample structure.

In order to apply the JRR technique (and any other resampling technique and also,
for example, Linearization methodology) it is necessary to have full access to the vari-
ables that define the structure of the sample, namely the stratification and the primary
sampling units.

For the type of sample designs involved in EU-SILC, and in the practical procedures
for variance estimation used, generally all the necessary information about the sample
structure can be provided in the form of two variables defined for each unit:

• the computational stratum, namely the explicit and implicit stratification and

• the computational primary sampling unit (PSU), to which the unit belongs.

Considering the EU-SILC survey, normally the variable computational stratum is
related (and sometimes identical) to UDB variable DB050; similarly for computational
PSU and DB060. However, very often the UDB variables require some redefinition
before they can be used for the purpose of variance estimation.
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In order to correctly define the computational strata and PSUs, information concern-
ing the following three aspects must be available:

(1) Codes of the sample structure in the micro-data files.

(2) Detailed description of the sample design, for instance identifying features such
as the presence of self-representing units, systematic selection etc.

(3) Information connecting the sample structure codes in the micro-data with descrip-
tions of the particular sample design features, so as to be able to identify the design
features applicable to particular units.

For EU-SILC, currently this information is not readily available at the central level
for all countries. Presumably (and hopefully) it is available within each country for its
own national survey.

As noted, in many practical situations some aspects of sample structure need to be
redefined to make variance computation possible, efficient and stable. Of course, any
such redefinition is appropriate only if it does not introduce significant bias in variance
estimation. To do this in a statistically valid way requires sampling expertise.

The computational structure can differ from the actual sample structure because of
various considerations such as the following.

Firstly, it is often necessary to define computational strata and PSUs to meet the basic
requirement of practical methods of variance estimation for complex samples. Below we
report some common situations.

(1) It may be necessary to regroup (collapse) strata so as to ensure that each stratum
has at least two sample PSUs the minimum number required for the computation
of variance.

(2) Units which are included into the sample automatically (self-representing units)
are in fact strata rather than PSUs, and computational PSUs have to be defined at
a lower stage within each such unit.

(3) In samples selected systematically, the implied implicit stratification is often used
to define explicit strata, from each of which an independent sample is supposed
to have been selected. Such strata have to be formed by pairing or otherwise
grouping of PSUs in the order of their selection from the systematic list, ensuring
that each resulting computational stratum has at least two primary selections.

(4) Sometimes non-response can result in the disappearance from the sample of whole
PSUs. This can disturb the structure of the sample, such as leaving fewer than
two PSUs in some strata. Variance computation requires some redefinition of the
computational units to meet the basic requirement of having at least 2 PSUs per
stratum.
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(5) The above-mentioned problem arises more frequently and seriously when com-
puting sampling errors for subclasses (subpopulations or small regions). The risk
can be reduced by aggregating PSUs and strata to create fewer, larger computa-
tional units.

Considerations such as the above apply equally irrespective of whether the JRR or
some other form of variance computation algorithm is used (Verma et al. 2010).

(6) In a procedure like the JRR, the number of replications is equal or at least similar
to the number of PSUs in the sample. In a large sample where elements (house-
holds, persons) have been selected directly, the number of replications which can
be formed will be of the order of the sample size, normally running into thou-
sands. This necessitates forming much fewer computational units, such as creat-
ing pseudo-cluster from random groupings of sample elements, and then random
pairing of these clusters to construct computational strata.

(7) The above issue in fact arises in the case of any sample irrespective of its structure
when we want to estimate not only variances but also design effects. The denom-
inator of the design effect is variance under simple random sampling (SRS). That
variance can be normally estimated by assuming the sample structure to be SRS.

(8) At a minimum, the replication approach requires re-computation of the statistic of
interest at each replication. For complex statistics such as poverty rates, this may
require a considerable amount of computer time, and it can be desirable to reduce
the number of times the process has to be repeated. The same also applies to
many other forms of complex analysis, such as estimation involving multivariate
analysis and complex parameters, especially if they require iterative procedures.

(9) Variance estimation with replications captures the effect on variance of those fea-
tures of the data treatment and estimation process used in the actual survey which
are repeated for each replication, in the same way that they were applied to the
full sample. For instance, in order to fully capture the effect of calibration on
variance, it is necessary to recalibrate the sample of each replication using the
same procedure as used in the actual sample. The same applies to other aspects of
sample weighting, such as adjustment for non-response. Another even more de-
manding example is imputation for missing data. The need to repeat such heavy
procedures at each replication can greatly increase the computational task. Means
are required to reduce the number of replications involved.

(10) There are restrictions on the detail with which information identifying individual
sampling units, PSUs, strata etc. can be included in the public-release micro data.
Grouping of units and strata can help in preserving confidential nature of the
data. Reducing the detail included in this manner would make unnecessary the
suppression of information on sample structure, such as the suppression done in
the microdata disseminated by Eurostat.
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5. Quantifying the gain in sampling precision from pooling over waves using EU-
SILC survey

The formulae presented in Section 2 and the methodology presented in Section 3
have been applied to the EU-SILC cross − sectional datasets in order to get averaged
measures over waves.

When complete information on sample structure is available and, specifically, when
identifiers are provided to link strata and PSUs throughout different EU-SILC cross −
sectional datasets, it is possible to cumulate waves and quantify the gain in sampling
precision achieved with this methodology.

When the above requirement is met, that is full information on sample structure is
available, the gain in sampling precision can be easily quantified applying the standard
JRR methodology presented in Section 3 on the basis of the following considerations.

The total sample of interest is formed by the union of all the cross-sectional samples
being compared or aggregated.

Using as basis the common structure of this total sample, a set of JRR replications is
defined in the usual way.

Each replication is formed such that when a unit is to be excluded in its construction,
it is excluded simultaneously from every wave where the unit appears.

For each replication, the required measure is constructed for each of the cross-
sectional samples involved, and these measures are used to obtain the required averaged
measure for the replication.

Variance of the statistic of interest is then estimated from the replication estimates in
the usual way.

Let us clarify this procedure, presenting an empirical example.
Consider that we have the cross-sectional dataset of the EU-SILC survey for three

consecutive years and want to estimate the average of a given poverty measure over the
three years. We proceed as follows.

We first construct a common structure of strata and PSUs from the union of the three
cross-sectional datasets (see Figure 2); that is, we keep the list of all the strata and PSUs
of each of the three datasets and construct a new list that is the result of the union the
three samples. So we will have, as example, PSUs that are common to the three years,
PSUs that are common only for two of the three years, and PSUs that are present only
in one year. Our final structure of PSUs will be the union of all these.

Then we will create the replications from this common structure.
In the standard JRR methodology, replications are created by eliminating one PSU

at a time, a replication being identified by the particular PSU (say k) eliminated in
constructing it. In the combined dataset, the concerned PSU, if present, is eliminated
from all the three cross-sectional datasets to obtain a combined replication (see Figure
3). Note that, for reasons noted in Section 4, there may be some differences across
replications in the final sample structure obtained.

Next, we assign to this common structure new weights equal to the average of the
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Figure 2.

Figure 3.
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weights of the three years:

w(t)Common = (w)Average = (w(1) + w(2) + w(3))/3 (5.1)

For each year (t) and for each replication (k), we can estimate yk(t) where t = 1, 2, 3
and from this, the required statistic

yk
Average =

∑
t

atyk
(t); (5.2)

that in our example on three waves is just

yk
Average = (y(1) + y(2) + y(3))/3 (5.3)

6. SAS routines for variance estimation of cumulative poverty measures with JRR

In order to develop routines for variance estimation of cumulative poverty measures 
with JRR methodology, we have used the SAS software.

The SAS software (Statistical Analysis System) is one of the most well known sta-
tistical software. It is a software suite developed by SAS Institute for advanced analyt-
ics, business intelligence, data management, and predictive analytics. It is the largest 
market-share holder for advanced analytics (D'Agostino et al., 2015). It is also used by 
many international and national statistical offices, such as Eurostat and NSIs of Member 
States.

Our routines have been developed for cumulation of three consecutive waves of EU-
SILC. In this specific example, they give results for three poverty measures (see below) 
at NUTS21 regional level for Spain.

6.1. The required datasets

The dataset for which our routines have been developed and adapted is EU-SILC 
cross-sectional dataset for Spain for years 2009, 2010 and 2011. Thanks to the coop-
eration in a OECD project (Piacentini, 2014), we have availability of full information 
on the sample structure, namely the strata, the PSUs and their linkage across the three 
waves.

Our routines, developed on the basis of the procedure described in Section 5, can be 
used only if full information on sample structure is available.

When complete information on the sample structure is not available and its linkage at 
cross section level is not feasible, an alternative (indirect) method has been developed by

1 NUTS is an abbreviation for Nomenclature of Statistical Territorial Units. This is Eurostats 
hierarchical classification of regions, from Member States (NUTS 0) down to smaller areas
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our research group to approximate the correlation across the cross-sectional waves, using
information from the longitudinal data of EU-SILC which enables linking individuals
and households across years (Betti et al. 2015).

6.2. The SAS program

Our routines are collected in a unique program that can be divided into three parts.

(1) A first part where a common structure of strata and PSUs is created for the three
years concerned, as described in Section 5, beginning from merging the public
EU-SILC dataset (UDB) with a dataset with additional variables on the sample
structure, namely the strata and PSUs.

(2) Then the datasets for the three years are prepared with all the needed variables.

(3) This is the core of the program. In this part all the developed routines for the
estimation of the indicators and of their variances can be found.

Let now describe the core of the program.
This part allows the computation at national and regional NUTS2 level of the es-

timates, of the standard errors and confidence intervals of three poverty measures: the
at-risk-of-poverty rate (HCR) using the national poverty line as the 60 percent of the me-
dian equivalised disposable income, the ratio of income shares of the percentile S80/S20,
and the Gini index 2. In the present work the equivalised income is set equal to the
equivalised disposable income, as defined by the OECD, with reference to the EU-SILC
dataset:

equivalised dispsable income = max((HY 020/
√
HX040), 0)

where HY020 is the total disposable household income and HX040 is the household
size in the EU-SILC dataset.

The core program is composed of several macros: two large ones, one embedded
into the other, that contain the whole core program and five specific computational ones.
Macros can help in several ways . First, with macros you can make one small change in
your program and have SAS echo that change throughout your program. Second, macros
can allow you to write a piece of code and use it over and over again in the same program

2 A brief definition of the indicators is the following.
Head Count Ratio or at-risk-of-poverty rate: proportion of the population with equivalised
disposable income below 60 percent of the national median.
Inequality of income distribution Gini coefficient: it is defined as the relationship of cumulative
shares of the population arranged according to the level of equivalised disposable income, to the
cumulative share of the equivalised total disposable income received by that population.
Inequality of income distribution S80/S20 income quintile share ratio: ratio of the shares of equiv-
alised disposable income of the top and the bottom 20 percent of the population.
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or in different programs. Third, you can make your programs data driven, letting SAS
decide what to do based on actual data values (Slaughter and Delwiche, 2004).

Lets start describing the five computational macros, that are easier and shorter than
the others. They are the following.

There are three macros for the computation of each of the three chosen poverty
measures:%macro stat1 (HCR), %macro stat10 (S80/S20) and %macro stat11 (Gini).
These macros compute the required poverty measures estimates and merge them to the
main dataset. They can be applied and reused in any other of SAS program.

The macros for the computation of the HCR and the S80/S20 use also a forth macro
called % macro perc bound. This macro allows calculating any kind of weighted per-
centile of a distribution. The value that it calculates is the linear interpolation of the
percentile. It means that if any real value of the distribution lies in this percentile, a
value between the two nearest values - above and below the percentile- is interpolated.
The SAS program doesnt calculate percentiles in such a manner. In fact if any real value
of the distribution lies in the required percentile, the SAS function takes the nearest real
value above the percentile. In calling this macro, %macro perc bound (perc), the per-
centile to be computed (i.e. a number between 0 and 100) should be specified inside the
parenthesis.

The fifth computational macro is the one that implements the JRR methodology
described in Section 3 and it is called %macrojrr var(local). In this case, when calling
the macro, the number of PSUs of the dataset should be specified inside the parenthesis.

This macro is a cycle that is repeated for each replication (PSU). In order to estimate
the standard errors, the required measures are estimated inside the replications. In fact,
inside the cycle of the macro, so for each replication, there is the computation of the
′%stat&′, the macros for the poverty measures. Inside the replications we also reallo-
cate the weights. Once a PSU is deleted, its weights are assigned to the other PSUs in
the same stratum, such that the total sum of the weights does not change (see formula
3.3 and the subsequent description).

The output of this macro is a dataset where the observations (the lines of the dataset)
are all the PSUs, with the estimates of the poverty measures computed for each of them.

Let now describe the two main large macros that contain the whole program.
The first one is the macro %macro waves (waves). It is embedded in the second large

macro that we are going to present below. This macro is a cycle that repeats a series of
computations for each considered wave. In our case we have three waves, so, in calling
the macro, the number 3 should be inserted inside the parenthesis.

It begins by keeping as input the datasets prepared with all the necessary variables
in part 2 (working pop1). Then it transforms the original weights so that their sum is
equal to 1, dividing them by the sum of the weights; it also compute the sum of the
weights by stratum and by PSU that are needed inside the %macrojrr var. After the
rescaling of the weights, the %macrojrr var can be called and applied for each wave.

Finally the poverty measures for the entire dataset are estimated recalling their macros.
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Figure 4. Note: DB090 are the EU-SILC cross-sectional weighs. h0 is an empty dataset
where the output of JRR is stored. h0 contains the following variables: country (a
country code), ah (the number of PSUs per stratum), psu, stratum, stat (the required
estimates at replication level).
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Two datasets for each wave of the three considered are the output of this macro: one
dataset is the output of the macro jrr var and the second one contains the estimates of
the chosen indexes for each wave. Lets now describe the largest macro that contains the
whole program. It is %macrosub ciclo(sub ciclo start, sub ciclo end, psu).

Also in this case, the macro is a cycle that repeats the whole program for each re-
quired measure. In calling the macro, inside the parenthesis three numbers should be
specified. They are the following.

sub ciclo start and sub ciclo end represents the indexes to be computed. In this
specific program, they can range from 1 to 60 according to the list that can be found in
Appendix A. This list is present at the end of the program. &j corresponds to the 60
measures that can be computed: the three chosen poverty measures at national level and
the estimate for each of them for all the NUTS2 regions of the Spain.

If we choose sub ciclo start = 1 and sub cicloend = 60, the output will con-
tain results for all the 60 measures. The number chosen for sub ciclo start should be
smaller or equal to the one chosen for sub ciclo end.

The third number to be specified inside the parenthesis is the total number of PSUs
of the dataset.

This macro begins with the above described %macrowaves, so %macrowaves is
repeated for each chosen index.

The present macro keeps the outputs from the macro %macrowaves and merges
them over the years. The results are two datasets, one at replication level with the esti-
mate for the three waves and a second with the final required estimate for each wave. In
each of these two datasets the average of the measures is computed

measure=(est1+est2+est3)/3; run;

where est1, est2 and est3 are the estimate computed for each wave.

From the file at replication level (called h) variances are computed following the
equations presented in Section 3, using the above defined measure and ah, the number
of PSUs per stratum.

Variances are also trimmed if too large. If some of them are larger then 6 times
the mean of the variances (limit, in the routine), they are set equal to exactly 6 times
the mean of the variances. This is a very common procedure in order to avoid unstable
estimates.

Finally the standard errors are computed.

The final step, outside the macro is the computation of the confidence interval for all
the measures.

The final output gives a table with the names (subpopulation), the estimates (measures),
the standard errors (stat se) and the confidence intervals (ci upp, ci low) of all the re-
quired measures. Below we report an example for 2 indexes (Table 6.1).
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Figure 5.

Table 1. Example of the final output.

subpopulation measure stat se ci upp ci low

S80/S20 ES70 6.842648 0.839775 8.488607 5.196688
Gini ES11 0.302188 0.021438 0.344206 0.260169
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Table 2. Average over three years(2009, 2010, 2011), Spain, national results.

SPAIN (a) (b) (c) (d) (e)
HCR 60% national poverty line 22.0 0.48 0.31 0.65 1.12

S80/S20 6.5 0.15 0.11 0.73 1.27
Gini 33.8 0.30 0.24 0.80 1.39

(a) Estimate 2011
(b) s.e. 2011
(c) s.e. 3-years average
(d) ratio s.e. 3-years average over s.e. single year
(e) ratio s.e. 3-years average over s.e. 3-years average for independent samples

7. Empirical results

As already mentioned, our routines have been applied to the EU-SILC datasets for 
years 2009, 2010, 2011 for Spain. We have already mentioned that we have access to 
full information on Spain sample structure, thanks to a project with OECD.

Below we report some of the results at national and regional level.

The results of Table 2 are at national level and they show a sensible reduction of the 
standard error (s.e.) using the three years average with all the three measures concerned. 
The reduction of the standard errors that we get using the three years averages compared 
to the estimate for a single year (column (d)), ranges from 20% for Gini index, up to 
35% for HCR.

Our estimates of the standard errors averaged over three years are, correctly and rea-
sonably, higher than those in case of average on completely independent sample (column 
(e)). Because of the partial overlap of the EU-SILC sample through the years, the gain 
in precision of the cumulated estimates is reduced from the one that we could have in 
case of completely independent samples.

In Table 3 results for Spain are presented at the regional NUTS2 level. The com-
parison of standard errors between one-year and three-year estimates is more complex 
here, given the instability of the one-year estimates because of small samples. This 
problem is particularly evident for regions with a small number of PSUs. The cumu-
lated estimates in fact have been chosen to overcome to the high instability of the single 
year estimates.

Generally also in this case we can appreciate a reduction of the standard error, both 
in mean and median, for all the three measures. The reduction can be better appreciated 
considering the median, which is not affected by extreme values that are present in the 
results given the instability of the estimates for single years. The largest reductions in 
this case are in S80/S20, where, in median, we have a decrease of 38%; for HCR the 
decrease in median is of 20% and for Gini index is of 16%.
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(a) Estimate 2011  (b) s.e. 2011    (c) s.e. 3-years average

(d) ratio s.e. 3-years average over s.e. single year

8. Conclusions

In this paper we have described practical procedures for the estimation of variances
of complex statistics such as poverty rates under complex sample designs. Our specific
concern is with estimation at subnational (regional) level, where additional numerical
difficulties can arise as a consequence of the reduced sample sizes available.

We have decided to treat this problem as cumulating the estimates for three consec-
utive years. We have developed SAS routines to get the estimates and standard errors
of poverty measures cumulated over three waves at regional level applied to EU-SILC
survey data.

It is necessary to underline again that such procedures can be applied only if full
information on the sample structure is available.

We have developed an alternative procedure for dealing with the situation where full
information on the sample structure is lacking. In particular, the most serious lack of
information in public-use EU-SILC datasets is that micro-level linkage across surveys
waves is possible only in the longitudinal version of the data, and not in the larger cross-
sectional version. As reported elsewhere (Verma et al. 2010), in nutshell the procedure
is as follows.

If it is not possible to link the cross-sectional datasets, variances of the measures
cannot be computed through the formula 2.2, because the correlation cannot be quan-

Table 3: Spain, NUTS 2 results
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tified. We have decided to impute this correlation from the longitudinal dataset of the
EU-SILC, in which annual data are linkable across the waves. With this assumption we
are able to compute the variances for averaged measures.

To compute these variances at regional level, in order to simplify the calculation,
we estimate them from the decomposition of the design effect (see Betti et al., 2015 for
more details) as:

V (G) = VSRS
(G) · dW 2(G) · dH2(G) · dD2(G) · dX2(G) · dR2(G)

where
(G) stay for region;
VSRS is the required variance under a simple random sample;
dW

2 is the effect of the weights, known also as Kish factor;
dH

2 is the effect of clustering of persons within households;
dD

2 is the effect of clustering of persons and households within dwellings;
dX

2 is the effect of multi-stage sampling, stratification and other design complexi-
ties;

dR
2 is the effect of correlation in non independent samples.

All the previous quantities can be easily computed on the basis of the following
considerations:

• Quantities dW , dH and dD do not depend on structure (especially clustering) of
the sample, and can be easily estimated from samples of elements at the regional
level.

• dX and dR can be set equal to the corresponding values at national level.

• Also VSRS
(G) can be inferred from VSRS

(C) , the corresponding value at country
level (C stays for country) on the basis of the very reasonable assumption that the
coefficient of variation of a required Y measure.

CV 2(Y ) = n · VSRS(Y )

Y 2

at the regional level are the same as that at the country level, so that

VSRS
(G) =

CV 2(G)

n(G)
· (Y

(1) + Y (2) + Y (3)

3
)2(G)

.

Appendix A. List of indexes computed by the routines

if &j eq 1 then Subpopulation=’HCR 60% national p.l.’;
if &j eq 2 then Subpopulation=’S80/S20’;
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if &j eq 3 then Subpopulation=’Gini’;
if &j eq 4 then Subpopulation=’HCR 60%, national p.l. ES11’;
if &j eq 5 then Subpopulation=’HCR 60%, national p.l. ES12’;
if &j eq 6 then Subpopulation=’HCR 60%, national p.l. ES13’;
if &j eq 7 then Subpopulation=’HCR 60%, national p.l. ES21’;
if &j eq 8 then Subpopulation=’HCR 60%, national p.l. ES22’;
if &j eq 9 then Subpopulation=’HCR 60%, national p.l. ES23’;
if &j eq 10 then Subpopulation=’HCR 60%, national p.l. ES24’;
if &j eq 11 then Subpopulation=’HCR 60%, national p.l. ES30’;
if &j eq 12 then Subpopulation=’HCR 60%, national p.l. ES41’;
if &j eq 13 then Subpopulation=’HCR 60%, national p.l. ES42’;
if &j eq 14 then Subpopulation=’HCR 60%, national p.l. ES43’;
if &j eq 15 then Subpopulation=’HCR 60%, national p.l. ES51’;
if &j eq 16 then Subpopulation=’HCR 60%, national p.l. ES52’;
if &j eq 17 then Subpopulation=’HCR 60%, national p.l. ES53’;
if &j eq 18 then Subpopulation=’HCR 60%, national p.l. ES61’;
if &j eq 19 then Subpopulation=’HCR 60%, national p.l. ES62’;
if &j eq 20 then Subpopulation=’HCR 60%, national p.l. ES63’;
if &j eq 21 then Subpopulation=’HCR 60%, national p.l. ES64’;
if &j eq 22 then Subpopulation=’HCR 60%, national p.l. ES70’;
if &j eq 23 then Subpopulation=’S80/S20 ES11’;
if &j eq 24 then Subpopulation=’S80/S20 ES12’;
if &j eq 25 then Subpopulation=’S80/S20 ES13’;
if &j eq 26 then Subpopulation=’S80/S20 ES21’;
if &j eq 27 then Subpopulation=’S80/S20 ES22’;
if &j eq 28 then Subpopulation=’S80/S20 ES23’;
if &j eq 29 then Subpopulation=’S80/S20 ES24’;
if &j eq 30 then Subpopulation=’S80/S20 ES30’;
if &j eq 31 then Subpopulation=’S80/S20 ES41’;
if &j eq 32 then Subpopulation=’S80/S20 ES42’;
if &j eq 33 then Subpopulation=’S80/S20 ES43’;
if &j eq 34 then Subpopulation=’S80/S20 ES51’;
if &j eq 35 then Subpopulation=’S80/S20 ES52’;
if &j eq 36 then Subpopulation=’S80/S20 ES53’;
if &j eq 37 then Subpopulation=’S80/S20 ES61’;
if &j eq 38 then Subpopulation=’S80/S20 ES62’;
if &j eq 39 then Subpopulation=’S80/S20 ES63’;
if &j eq 40 then Subpopulation=’S80/S20 ES64’;
if &j eq 41 then Subpopulation=’S80/S20 ES70’;
if &j eq 42 then Subpopulation=’Gini ES11’;
if &j eq 43 then Subpopulation=’Gini ES12’;
if &j eq 44 then Subpopulation=’Gini ES13’;
if &j eq 45 then Subpopulation=’Gini ES21’;
if &j eq 46 then Subpopulation=’Gini ES22’;
if &j eq 47 then Subpopulation=’Gini ES23’;
if &j eq 48 then Subpopulation=’Gini ES24’;
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if &j eq 49 then Subpopulation=’Gini ES30’;
if &j eq 50 then Subpopulation=’Gini ES41’;
if &j eq 51 then Subpopulation=’Gini ES42’;
if &j eq 52 then Subpopulation=’Gini ES43’;
if &j eq 53 then Subpopulation=’Gini ES51’;
if &j eq 54 then Subpopulation=’Gini ES52’;
if &j eq 55 then Subpopulation=’Gini ES53’;
if &j eq 56 then Subpopulation=’Gini ES61’;
if &j eq 57 then Subpopulation=’Gini ES62’;
if &j eq 58 then Subpopulation=’Gini ES63’;
if &j eq 59 then Subpopulation=’Gini ES64’;
if &j eq 60 then Subpopulation=’Gini ES70’;
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