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1. Introduction

Due to the technological development, in the last decades, different kinds of spatial
data have become easily accessible at decreasing prices and have started to be used for
producing statistics.

In this paper, we focus on spatial resolution of data, on change of support (section
2) and on some kinds of transformations like aggregation and disaggregation of spa-
tial data when remote sensing data, Global Positioning Systems (GPS) and Geographic
Information Systems (GIS) are used for producing agricultural statistics.

Particular attention is devoted to the impact of above-mentioned characteristics and
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transformations of spatial data on sampling frame construction and sample design (sec-
tions 3, 4 and 5), stratification (section 6), use of remote sensing data for agricultural
statistics (section 7), small area estimation (section 8) and yield forecasting (section 9).

2. The change of support problem

The traditional spatial resolution for which statistical data are available are admin-
istrative areas, data on farms are collected at census enumeration area level, whilst the
geographical units of auxiliary variables are areas defined by land use, land cover, soil
type, watershed boundaries, and a variety of other biophysical and geophysical features.
Thus, the possible support of geo-referenced data are usually points, lines, areas or sur-
faces. Census enumeration areas and their concomitant data sets seldom correspond to
these geographic areas; consequently, data have to be interpolated, disaggregated and
aggregated.

When the support of the spatial process of interest is different from the one of the
observed data, a change of support problem arises.

The Modifiable Areal Unit Problem was introduced by Openshaw and Taylor (1979).
It is a specification of the change of support problem and presents two facets (Arbia
1986; Arbia and Petrarca, 2013):

• “scale problem”, which refers to the indeterminacy of any statistical measure with
respect to changes in the level of data aggregation;

• the “aggregation (or zoning) problem”, which concerns the indeterminacy of any
statistical measure with respect to changes in aggregation criterion at a given spa-
tial scale (e.g., two alternative partitions of the same area at a given spatial scale).

3. Use of satellite imagery for building a sampling frame

Various kinds of sampling frames are currently adopted for producing agricultural
statistics (see Carfagna, 2013):

1. Population census enumeration areas used as first stage sampling unit and the list
of households in selected enumeration areas is created;

2. List frames based on the population census: the list of farms or agricultural house-
holds is identified on the basis of specific agricultural questions included in the
population census questionnaire (FAO and UNFPA, 2012; Keita and Gennari,
2013 and Carfagna et at., 2013).

3. Agricultural census enumeration areas (some enumeration areas are randomly se-
lected and screened for farms);
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4. List frames based on the agricultural census;

5. List of farms based on the integration of various administrative sources through
record matching;

6. Area frames.

The sampling frames from 1) to 4) allow linking households and farms but generate
a very vague link with the land (only at enumeration area level), unless the parcels of
the households and farms are digitized. Digitizing all the parcels of the statistical units
constituting the sampling frame is unaffordable from the cost and time viewpoints and
could be even unfeasible, since farmers tend to omit fields far from their households (see
Kilik et al., 2013). Moreover, this geographic information becomes out of date as fast as
the list of farms, since it refers to it.

Remote sensing data add the geographical dimension to the sampling frames from
1) to 4) mentioned above, providing land cover, vegetation indexes and physical bound-
aries. Since remote sensing data are already in digital format, the digitized enumeration
areas can be overlaid to remote sensing data in order to associate information concerning
the land cover to the enumeration areas (not to the farms).

Lists of farms are often based on administrative sources, such as business registers
or tax collections (see Carfagna et al. 2013). Some kinds of administrative data are
geo-referenced, for example, some subsidies are linked to the fields and request digital
information, allowing a partial link with the land, only for some of the parcels linked to
the subsidies (see Carfagna and Carfagna, 2010).

The link with the land is important because agriculture statistics mostly refer to
variables associated with land such as crops, livestock, forests, water and aquaculture
and the most reliable way for estimating main agricultural variables is through collecting
data on land parcels. Moreover, the land is the basis for collecting physical information
for producing agro-environmental statistics.

Area frames, in the general meaning, are probability sample surveys in which, at
least for one sampling stage, the sampling units are land areas. They have a geographic
dimension by definition. Sometimes, a list of large, commercial farms (easy to update)
and, in case, of other kinds of farms, is combined with the area frame, in order to take
advantage of the strengths of the area frame (complete coverage also of small and sub-
sistence farms and link with the land) and of the list frame (possibility to use character-
istics of the farm -like size and type- in the sample design, easy identification of selected
farms through their addresses, in some cases telephone or mail or email can be used in-
stead of personal interviews, etc.). The multiple frame approach also allows improving
the efficiency of estimates and reducing their instability (Carfagna, 2001; Carfagna and
Carfagna, 2010).

A crucial aspect of this approach is the identification of the area sample units in-
cluded in the list frame; the two different supports increase the difficulty of this kind of
record matching. When units in the area frame and in the list sample are not detected,
the estimators of the population totals are upwards biased.
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Point frames are generally considered area frames because points are small circles
on the ground.

In some cases, samples are selected from different list frames and combined at the
estimator level (Carfagna, 2001). From the point of view of the link with the land,
this approach faces the same difficulties highlighted previously with reference to the list
frames.

4. Estimating spatial autocorrelation to optimise sampling frames and designs

Classified satellite images provide a proxy variable for the spatial structure of land
cover, that can be used to optimise a sampling frame when available ground data is not
sufficient to estimate correlograms (the graph of the spatial autocorrelation function at
increasing distances).

Correlograms can be used to optimise the area sampling unit (segment) size under a
fixed budget and a given cost function (Carfagna 1998); in fact, area sampling units can
be considered as clusters of elementary units. The optimal size can be studied through
the intra-cluster correlation, which can be computed as a weighted average of correlo-
gram values (Carfagna, 1998, Gallego et al., 1999).

An analysis of correlograms can suggest the use of a two-stage sample design and
give the basic data for computing the optimum combination of number and size of pri-
mary and secondary sampling units (Carfagna et al. 2008).

Moreover, correlograms based on remote sensing data can be used for feeding some
sequential selection techniques which require autocorrelation at short distances, gener-
ally difficult to estimate from previous ground surveys. This happens for example for
the DUST sampling technique (Dependent area Units Sequential Technique), that mod-
ifies the sampling selection probabilities, once a first set of segments has been sampled,
according to the autocorrelation for contiguous segments (Arbia, 1993).

We have to highlight that the spatial autocorrelation estimated through remote sens-
ing data can be used for feeding the procedures described above only if the spatial reso-
lution of remote sensing data is not too far from ground data, particularly where the field
size is small. In fact, the Moran coefficient, the Geary ratio and Cliff-Ord statistic are
scale dependent: the spatial correlation values decline with the scale; moreover, they are
dependent on the zoning system used in the aggregation, as noted by Qi and Wu (1996).

5. Use of geo-referencing technology for building sampling frames

The development of a sampling frame has changed completely with the use of Ge-
ographic Information Systems (GIS) which allow overlapping and integrating differ-
ent geographic information layers (borders of administrative areas, enumeration areas,
fields, land cover databases, coordinates of headquarters of farms and households) and
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Global Positioning Systems (GPS) which allow geo-referencing data collected on the
ground, which can then be overlaid to the other geographic information layers through a
GIS. The time and cost needed for building all kinds of sampling frame have decreased
dramatically.

For area frames, the need to collect information on the ground on area units with
physical boundaries has become less relevant, since segments with regular, theoretical
boundaries, like squares, rectangles etc. can be easily overlaid to ortho-photos or very
high resolution satellite images for data collection on the ground.

The use of segments with regular theoretical boundaries further reduces the cost for
building the sampling frame, since this approach eliminates the need to draw the primary
sampling units with permanent physical boundaries and then to break down the selected
primary sampling units into segments.

Moreover, experiments conducted in Europe (Carfagna, 1998) showed that the kind
of segment (with or without physical boundaries) does not affect the accuracy of data
collected on the ground and the efficiency of the land cover stratification.

When a Personal Digital Assistants (PDA) is used for data collection, the border of
the fields derived from photo-interpretation of an aerial photo or from a previous survey
can be showed on the screen of the PDA and the delineation of the field limits reduces to
the delineation of the changes. Moreover, data can be directly downloaded and imported
in a GIS.

When the sampling frame is an area or multiple frame, during the data collection
process, farmers operating the parcels included in the segment have to be identified and
rules of association have to be used to connect farms or households to selected segments,
in order to collect data on variables which cannot be directly observed on the ground,
like socio-economic variables.

Most commonly used rules are the so called closed, open and weighted segment
estimators. Satellite maps and aerial photos make the research of farms and households
easier and faster.

Since sampling frames for agricultural statistics are generally multipurpose, the op-
timal size of the sample units has to be a compromise and the optimum compromise for
variables which can be observed on the ground can reveal to be too large for collecting
socio-economic data, since the number of farmers operating fields on a segment can be
large and related work too long and cumbersome. In these cases, a two stage sampling
of farms can be implemented: a grid of points can be overlaid to the selected segments
and farmers operating the fields under the points are selected (Gallego et al. 1994).

This approach allows optimizing both the sample and segment size for collecting
data on physical variables (land use, area and yield of crops, agro-environmental vari-
ables, etc.) and the sample size for estimating socio-economic parameters. The use of
GPS facilitates this approach.

Other types of master sampling frame have become easy to implement with the sup-
port of GPS for data collection, like clustered and un-clustered point sampling, since
identifying a point on the ground with good approximation has become much easier
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with mapping grade accuracy GPS (error less than 1 m – 5 m). However, this approach
is risky in countries where the field size is small, particularly when recreational grade
accuracy GPS (error 5-20 m) are used, for more details see Keita, 2013. Also the pos-
sibility to carry out panel surveys of farms identifying the same field in the subsequent
surveys depends on the field size compared to the GPS accuracy.

6. Stratification

The land cover of the enumeration areas is particularly useful for stratification, when
the sampling frame is constituted by the population census enumeration areas (no agri-
cultural auxiliary information can be derived from the population census) and when the
sampling frame is constituted by the list of farms or agricultural household identified on
the basis of specific agricultural questions included in the questionnaire for the popula-
tion census.

In fact, in the latter case, only a limited number of very focused questions related
to agriculture can be added to the population census questionnaire, in order to avoid
respondent burden and collect reliable information; thus almost no auxiliary information
is associated to the units of the sampling frame to be used for sample designs, including
for stratification.

The simplest way for associating the spatial information of remote sensing data to
enumeration areas and administrative units is through classification of remote sensing
imagery into major categories, such as cultivated land, woodlands, grasslands, bare soil
and urban areas. This classification allows stratifying the enumeration areas and the
administrative units in order to improve the efficiency of the sample design of the sample
surveys to be carried out for producing the agricultural and rural statistics. Unless land
cover/use changes rapidly, this classification does not need to be updated frequently
(every 10 years in relatively stable conditions).

The spatial, spectral, and temporal, resolutions of the sensors are important factors
to take in account for building, updating or stratifying a sampling frame.

When an area or multiple frame is adopted, the sampling frame is constituted by
parcels of land; thus the link with the land cover is implicit in the definition of area
frame. The stratification of the sampling units of an area frame according to their land
cover, using remote sensing data, is more detailed and efficient than the stratification of
enumeration areas.

An efficient and low cost stratification for agricultural estimates is based on per-
centages of agriculture that can be approximately derived from photo-interpretation of
remote sensing images. In some cases, strata are associated to the prevalence in an area
of specific crops or groups of crops (summer or winter crops for example).

In case the spatial resolution of remote sensing data is low, compared to the spatial
variability of agriculture or the co-registration of the information layers combined in the
GIS is weak, the efficiency of the stratification is low.
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If a non-surveyed stratum is defined in areas presumed to be non-agricultural, low
spatial resolution or weak co-registration introduce a bias if this stratum has some marginal
agriculture. A test made by Gallego et al. (1999), based on CORINE Land Cover,
showed that the stratum defined as “non agricultural” contained approximately 4% of
the agricultural land.

7. Use of remote sensing data for producing agricultural statistics

Calibration and regression estimators are the main approaches for combining accu-
rate and objective observations on a sample (e.g. ground observations) with the exhaus-
tive knowledge of a less accurate or less objective source of information, or co-variable
(classified images).

There are two main types of calibration estimators, often named “direct” and ”in-
verse” (for a discussion see Gallego, 2004):

λ̂dir(g) = PgΛc

λ̂inv(g) = P ′−1
g Λc

where Λc is the column vector with the number of pixels classified into each class c
and Pg and Pc are the error matrices with the proportions and for the sample.

Pg(g, c) =
λgc

λg+

and
Pc(g, c) =

λgc

λ+c

for the sample.
The regression estimator (Hansen et al., 1953, Cochran, 1977) has been used for

crop area estimation since the early times of satellite EO (Hanuschak et al., 1980):

ȳreg = ȳ + b(X̄ − x̄)

where: ȳ and x̄ are the sample means of the ground observations and the image
classification, X̄ is the population mean for the image classification and b is the angular
coefficient of the regression between y and x. Ratio estimators are also used (Lathrop,
2006) and can be seen as a particular case of regression estimators, as well as difference
estimators.

Small area estimators (Battese et al., 1988) are also adopted to improve the estimate
in an area with a very small sample exploiting the link between ground surveys (variable)
and classified images (co-variable) in a large area.

Let us focus on the spatial resolution of remote sensing data for producing agricul-
tural statistics. The suitable spatial resolution mostly depends on the size of parcels. A
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useful rule of thumb is using images for which most pixels are fully inside a plot and
only a minority of pixels is shared by several plots. In fact, many mixed pixels (shared
by several land cover types) reduce the linear relationship between ground observations
and the image classification, which plays a crucial role in reducing the variance of the
estimate produced using only ground observation, as can be easily noticed in the formula
of the variance of the regression estimator (Cochran, 1977, sect. 7.6):

V (yreg) =
N − n

N × n
(1 +

1

n− 3
+

2G2
x

n2
)σ2

y(1− ρ2)

where

Gx =
k3x
σ3
x

is the relative skewness.
Moreover, a big amount of mixed pixels influence the skewness of the distribution of

the image classification and inflate the variance of the regression estimator, particularly
for crops cultivated in small plots.

Finally, many mixed pixels disturb the linear relationship that should hold between
ground observations and the image classification introducing a bias in the regression
estimator when the sample size is small.

A common practice in remote sensing is excluding mixed pixels from the training
set for image classification. This can improve the quality of the discrimination between
classes. However, excluding mixed pixels to compute x is not coherent with the compu-
tation of X, for which mixed pixels cannot be identified.

Ignoring the existence of mixed pixels in the classification or photointerpretation of
satellite images generates an overestimate of the relationship between remote sensing
and ground data and, consequently, an underestimate of the variance of the estimators
described above. The entity of the underestimation of the estimator variance is propor-
tional to the amount of mixed pixels, which is related to the pixel and field size, and to
the classification algorithm.

In order to overcome above-mentioned problems, sub-pixel analysis techniques are
available, but they have not proved yet to be operational. Usual image classification
attributes one class to each pixel; this is often known as sharp or hard approach. Alter-
native soft or sub-pixel methods are not new but they are receiving a growing attention.
Soft classifications can have at least three different conceptual bases: probabilistic, fuzzy
or area-share (Pontius and Cheuk, 2006). In the probabilistic conception, each pixel be-
longs to a class with a certain probability. The fuzzy conception corresponds to a vague
relationship between the class and the pixel; it is very attractive for classes with an un-
clear definition, but difficult to use for area estimation. In the area-share conception,
classes have a sharp definition and the classification algorithm estimates the part xik of
pixel i that belongs to class k.
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8. The impact of aggregation of spatial data on small area estimation

The need of statistics for small geographical domains has fostered the use of small
area estimators based on spatial auxiliary variables. Several small area estimators have
been proposed, including for spatially correlated populations (Chandra et al. 2007), but
limited attention has been devoted to their performance in case of change of support.
Pratesi and Petrucci (2014) have assessed the sensitivity to the level of aggregation of
the underlying spatial data of several small area estimators, namely EBLUP, Generalized
Regression estimator (Rao, 2003), SEBLUP (Petrucci and Salvati, 2006; Pratesi and
Salvati, 2009), Model Based Direct Estimator (Chandra and Chambers, 2005), Spatial
MBDE (Chandra et al., 2007), M-quantile regression small area estimator (Chambers
and Tzavidis, 2006).

The sensitivity analysis performed relies on a model based simulation study designed
by Chandra et al. (2012) for comparing the performances of small area estimators.
In the mentioned study, the number of small areas was fixed at A = 20. The model
used to generate the population corresponded to a nested error regression model with
random area effects for neighbouring areas distributed according to a simultaneously
autoregressive spatial correlation structure with spatial autoregressive coefficient sets
equal to 0.75 (high spatial correlation). This was of the form yij = 100 + 1.5xij + vi +
eij, where xij ~ Chi2(20), j=1,...,N i, i=1,...,A, with the random area effects ai generated
as N(0, 23.52); v = (vi) = (I - ρW)-1a; W is a proximity matrix of order A; I is a diagonal
matrix of order A, and ρ is the spatial autoregressive coefficient and it is set equal to 0.75
(high spatial correlation). The element Wkl of a contiguity matrix W takes the value 1 if
area k shares an edge with area l and 0 otherwise.

The experiment carried out by Pratesi and Petrucci (2014) is based on about 10,000
points located randomly within 20 small areas, each representing an individual. The
small area population sizes Ni are randomly drawn from a uniform distribution on [450,
500] and kept fixed over the simulations. The location coordinates for each unit of the
population are independently generated as U[0,50].

In addition, it is assumed that the only spatial information available is the spatial
coordinates of the sampled units and the spatial coordinates of the centroids of the small
areas.

To examine the scale effect, the points are aggregated into 101 (in mean) areal units
in each small area. The spatial aggregation is performed by aggregating a number of
contiguous spatial units into one unit. A sample of size n = 80 is selected from each
simulated population, with small area sample sizes proportional to the fixed small area
population sizes, resulting in an average area sample size of ni = 4. These area specific
sample sizes ni are kept fixed in the simulations, and the small areas are treated as strata,
with the final sample selection carried out by randomly sampling within each small area.
A total of T = 500 simulations is carried out.

For each small area, the Average Relative Bias (AvRBias) and the Average Relative
Root MSE (AvRRMSE) are computed for the original and for the aggregated population.
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The scale effect is evaluated through the percentage of increase of AvRRMSE for each
predictor from the Original Population to the Aggregated Population. The SEBLUP pre-
dictor shows the highest increase in terms of AvRRMSE (+21.5%), due to the decrease
of the value of the spatial autocorrelation parameter. The MQ-type estimator has the
lowest increase of AvRRMSE (+0.4%) because the changes in geography do not affect
the M-quantile coefficients at area level; although the lowest level of AvRRMSE for
the aggregated population is showed by EBLUP_GC: 1.814% (1.534% for the original
population).

9. The impact of change of support on yield forecasting

Several kinds of yield forecasting models have been developed in the last years, most
of them include the use of remote sensing data (see for example Shi et al, 2007, Salazar et
al., 2008), sometimes combined with ground observations (Genovese et al., 2001). Wall,
et al. (2008) reviewed the most common approaches to the use of vegetation indices in
crop yield forecasting models developed in the past two decades and concluded that
the most accurate yield estimates from remote sensing data have been reported using
regression analysis and extensive multi temporal datasets.

In this paper, we focus only on the implications of the use of geo-referenced data in
statistical models. Main explanatory variables of the statistical yield forecasting mod-
els are the trend of historical yields and some agro-meteorological models (generally
deterministic models like Penman’s), which account for water and temperature stress.

Statistical forecasting models require variables with a common support (polygons or,
more frequently raster) obtained through a series of GIS operations, like interpolation
of point data (e.g. meteorological data, soil data, etc.), disaggregation and aggregation
of database layers (land cover, crop masks, remote sensing data etc.). These operations
generate a series of errors in the explanatory variables, due to interpolation, location,
change of support, and so on.

More complex implications arise when these data are combined with other kinds of
data, in the statistical model. In this case, the uncertainty or the bias of certain input data
produces a propagated impact on the output of the statistical model.

We can identify four branches related to this issue:

1. methodologies to measure the uncertainty induced by some input in the final re-
sults;

2. operative indications at design stage of the procedure to reduce the impact of those
disturbs on the final result;

3. methods to correct the disturb caused by some specific processing procedure on
the input data;
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4. specific statistical and mathematical procedures adjusted to take into account these
disturbs.

Some authors have attempted to address the problem of error propagation with an
analytical approach, through an extremely detailed “error” modelling and have derived
analytically the consequences of the impact of the error on the final model. However,
Crosetto and Tarantola (2001) state that the major limitation of the analytical approaches
is that it applies only to particular kinds of GIS operations, or to particular types of
data. Given the complexity of the relations among the different information layers, the
analytical approach has not been followed extensively.

More frequently, a-posteriori analyses are carried out with the aim to optimize the
procedures of data processing, to obtain the best result in terms of accuracy of the final
estimates. The a-posteriori approach does not try to include the source of disturb/error
into the final model (thus, taking into account the distortion on the final model/formulae),
but tries to simulate/highlight the problems to measure the impact and minimize the ef-
fects. Veregin (1994) states that simulation modelling is an attractive alternative when
little is known about error propagation mechanisms. In such cases, simulation mod-
elling can be applied whether or not a formal error model has been developed, with the
following aims:

• simulate the effects of GIS operations on the data, or, more generally, to simulate
the presence of errors on the data

• quantitatively assess the impact on the final model

Where possible, above results are used to optimize the GIS procedure.
In early nineties, Cancellieri et al. (1993) adopted a sensitivity analysis approach for

measuring the influence of the different variables and the effects of GIS operations on a
statistical yield-forecasting model.

Saltelli, et al. (2012) distinguish between uncertainty and sensitivity analysis:

• uncertainty analysis is responsible for analysing the propagation, into results of
models, of the uncertainty embedded in some variables. The uncertainty analysis
answers the question "how reliable / uncertain this model is?"

• sensitivity analysis is concerned with measuring the strength of the impact / re-
lationship between variables and model. That is: “what is the impact of “each”
factor on the variability of the final outputs?".

The literature on sensitivity analysis is wide. However, this approach is seldom used
for assessing the impact of GIS operations in yield forecasting models; thus, we believe
that research is still needed in order to take into account the specificities of this field of
application.
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10. Conclusions

The paper has analysed the impact of spatial resolution, change of support, transfor-
mations and co-registration of spatial data, when remote sensing data, Global Position-
ing Systems (GPS) and Geographic Information Systems (GIS) are used for producing
agricultural statistics. Particular attention has been devoted to the impact on sampling
frame construction and sample design, stratification, use of remote sensing data for agri-
cultural statistics, small area estimation and yield forecasting, highlighting advantages
and warnings.

The analysis of the influence of the use of remote sensing data, GIS and GPS on
the building process of most common sampling frames for agricultural statistics, has
highlighted how remote sensing data add the geographical dimension to most commonly
used sampling frames, providing land cover, vegetation indexes and physical boundaries.

Since remote sensing data are already in digital format, the digitized enumeration
areas can be overlaid to remote sensing data in order to associate information concerning
the land cover to the enumeration areas; however, this geographic information cannot be
associated to the farms, unless their borders are digitized.

From the point of view of the link with the land, the multiple frame approach faces
the same difficulties showed for list frames.

Correlograms computed on remote sensing data are useful for identifying the most
appropriate area frame sample design; namely the kind of area frame, segment size,
number of stages, sample selection procedure involving the spatial autocorrelation. How-
ever, the spatial autocorrelation estimated through remote sensing data can be used for
feeding the mentioned procedures only if the spatial resolution of remote sensing data is
not too far from ground data, particularly where the field size is small.

The development of sampling frames has changed with the use of Geographic In-
formation Systems (GIS), which allow overlapping and integrating different geographic
information layers, such as borders of administrative areas, enumeration areas, fields,
land cover databases, coordinates of headquarters of farms and households. In addition,
the use of Global Positioning Systems (GPS) has influenced the development of sam-
pling frames; in fact, GPS allows geo-referencing data collected on the ground, which
can then be overlaid to the other geographic information layers through a GIS.

Remote sensing data have a very important role in the stratification of area frames.
The trade-off between the relative efficiency and the long lasting of the stratification has
to be taken into consideration, when evaluating the cost efficiency of remote sensing data
for stratification. Some approaches can be very efficient but can generate high biases,
particularly when the geographic information is used for eliminating parts of the area
from the sampling domain.

The suitable spatial resolution of remote sensing data mostly depends on the size of
parcels, when remote sensing data are used as auxiliary variables for producing agricul-
tural statistics. Only images for which most pixels are fully inside a plot and a minority
of pixels is shared by several plots should be used. In fact, mixed pixels reduce the lin-
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ear relationship between ground observations and the image classification and inflate the
skewness of the distribution of the image classification and the variance of the estimator
and biases the estimates.

Sub-pixel analysis, like probabilistic, fuzzy or area-share classification have not
proved yet to be operational.

When a geographic auxiliary variable is adopted for small area estimators, the rank-
ing of the estimators, according to their error, changes when the area units of the auxil-
iary variable are aggregated.

Finally, evaluating the uncertainty of yield forecasting models is very relevant, when
geo-referenced data are used in statistical models, which require variables with a com-
mon support, obtained through a series of GIS operations. Simulation models for sensi-
tivity analysis can contribute to this evaluation.
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