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Sumnary: Let z = (z,, : n € N) be a sequence of random variables with values in
a Padlish space X. If z is exchangeable (dtationary), then z is i.i.d. (ergodic)
conditionally on some random probability measure p on B(X) (g on B(X>)). In
the exchangeable @ase, two necessary and sufficient conditi ons are given for z to be
i.i.d. conditionally on ?(’ﬁ), where? isa given transformation. Esentially the same
conditions apply when z is gationary, apart from "i.i.d." is replaced by "ergodic"
and p by ¢. The basic difference between the exchangeable and the stationary case
liesin the empirical measure to be used. Up to a proper choiceof the latter, the two
conditions work in a large dassof invariant distributions for z. Finally, the set of
ergodic probability measures is siown to be a Borel set, and almost sure weak
convergence of a certain sequence of empirical measuresis proved in the stationary
case.
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1. Introduction

Let Z = (Z, : n € N) be asequence of random variables with
values in a Polish spaceX. Suppose Z is exchangeable or, equivaently,
Z is independent and identicaly distributed (i.i.d.) conditionally on
some random probability measure 7 on the Borel o-field on X, B(X).
In Theorem (7.2) of Fortini, Ladelli and Regazzni (2000 — referred to
as FLR in the sequel — conditions are given for Z to be i.i.d.
conditionally on (%), where £ is a given transformation. In fad, the
hypotheses of Theorem (7.2) concern sequences of predictive sufficient
statistics, and are conceved to have some statisticd content within a
Bayesian predictive framework.

In so far as the sole representation part is concerned — i.e., finding
conditions under which 7 is i.i.d. given £(7), where t is an assgned
transformation — the hypotheses of Theorem (7.2) are sufficient but
not necessary.

The am of this paper is to take up again the representation part to
provide necessary and sufficient conditions. From a statisticd point of
view, such conditions are useful for investigating existence of
underlying parametric models for the distribution of Z.

In particular, two conditions are given. The first one (that will be
denoted as condition (b)) is of the astrad type. Nevertheless by using
it, various other sufficient conditions are eaily obtained, included the
one proposed in FLR. Moreover, it alows a shorter and more dired
proof of Theorem (7.2). The seand condition (condition (c)) applies
to the speda case where % is continuous (an assumption made dso in
Theorem (7.2)). In this case, however, it has me statisticd meaning.

The problem studied in this paper is different from the one taded in
Olshen (1974. In the latter, among other things, an exchangeale
sequence z is diown to be i.i.d. conditionaly on some red random
variable M. Such result, clealy, is based on the Borel isomorphism
theorem. In our case, instead, we investigate whether z is i.i.d.
conditionally on (%), where 7 is a given transformation (possbly,
suggested by a sufficient statistic) and 7 is the dmost sure week limit
of the empiricd measures.
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A further and minor goal of this paper is to start, in a particular
case, an analyss of Bayesan nonparametric problems for non
exchangeable data. Suppose Z is dationary or, equivaently, z is
ergodic conditionally on some random probability measure g on
B(X®). Then, conditions (b) and (c) are ill working, apart from
".i.d." is replacal by "ergodic® and 7 by g. In this framework,
incidentally, the set of ergodic probability measures is iown to be a
Bord set, and amost sure wed convergence of a cetain sequence of
empiricd measures is proved.

The basic difference between the exchangeable and the stationary
case liesin the eampiricd measure to be used. Up to a proper choice of
the latter, conditions (b) and (c) work for a large dass of invariant
distributions for z.

The paper is organized as follows. Sedion 2 is devoted to
preliminaries and notation, Sedion 3 includes the statement of
Theorem (7.2), while Sedions 4 and 5 contain the main results, in the
exchangeable and stationary case, respedively.

2. Prdiminaries and notation

The basic notation is that of FLR, with some dight adaptions in
view of the last Sedion 5.

Let S be awy set. Then, S is the space of al sequences
x = (xy, zo,...) Of elements of .S, and Z, is the n-th coordinate map
on .S, that is,

To(x) =z, fordl x = (x,xs,...) € S andn € N.

When S is a topologicd space B(S) denotes the Borel o-field on S,
and S5 is equipped with the product topology. By a Polish space, it is
meant a topologicadly complete separable space If S is Polish, then
S isPolish, too, and B(S>) = B(S)>.

Given a o-fild £ on S, let M = M (€) be the set of probability
measures (p.m.'s) on &, and let P =P(£) be the o-field on M

41



generated by the sets {pe M :p(A)e B}, for A& and
B € B([0,1]). Any measurable function f : (©2,.4) — (M, P), where
(Q,.A) is any measurable space is cdled a random p.m.. Thus, a
function f on (9,.A) is a random p.m. whenever f(w) isap.m. oné&
forwe Q,andw — f(w)(A) is.A-measurablefor A € £.

We will consider a sequence of observable random elements taking
values in a Polish space X. For our purposes, it is convenient to work
in the mordinate space (X, B(X*)) and to identify the sequence of
observables  with z = (%, %q,...). Moreover, we let
M, = M(B(X)) and My, = M(B(X")), i.e,, M| and M, denote the
sets of p.m.'son B(X) and on B(X*), respedively. Both M, and M,
are auipped with the topology of weeg convergence of p.m.'s. Since
X is Polish, M; and M, are Polish, too, and B(M,) and B(M,)
coincide with the o-fields P(B(X)) and P(B(X ™)) defined ealier.

For every n €N, the empirical measure e, asciated to
(%1, ..., T, ) isdefined as

n
_ 1
€n = 52%
k=1

where ¢, is the unit massat a. Clealy, e, (z) isap.m. on B(X) for
z € X, and x — e,(x)(A) is Borel measurable for A € B(X), i.e,
e, isarandom p.m. from (X, B(X*)) into (M, B(M,)).

A p.m. P on B(X*>) is exchangeable if it is invariant under all
finite permutations of X, that is, if P = Pox~! for al functions
m: X* — X of theform

T(X1y ooy Ty Tg 1y o) = (Ljis ey Ty Tty o)

for some n € N and some permutation (j, ..., j,) of (1,...,n). As
usud, Pon~! denotes the pm. on B(X>*) gven Ly
Porn7'(A) = P(r~'(A)). When P is exchangedble, we will also say
that 7 = (%, Z», ...) isexchangeable under P.
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Given p € My, let p> denote the arresponding product p.m., i.e.,
p> is the p.m. on B(X*) which makes the wordinate random
variables 7, Z», ... i.i.d. acording to p.

We ae now in a postion to state de Finetti's representation
theorem for (infinite) exchangeable sequences.

Theorem 1 (de Finetti' srepresentation theorem)
Let P bea p.m. on B(X>) where X is Palish. Then, the following
statements are equivalent:

(i) P isexdangable;
(i) Thereisa urique p.m. v onB(M,) such that

P(A) = [p*(A)v(dp) forall A € B(X>);
(i) Thereisarandan p.m. p (i.e.,, a Bord functionp: X — M)
such that,
for each A € B(X>), p>(A) isavesion d P(Z € A|p).

Moreover, when P is excdangeable, one has v(B) = P(p € B) for
al Be B(M,)and

e, = p P-as,
where" = " stands for weak convergenceof p.m.'s.

We dose this dion with the notion of statistic. By definition, a
statistic is a measurable function of the data. In our case, the data ae
the n-tupe (7,...,%,) for some n. Under the exchangeability
asumption, the order in which observations appea is not relevant, and
(%1, ..., T,) can be summarized by the enpiricd measure e,, .

Let

D=A{e,(z): z € X neN}
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be the union of the ranges of all the random p.m.'se,,, and let M, bea
Borel subset of M, such that M D D. Further, let T be aPolish
space ad f : M; — T a Bore function. Then, for ead n, t oe, is
Borel measurable on X*° and is a summary of the data (7, ..., Z,).
Accordingly, in Sedions 3 and 4 a statistic is meant as the restriction
to D, t|D, of any Borel function 7 : M; — T, where M; € B(M,)
and M; D D.

In last Sedion 5, a dightly different (but conceptually equivalent)
notion of statistic is used.

3. Statement of Theorem (7.2) of FLR

Lete P be a exchangedble p.m. on B(X*) and let
Z = (%, : n € N) be the sequence of coordinate random variables on
X, According to Theorem 1, conditionally on some random p.m. 7,
7 isi.i.d. acording to 7. Fix aBore function? : M; — T, where T is
Polish, M; € B(M;) and M; > D, and suppose that v(M;) =1
where v isasin Theorem 1.

Under these mnditions one question is whether, conditionally on
t(p), 7 isagain i.i.d. acording to 7. Answering this question is useful,
for instance, for investigating existence of an underlying parametric
model for the distribution of Z. Suppose in fad that, conditionally on
t(p), 7 isi.i.d. acording to 7. Then, 7 and £(7) play esentialy the
same role, and a random parameter 6 can be defined as 6 =7 (7). In
other terms, the "origina random parameter” p, whose eistence is
granted by de Finetti's theorem, can be reduced through . As far ast
is concerned, in what follows it should be viewed as any given
transformation. However, in a particular statisticd problem, % is
typicdly suggested by some sufficient statistic.

In any case, a positive answer to the ealier question occursin case

(@) p € M; and g(t(p)) =5, P-as, B
for some functiong : T — M, suchthat o(g) C B(T)
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where B(T) is the completion of B(T) with resped to the distribution
of £(p).

Indeed, under (&), Z isi.i.d. (acording to ) conditionally on % (7).
In particular, one has

P(A) = [g()*(A) 7#(dt) forall A € B(X™)

where v* isthe distribution of #(7) and v* isthe completion of v*.

Theorem (7.2) of FLR, quoted in Sedion 1, just gives conditions
for (). To state it, various definitions are needed.

First, le¢ P be ay pm. on B(X*). For eahh neN,
P((Z;:j>n)€ -|7,..,%,] is cdled the predictive distribution (at
time n). A dtatistic Z|D is predictive sufficient if, for eath n € N and
A € B(X>), one has

Pl(Z;:j>n) € Altoe,| = P[(Z;: j>n) € AlZy,...,T,] P-
as..

So, the informal idea is that £|D is predictive sufficient provided
predictive distributions depend on data only through it. We send badk
to FLR for more on predictive sufficiency and for some references
therein.

Next, let G C B(X) be acountable w-class sich that ¢(G) = B(X)
and P (0A) =0 for adl A € G, where P, is the margina of P on the
first coordinate.

Further, for ead n, fix afunction Q,, onT x B(X) such that:

— Q,(t, - )isapm.onB(X)fort €T,
—Q,(-,A)isB(T)-meaurablefor A € B(X),
- fB Qn(th),un(dt) = P(%nJrl € A,?O €n € B)

foral A € B(X) and B € B(T'), where p,, denotes the distribution
oftoe,.
Clealy, such @,, exists snce X is Polish.

Finally, consider the following condition; cf. condition (7.1) of
FLR.
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(*) Thereisaset S’ € B(T™) satisfying:

— P((toe,) €5)=1;

— Eadh (t,) € S’ isa onvergent sequence

— Foreah (t,) € S, A € Gande > 0, thereisé > 0 such that

|Qn (50, A) — Qn(t,, A)| < € foral sufficiently large n
whenever (s,) € S’ and
dr(sp,t,) < 6 fordl sufficiently largen,
dr being ametric for 7.
We ae now able to state Theorem (7.2).
Theorem (7.2) of FLR

Let X, T be Polish spaces, P an exdanggable p.m. on B(X*),
andt : M7 — T aBorel function. If ¢|D is predictive sufficient, ¢ is
continuows on M7, v(M;) =1, and condtion (*) is stisfied, then
condtion (a) halds.

Finally we note that, if Z| D is predictive sufficient, 7 is continuous
on M; and v(M;) =1, then condition (*) is necessry in order that
(a) holds for a continuous g; cf. Theorem (7.4) of FLR.

4. The exchangeable case

In this ®dion, P is an exchangeable p.m. on B(X>) and 7 and v
are asin Theorem 1. For definiteness setting

E ={zx € X* :e,(x) convergeswekly asn — oo},

it is supposed that
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p(z) =we&klime,(x) fordl x € E

and p(z) = po for al = ¢ E, where py isany fixed element of M, .
Given any Borel function ¢t : M; — T, with M; € B(M;) and
M7} D D, let us consider the aondition:

(b) % isinjediveon B, for some B € B(M;) suchthat v(B) = 1.
Before any comments on (b), we prove that it amountsto (a).

Theorem 2

Let X, T be Polish spaces, P an excdhangeable p.m. on B(X>),
andt : My — T aBorel function. Then, condtions (a) and (b) are
equivalent. Moreover, under (a) or (b), the function g involved in (@)
can ke taken Borel measurable.

Proof

(& = (b). Under (a), thereisaset A € B(X>), P(A) =1, such
that p(x) € M; and gotop(x)=7p(x) for al z€ A. Then,
v(C)=1 whenever C € B(M,) and C D p(A), i.e, B(A) has v-
outer measure 1. Further, 7(A) is an andytic set. Hence, there is
B € B(M,) with B C p(A) and v(B) = 1. Since 7 is injedive on
B ¢ Mj, condition (b) holds.

(b) = (a). Since 7 is injedive on B, for eat t € t(B) there is
predsely one p, € B such that 7(p;) = t. Fix p, € My, and define
gt)=p, for tct(B), ad g(t)=p, for tcT\t(B). Then,
g(t(p)) = p for al p € B. Further, g: T — M, is Borel measurable.
Infad, #(B) € B(T), dueto 7 is Borel and injedive on B, and for the
same reason one has

g (H)NT(B)={t€¥(B): p € HY =T(BN H) € B(T)

foral H € B(M;).
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Finaly, let A=7""(B). Then, P(A) =v(B)=1 and, for al
xz € A, onehasp(x) € M; and got o p(x) = p(x). Hence, (a) holds
for aBorel function g. [

A first remark on Theorem 2, even if not essential, is that the
function g in condition (&) can always be taken Borel measurable.
Apart from this fad, two other points need to be discussed. One isthe
possble meaning of (b) and the other is that, taking (b) as a starting
point, various other sufficient conditions for (a) can ke obtained.

4.1. Meaning of condition (b)

From a statisticd point of view, to get condition (&) (which is our
goal, as explained in Sedion 3), it would be desirable to ask conditions
only on the way ¢ summerizes data. More predsely, it would be
desirable to ask conditions on£|D, in particular on its connedions with
predictive distributions, but not on the behaviour of ¢ on M;\ D.

Strictly spe&ing, this is not possble in general. Suppose in fad
that v(D) = 0, choose awy Borel function ¢ on D, and take M; O D
to be ay Borel set with v(M;) = 1. Then, apart from trivial cases, ¢
admits two Borel extensions to M}, say £; and £,, such that (b) holds
for £, and fails for 5. In view of Theorem 2, condition (a) holds for 7,
but failsfor z,, evenif #,|D = ¢ = #,|D.

In Theorem (7.2) of FLR, for instance, continuity of ¢ is asked on
al M;. However, dl other conditions of Theorem (7.2) concern | D
only, and aso the ntinuity assumption looks admissble. Indeed,
when £ is continuous on D and admits a cntinuous extension to M;
(e.g., when 7 is uniformly continuous on D), it is natural to taket on
M7 as such continuous extension.

Generally, condition (b) deds with the behaviour of ¢ on M;\D,
and in this snse it does not have an intuitive statisticd content.
Nevertheless (b) is also necessary, and thus one can think in term of it
without any red lossof generality. In addition, (b) makes clea which
properties are requested to ¢ in order that 7 can be reduced through %:
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over a set B of v-probability 1, 7 must be ale to distinguish between
two different weak limits of empiricd measures.

4.2. Other sufficient conditionsfor (a)

By using Theorem 2, sufficient conditions for (a) can ke obtained.
Moreover, it is possble to give ashorter (and more dired) proof of
Theorem (7.2). We begin with the latter point.

Proof of Theorem (7.2) of FLR

Since G is countable axd P;(0A) =0 for al A €4, there is
F) € B(X*) with P(F;) =1 and p(z)(0A) =0 for adl z € F; and
A € G. Moreover, Q,(toe,, - ) = P, P-as., where the Q,, are a&in
condition (*).

Let

F=EnFn{(toe,) €SN {Q,(toe,, )= 5}

Since p(F') is an analytic set and P(F') = 1, thereis H € B(M;) with
HCp(F) ad v(H)=1. Let B= H N M;. By definition of F,
continuity of ¢ and condition (*), it follows that 7(x) = 7(y) whenever
r,y € Fand? oB(x) =1 o p(y). Hence, 7 isinjedive on B, and since
v(B) =v(M;) =1, condition (b) holds. By Theorem 2, this
concludes the proof. O

Let us turn now to some other sufficient conditions for (a). If
asaimptions on the behaviour of ¢ on M;\D are dlowed, then, by
Theorem 2, a plenty of conditions are available. Because of the
remarks in Subsedion 4.1, however, we focus on conditions
concerning | D only, apart from continuity of ¢ which is asked on all
M7 . Then, one posshle candidate is:

(c) Thereisaset A € B(X*>), P(A) =1, suchthat
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lim sup, dr ( o e,(2),T 0 €, (y)) > 0

whenever x,y € A and

liminf, p(e,(z),e,(y)) >0
where dr isametric for T and p is Prohorov metric on M;.
Werecd that Prohorov metric p on M; isgiven by
p(p,q) = inf{e>0:p(A) < q(A°) +eforal A € B(X)}
where A€ = {u : dx(u, A) < €}, dx being ametric for X.

Theorem 3

Let X, T be Polish spaces, P an excdhangeable p.m. on B(X>),
and t: M; — T a Boredl function. If ¢ is cortinuows on M; and
v(M;) = 1, then condtions (a), (b) and(c) are equivalent.

Proof

Let £ be mntinuous on M; with v(M;) = 1. By Theorem 2, it is
enough to prove that (b) and (c) are equivalent.

(c) = (b). Let E be defined as at the beginning of Sedion 4. Since
P(ANE) is analytic and has v-outer measure 1, thereis H € B(M;)
with  H Cp(ANE) and v(H)=1. Then, (b) holds with
B = H N M;. To seethis, the only non trivial fad is injedivity of  on
B. FiX p;,p» € B such that p; # p,, and take xz;, € AN E with
pi = pla;) for i =1,2. Then, lim p(e, (1), en(22)) = p(p1,p2) > 0,
dueto z,,z, € E and p; # p, and thus continuity of £ and condition
(c) yield

dTG(pl)a?(m)) = IiTan dTGO en(.rl),?o en(r2)) > 0.
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(b) = (). Define A = ENp~'(B), note that P(A) = 1, and fix
z,y€ A such that Uliminf,p(e,(x),e,(y)) > 0. Then, P(x),
p(y) € Band, sincex,y € E,

p(B(2), B(y)) = lim p(e, (), e (y)) > 0.
Thus, continuity and injedivity of ¢ on B yield
imdy (T 0 e,(2),F 0 e,(y)) = dr(@ 0 B(x),T 0 B(y)) > 0.0

By Theorem 3, in the relevant case where £ is continuous on M}
and v(M;) =1, (c) is eguivaent to (a). Moreover, in line with the
remarks in Subsedion 4.1, condition (c) deds with Z|D only. Hence,
Theorem 3 is an improvement of Theorem (7.2).

Next, given a function f: S — S’ with S and S’ metric spaces
(with distances d and d'), let uscdl f "uniformly injedive" in case: For
eah € > 0 there is § > 0 such that d'(f(a), f(b)) > & whenever
a,be S and d(a,b) >e. If T is uniformly injedive on D, then
condition (c) triviadly holds. Thus, by Theorem 3, it is enough for
condition () that 7 is uniformly injective on D and continuous on M,
withv (M) = 1.

We dose this sdion by noting that condition (c) becmes more
meaningful if p(e,(x),e,(y)) is trandated into a sort of distance
between (z ,...,z,) and (y,,...,¥,). To this end, it is convenient to
replaceProhorov distance with some other equivalent metric. Let L be
the set of red valued functions f on X such that, for al a,b € X,

[f(a) = F(b)] <1 Adx(a,b).

The so cdled bounded Lipschitz metric on M; is defined as

dpr(p,q) = supser | [ fdp — [ fdal,
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and it can be shown to satisfy p? < dg; < 2p (see e.g., Huber, 1981,
Corollary 4.3, p. 33). Thus, by using dp;, instead of p, condition (C)
can be guivalently written as.

(c) Thereisaset A € B(X*>), P(A) =1, suchthat
lim sup, dr (t 0 e,(z),% 0 e,(y)) > 0

whenever x,y € A and

n

liminf, supser, |%zn:1f(.rl) — %Zf(ylﬂ > 0.

i=1

5. The stationary case

This dion includes versons of Theorems 2 and 3 and a
convergence result for the cae where P is dationary. Some remarks
on Bayesian ronparametric inference for dationary data, or more
generaly for data with invariant distribution, are dso given. We begin
with a result asserting that, under general conditions, every invariant
p.m. is aunique integral mixture of extreme points.

Given a measurable space (£2,.4) and a dass F of measurable
functions f : (Q,4) — (2,.A), let T be the set of those p.m.'s P on A
which are F-invariant, i.e., P = P o f~! for al f € F. Further, let ext
7 bethe set of extreme points of Z, and let ext 7 be equipped with the
traceo-field (ext Z) N P(A). According to Sedion 2, (ext Z) N P(A)
is generated by the maps Q — Q(A), A € A, from extZ into the
reds. We dso recd that a p.m. P on A is perfed if, for ead A-
meaurable function f:Q — R, there is B € B(R) such that
B C f(Q)and P(f € B) = 1. Next Theorem 4, due to Maitra (1977,
unifies results of Bogoliouboff, de Finetti, Farrel, Kryloff and
V aradarayan.
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Theorem 4 (Maitra)

Suppeae F is courtable, A is courtably generated andincludes
the singletons, and evey p.m. on A is perfed. Then, for each P € 7
there is a urique pm. u on (extZ)NP(A) such that
PA)= [ _,,QA)u(dQ)fordl Ac A.

In our case, (2, A) = (X, B(X*>)) where X is Polish, so that
(Q,A) meds the onditions of Theorem 4 and the o-field (ext
I)NP(A) reduces to B(extZ). If F is the dass of al finite
permutations of X°°, then 7 is the set of exchangeable p.m.'s and ext
7 the set of product p.m''s, i.e., extZ = {p™ : p € M;}. Hence, the
equivalence between (i) and (ii) in Theorem 1 follows from Theorem 4,
after noting that 1 and v are mnneded by the relation p = v o ¢!,
where ¢(p) = p> for p € M;. In other terms, at least formaly, de
Finetti's theorem can be embedded into a more general result on
invariant p.m.'s.

Since de Finetti's theorem is fundamental in Bayesian
nonparametric inference for exchangeable data, one auld hope that,
taking Theorem 4 as a starting point, arelevant part of the usual theory
can be extended to the invariant case. In principle, thisis possbly true.
However, moving from the exchangeable to the invariant case, the
problem becmes technicdly much more intricated. So, developing a
nonparametric theory for invariant data, analogous to the usual one for
exchangeale data, seems to be very hard. In particular, it looks hard
to get usable statisticd procedures. On the other hand, it would be
interesting to investigate which part, if any, of the usual Bayesian
nonparametric theory can be extended to invariant data.

In the sequel, as a significant example, we discuss the stationary
case. Let s: X — X~ Dbe the shift transformation:
s(xy, o, ...) = (22, 23,...). A pm. P on B(X*) is dationay if
(Z1,%s,...) and (%, Zs,...) have the same distribution under P, or
equivaently if P=Pos!. Clealy, P is dationary in case is
exchangeale, but the mnverse is not true. If P is dationary and
P(A) € {0,1} for eath Borel set A with A = s 4, then P is sid to
be ergodc. When P is gationary or ergodic, we will also say that Z is
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stationary or ergodic under P. Let C be the set of ergodic p.m.'s and
M, the set of al p.m.'s on B(X*); cf. Sedion 2. By relying on an
argument of Maitra (1977, we now prove that C' is a Borel subset of
M,.

Lemma 5
If X isa separable metric space then C' € B(M,).

Proof

Let: F=4{s}, Z the st of dationary p.m.'s
N={AeB(X>): P(A)=0 for al P e 1}, and
U={AeB(X>): P(AA(s7tA))=0foral P € 7}. By Lemma 4
of Maitra (1977, the o-field U is sufficient (in the dasscd sense) for
Z. Since B(X*) is countably generated, sufficiency of U/ implies
existence of a sufficient and countably generated o-field U4, such that
U cUCa(Uy UN); cf. Burkholder (1961 Theorem 1). Fix
countable filds H, and H such tha U, =o0(H,) and
B(X>) = 0o(H), and define

B={PeM,: P(A)=P(s'A)fordl A € H,
and P(A) € {0,1} forall A € Hy}.

Since Hy, and H are untable, B is Borel, and since
B(X>*)=0(H), onehas B C Z. Let P € B. Since P is degenerate
on the w-class Hy U N, then P is also degenerate on o(Hy U N).
Sinceld C o(Uy UN) =0a(Hy UN), it follows that P € C. Hence,
B c C,whileitisclea that B D> C.Tosumup, C = B € B(M,).O

Setting F = {s}, Theorem 4 applies to stationary p.m.'s, and the
set of extreme points of stationary p.m.'s coincides with C'. Hence,
eat stationary P admits the representation P(- ) = [Q( - )u(dQ) for
some unique p.m. p on B(C). Furthermore, just asin the exchangeable
case, v is the probability distribution of g, for some Borel function
g:X>* — C such that G(A) is a verson of P(Z € Alg) for all
A € B(X™).

54



To redize the program sketched above, i.e., to develop a Bayesian
nonparametric theory for stationary data, one has to assess priors on
C. Predsely, one should "propose’ some reasonable dassof priors u
on B(C), and cdculate the mrresponding posterior and predictive
distributions. Such priors $ould have large support, so as to dbtain a
red nonparametric theory. Further, they should cover a broad range of
potential beliefs, and the posterior and predictive distributions sould
be not too difficult to evaluate. Clealy, it is not easy to put together all
these requisites.

As a preliminary step, we investigate, for stationary data, the same
problem of Sedion 4, i.e., existence of underlying parametric models.

A different kind of empiricd measure is to be used. Given
k € NU {0}, define:

yj = (Ej,...,fﬂk) forj € N,
n—k

fn,k = ank 2316% forn > k.
]:

For fixed n, k and z € X, f,,x(x) isap.m. on B(X*'1). To obtain a
p.m. on B(X*), we fix any v € M, and we refer to f, , < ~y instead
of f.i. (For eah pm. a on B(X*t!), a x v denotes the p.m. on
B(X>) under which g, hes digtribution «, (Z;,2,%),3,...) has
distribution -y, and ¥, is independent of (%2, %13, ...)). Clealy, this
is only a rough device to transform f,, ,, into a p.m. on B(X*), and y
will not play any esentia role. Next, cal k, the integer part of n/2
and define

fn = fn,kn X .
Thus, ead f,, : X — M, isaBorel function, and it is a summary of

the data (7,,...,Z,). When P is dationary, we will use the f, as
empiricd measures. One reason is the following.
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Theorem 6
If X isa Polish spaceand P a stationary p.m. on B(X®°), then

fn=4q P-as
where" = " stands for weak convergenceof p.m.'s.

Proof

Conditionally on g, Z is ergodic with distribution §. Hence it is
enough to show that, if P is ergodic then f, = P, P-as.. Suppose
that P isergodic, and fix k € N. Let ¢, be the canonicd projedion of
X> onto X**1, Since the sequence of X**!-valued random variables
(@, :neN)=((Zn,...Tnyx) : n € N) is ergodic under P, one has
for = Po¢;! P-as asn — oo. Further, for al B € B(X*'!) and
n > 2k + 1, adired cdculation shows that

fao ¢t (B) = fo e (B X Xhn=ky = Fo—tnti o (B).

Thus, f, o ¢;! = Po¢;!, P-as asn — oo, and this concludes
the proof. O

Since f,, (and not ¢,,) is now used as empiricd measure, the notion
of statistic is to be dightly modified, too. Let

G={f.(z) v e X" neN}

be the union of the ranges of all the f,, and let M € B(M,) be such
that M5 D G. Inwhat follows, in line with the notion adopted so far, a
statistic is meant as the redtriction to G, |G, of any Borel function
t:M; —T.

At this dage, the agument proceals esentialy as in Sedions 3
and 4. The first part of Sedion 3 remains unaffeded, apart from
"exchangeable" is to be replaced by "stationary”, "i.i.d." by "ergodic”,
v by u, and p by g. In particular, given a stationary P and a Borel
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function 7 : M5 — T, where M3 € B(M,) and M; D G, condition
(a) smply becomes

(3) g€ M; and g(t(3)) =7, P-as, for some Bord function
g: T — M,.

A dight difference between (&) and (a), suggested by Theorem 2, is
that g is now asked to be aBord function, and not merely a B(T)-
measurable function. In any case, if (a)) holds then, conditionally on
t(3), T is ergodic with distribution §. So, under (&), the "original
random parameter” § cen be reduced through %, i.e., the random
parameter can be taken to be 6 = 7(g). Next, conditions (b) and (c)
turn into:

(bo) 1t isinjediveon B, for some B € B(Mj) suchthat u(B) = 1;
(co) Thereisaset A € B(X>™), P(A) = 1, suchthat

lim sup, dr (t o f,(x),t o fu(y)) >0

whenever x,y € A and

liminf, p(fu(), fa(y)) > 0;

where p is now Prohorov metric on M,. As in Sedion 4, condition
(cy) is perhaps more expressve if p is replacel by some other
equivalent metric, like the bounded Lipschitz metric on M.

Finally, the aguments for proving Theorems 2 and 3 c not
depend on exchangeaility of P, and can be repeded for a stationary
P. Infad, upto aproper choice of the enpiricad measure (and thus up
to Theorem 6), the results in this ®dion hold for any [F-invariant p.m.
P on B(X®), with F countable. We state the stationary versions of
Theorems 2 and 3 jointly, and we omit proofs.
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Theorem 7

Let X, T be Polish spaces, P a stationay p.m. on B(X*), and
t:M; —T a Bord function. Then, (a) is equivalent to (k).
Moreover, if t iscontinuows on M; andu(M;) = 1, then condtions

(&), (by) and(c,) are eguivalent.
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