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Summary: Let � � � � � � �~ ~  
� � �

be a sequence of random variables with values in
a Polish space . If  is exchangeable (stationary), then  is i.i.d. (ergodic)~ ~	 
 

conditionally on some random probabilit y measure  on  (  on ). In~ ~� � 
 � � � 
 �� � �
the exchangeable case, two necessary and suff icient conditions are given for  to be~�
i.i.d. conditionally on , where  is a given transformation. Essentiall y the same~ ~~� � � � �
conditions apply when  is stationary, apart from "i.i.d." is replaced by "ergodic"~�
and  by . The basic difference between the exchangeable and the stationary case~ ~� �
li es in the empirical measure to be used. Up to a proper choice of the latter, the two
conditions work in a large class of invariant distributions for . Finall y, the set of~�
ergodic probabilit y measures is shown to be a Borel set, and almost sure weak
convergence of a certain sequence of empirical measures is proved in the stationary
case.
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1. Introduction

Let � � � � � � �~ ~  
�  !

be a sequence of random variables with
values in a Polish space . Suppose  is exchangeable or, equivalently,~" ##~ is independent and identically distributed (i.i.d.) conditionally on
some random probabili ty measure  on the Borel -field on , .~$ % & % '( )
In Theorem (7.2) of Fortini, Ladelli and Regazzini (2000) referred to*
as FLR in the sequel conditions are given for  to be i.i.d.~* +
conditionally on , where  is a given transformation. In fact, the~ ~~, - . / ,
hypotheses of Theorem (7.2) concern sequences of predictive sufficient
statistics, and are conceived to have some statistical content within a
Bayesian predictive framework.

In so far as the  representation part is concerned i.e., findingsole 0
conditions under which  is i.i.d. given , where  is an assigned~ ~~ ~1 , - . / ,
transformation the hypotheses of Theorem (7.2) are sufficient but0
not necessary.

The aim of this paper is to take up again the representation part to
provide necessary and sufficient conditions. From a statistical point of
view, such conditions are useful for investigating existence of
underlying parametric models for the distribution of  .~1

In particular, two conditions are given. The first one (that will be
denoted as condition (b)) is of the abstract type. Nevertheless, by using
it, various other sufficient conditions are easily obtained, included the
one proposed in FLR. Moreover, it allows a shorter and more direct
proof of Theorem (7.2). The second condition (condition (c)) applies
to the special case where  is continuous (an assumption made also in~,
Theorem (7.2)). In this case, however, it has some statistical meaning.

The problem studied in this paper is different from the one tacled in
Olshen (1974). In the latter, among other things, an exchangeable
sequence  is shown to be i.i.d. conditionally on  real random~1 some
variable . Such result, clearly, is based on the Borel isomorphism

2
theorem. In our case, instead, we investigate whether  is i.i.d.~3
conditionally on , where  is a  transformation (possibly,~ ~~4 5 6 7 4

given
suggested by a sufficient statistic) and  is the almost sure weak limit~6
of the empirical measures.
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A further and minor goal of this paper is to start, in a particular
case, an analysis of Bayesian nonparametric problems for non
exchangeable data. Suppose  is stationary or, equivalently,  is~ ~8 8
ergodic conditionally on some random probabili ty measure  on~9: ; < =>

. Then, conditions (b) and (c) are still working, apart from
"i.i.d." is replaced by "ergodic" and  by . In this framework,~ ~? @
incidentally, the set of ergodic probabili ty measures is shown to be a
Borel set, and almost sure weak convergence of a certain sequence of
empirical measures is proved.

The basic difference between the exchangeable and the stationary
case lies in the empirical measure to be used. Up to a proper choice of
the latter, conditions (b) and (c) work for a large class of invariant
distributions for .~A

The paper is organized as follows. Section 2 is devoted to
preliminaries and notation, Section 3 includes the statement of
Theorem (7.2), while Sections 4 and 5 contain the main results, in the
exchangeable and stationary case, respectively.

2. Preliminaries and notation

The basic notation is that of FLR, with some slight adaptions in
view of the last Section 5.

Let  be any set. Then,  is the space of all sequences
B B CD E F D G D G H H H I J KL M  of elements of , and is the -th coordinate mapN~   O

on , that is,
P Q

N R N S T N~    O O for all  and .N T R N U N U V V V S W P X WL M Q Y
When  is a topological space,  denotes the Borel -field on ,

P R P S PZ [
and  is equipped with the product topology. By a , it is

P Q
Polish space

meant a topologically complete separable space. If  is Polish, then
PP R P S T R P SQ Q Q

 is Polish, too, and .
Z Z

Given a -field  on , let  be the set of probabili ty\ ] ]^ _ ` _ a b
measures (p.m.'s) on , and let  be the -field on 

c d d c ef g h i
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generated by the sets , for  and
j k l m n k o p q l r s p l tu v w x y z { | } ~ � w z } � w � z }� � � �

. Any measurable function , where� � �� �
 is any measurable space, is called a random p.m.. Thus, a

function  on  is a random p.m. whenever  is a p.m. on 
� � � � � � �� � � �

for , and  is -measurable for .
� � � � � �� � � � � � � � � �
We will consider a sequence of observable random elements taking

values in a Polish space . For our purposes, it is convenient to work
�

in the coordinate space  and to identify the sequence of� � � � � � �� ��
observables with  . Moreover, we let� � � � � � � � � � �~ ~ ~� �  ¡   � � ¢ � �   ¡   � � ¢ � �    � � � �£¤ ¤

 and , i.e.,  and  denote the
sets of p.m.'s on  and on , respectively. Both  and 

¤ ¤� ¢ � � ¢ �    £ � �
are equipped with the topology of weak convergence of p.m.'s. Since¢     �   � �   � is Polish,  and  are Polish, too, and  and � � � �¤ ¤
coincide with the -fields  and defined earlier.¥ ¦ ¤ ¦ ¤� � ¢ � � � � ¢ � �£

For every , the  associated to§ ¨ ©ª
 empirical measure «¬ ­ ® ¯ ¯ ¯ ® ­ °~ ~  ± « is defined as

² ³´ µ´ ¶ · ¸¹ º» ¼
~ ½

where  is the unit mass at  Clearly,  is a p.m. on  for
¾ ¿À Á .Â Ã Ä Å Æ Ä Ç ÆÅ È Ç Å É Ã Ä Å Æ Ä Ê Æ Ê È Ä Ç ÆË Ì

, and  is Borel measurable for , i.e.,
ÍÃ Ä Ç Î Ä Ç Æ Æ Ä Ï Î Ä Ï Æ ÆÌ ÐË Ë Ð

 is a random p.m. from  into .
Í Í

A p.m.  on  is if it is invariant under all
Ñ Ò Ó ÔÕ Ö

 exchangeable 
finite permutations of  , that is, if  for all functions

× Ø Ù Ø ÚÛ Ü ÝÞÞ ß à á àâ â
 of the form

Þ ã ä å æ æ æ å ä å ä å æ æ æ ç è ã ä å æ æ æ å ä å ä å æ æ æ çé ê ê ë é ì ì ê ë éí î
for some  and some permutation  of . Asï ð ñ ò ó ô ô ô ó ò õ ñ ö ó ô ô ô ó ï õ÷ ø ù

usual,  denotes the p.m. on  given by
ú û ñ ü õý þÿ ø �

ú û ñ � õ � ú ñ ñ � õ õ úý ýÿ ø ÿ ø
. When  is exchangeable, we will also say

that is exchangeable under� � ñ � ó � ó ô ô ô õ ú ô~ ~ ~   
ø �
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Given , let  denote the corresponding product p.m., i.e.,� � � �� 	� 
 � �	 	 is the p.m. on  which makes the coordinate random



variables i.i.d. according to� � � � � � � � �~ ~     � �
We are now in a position to state de Finetti's representation

theorem for (infinite) exchangeable sequences.

Theorem 1 (de Finett i' s representation theorem)
Let  be a  on  where  is Polish. Then, the following p.m.

� 
 � � �
 	
statements are equivalent:

(i)    is exchangeable;
�

(ii)  p.m.There is a unique   on  such that� � � � ��
� � � � � � � � � � � � � �  � ! �" # #$ %    ;for all

(iii ) p.m. There is a random  (i.e., a Borel  function )~ ~& & ' ( ) *# +
such that,

 for each ,  is a version of .~ ~ ~, - . / 0 1 . , 0 2 . 3 - , 4 1 05 6 6

Moreover, when  is exchangeable, one has   for~2 . 7 0 8 2 . 1 - 7 09
all  and

7 - . : 05 ;
< => ? @~   -a.s.,

where " " stands for weak convergence of .= p.m.'s

We close this section with the notion of statistic. By definition, a
statistic is a measurable function of the data. In our case, the data are
the -tuple for some Under the exchangeabili tyA B C D E E E D C F A E~ ~    G >
assumption, the order in which observations appear is not relevant, andB <C D E E E D C F~ ~   G > >can be summarized by the empirical measure .

Let

H I J K L M N O M P Q R S P TU V W
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be the union of the ranges of all the random p.m.'s , and let be aX Y Z [ \   
Borel subset of such that Further, let  be a Polish   . 

] ] ^ _` ` a b
space and a Borel function. Then, for each , is~c d ce f g b h ij k l   ~

Borel measurable on  and is a summary of the data .
m no l ~ ~p q r r r q p sj

Accordingly, in Sections 3 and 4 a statistic is meant as the restriction
to , of any Borel function where

t c c~ ~,  ,  
u t e f g b f v n f sj jk k jw

and .f x tj k
In last Section 5, a slightly different (but conceptually equivalent)

notion of statistic is used.

3. Statement of Theorem (7.2) of FLR

Let  be an exchangeable p.m. on  and let
y n m sw o

p z p e d v s~ ~   
n l { be the sequence of coordinate random variables onm |o

. According to Theorem 1, conditionally on some random p.m. ,~ p e f g b~ , ~is i.i.d. according to . Fix a Borel function where  is~| c bj k
Polish, and , and suppose that      f v n f s f x t f s z }j j jk k kjw ~ n
where  is as in Theorem 1.

~
Under these conditions one question is whether, conditionally on c | s |~ ~ 

n p~ ~, is again i.i.d. according to . Answering this question is useful,
for instance, for investigating existence of an underlying parametric
model for the distribution of . Suppose in fact that, conditionally on~pc | s | | c | s~ ~~ 

n p n~ ~ ~ ~, is i.i.d. according to . Then,  and  play essentially the
same role, and a random parameter can be defined as . In~� �~ ~

  ~� �� � �
other terms, the "original random parameter" , whose existence is~�
granted by de Finetti's theorem, can be reduced through . As far as 

� �~ ~

is concerned, in what follows it should be viewed as any given  
transformation. However, in a particular statistical problem, is

�~ 
typically suggested by some sufficient statistic.

In any case, a positive answer to the earlier question occurs in case

(a)  and , a.s.,
� � � � � � � � � � �~ ~ ~      -~� � � �

for some function  such that � � � � � � � � �� � �� � � �
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where is the completion of  with respect to the distribution
� �� � � �

 
� � �

of .
�~ ~� � �
Indeed, under (a), is i.i.d. (according to ) conditionally on .~� � � � �~ ~ ~�

In particular, one has

  � ¡ � ¢ £ � � � � ¡ � � ¤ � � ¡ ¥¦ § ¨
  for all © � � ª �� §

where  is the distribution of  and is the completion of .© © ©¨ ¨ ¨�~ ~     
� � � �

Theorem (7.2) of FLR, quoted in Section 1, just gives conditions
for (a). To state it, various definitions are needed.

First, let  be any p.m. on . For each ,
  � ª � « ¥� ¬§

  ­ � ® ¯ ° ± ² ³ ´ µ ¶ ® · ¸ ¸ ¸ · ® ¹~ ~ ~ predictive distributionº » ¼  is called the  (at
time ). A statistic is  if, for each  and  predictive sufficient  ~² ¶ ½¾ ² ´ ¿
À ´ Á Â Ã ³Ä

, one has

Å Æ Â ¾ Å Æ Â® ¯ ° ± ² ³ ´ À ¶ Ç È ¹ É ® ¯ ° ± ² ³ ´ À ¶ ® · ¸ ¸ ¸ · ® ¹ Å~ ~ ~ ~~    -º ¼ º » ¼ 
a.s..

So, the informal idea is that is predictive sufficient provided
¾~  

¶ ½
predictive distributions depend on data only through it. We send back 
to FLR for more on predictive sufficiency and for some references
therein.

Next, let  be a countable -class such that 
Ê Ë Ì ÊÍ Î Ï ÐÑ ÑÎ Ò Ï Î Ò Ï

and  for all , where  is the marginal of  on the
Ó Ô Õ Ö × Ø Ù Ö Ú Ó ÓÛ ÛÜ

first coordinate.
Further, for each , fix a function  on such that:Ý Þ ß àá â ã ä å  æ Þ ã ç è é åá  is a p.m. on for â ã ä å ç ê ß ,æ Þ ã é è ë åá  is measurable forâ âã ß å ë ê ã ä å-  ,æ ì ê ë è í î ê ï åð ñ ò ó ô òõ ö ÷ ø ù ú ö û ÷ ú ü ý ö ÷ò òþ ~ ~

for all and where  denotes the distribution   , 
ÿ � � � � � � � � �� � þ �

of .~� 	 
 �
Clearly, such  exists since  is Polish.

� ��
Finally, consider the following condition; cf. condition (7.1) of

FLR.
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(* )  There is a set satisfying:
� 
� � � � ��

 � � � � � � � � � � � � �
 ;~ � �

� � � � � �
 Each  is a convergent sequence;� �

� � � � � � � � �  �  
 For each ,  and , there is  such that� � ! " #

$ % & ' ( ) * + % & , ( ) * $ - ./ / / / 0    for all sufficiently large 

whenever  and
& ' * 1 2/ 3

4 & ' ( , * - .5 6 6 7    for all sufficiently large ,

8 95  being a metric for .

We are now able to state Theorem (7.2).

Theorem (7.2) of FLR
Let  be Polish spaces,  an exchangeable on

: ; 9 <
 p.m.  ,

= > : ?@
and  a Borel  function. If   is predictive sufficient,  is~ ~ ~ A B C D 9 A E F AG H
continuous on , , and condition is satisfied, thenC > C ? I JG GH HK   (* ) 
condition holds (a) .

Finally we note that, if is predictive sufficient,  is continuous~A A~  E F
on and , then condition (* ) is necessary in order that  C > C ? I JG GH HK
(a) holds for a ; cf. Theorem (7.4) of FLR. continuous L

4. The exchangeable case

In this section,  is an exchangeable p.m. on  and  and 
< > : ? M= K@ ~

are as in Theorem 1. For definiteness, setting

N O P Q R S T U V Q W X Y Z [\ ]
 converges weakly as ,

it is supposed that
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 ~̂ _ ` a b a c d` a b e weak     for all limf f

and for all , where  is any fixed element of .   ~g h i j kl h m n g go o p
Given any Borel function , with and

q~    r s t u s v w s xp py y pz
s { |p y

, let us consider the condition:

(b)    ~q } } v w s xis injective on , for some  such that .
z p y ~ w } x � �

Before any comments on (b), we prove that it amounts to (a).

Theorem 2
Let  be Polish spaces,  an exchangeable on

� � u �  p.m.  ,
z w � x�

and  a Borel  function. Then, conditions  and  are~  (a) (b)
q r s t up y

equivalent. Moreover, under  or , the function  involved in (a) (b) (a)�
can be taken Borel measurable.

Proof
(a) (b). Under (a), there is a set , , such� � v w � x � w � x � �  

z �
that and for all . Then,� w � x v s � � w � x � � w � x � v �~ ~ ~     ~p y � � q~ z ~� � � � � � � � � � � � � � � � � � � �

 whenever  and , i.e.,  has -~ ~�
outer measure Further,  is an analytic set. Hence, there is~ .  

� � � � �
� � � � � � � � � � � � �� ��  with and . Since  is injective on~� � � �~  � � � � � , condition (b) holds.

(b) (a). Since  is injective on , for each there is~� � � � �
   ~� � � �

precisely one  such that . Fix , and define~� � � � � � � � �� � ��   ¡¢£ ¤ ¥ ¦ § ¨ ¥ © ¥ £ ¤ ¥ ¦ § ¨ ¥ © ª « ¥¬ ­ for and  for . Then,~ ~,   ¤ ® ¦ ¤ ® ¦£ ¤ £ ¯ ª ° ±¥ ¤ ¨ ¦ ¦ § ¨ ¨ © ®~  .  for all Further,  is Borel measurable.²
In fact, , due to  is Borel and injective on and for the~¥ ¤ ª ¦ ¥~  , ¤ ® ¦ © ®³
same reason one has

´ µ ¶ · ¸ ¹ ¹ º ¹ µ » ·¼ ½ ¾~ ~ ~µ ¿ · À Á ¹ Â µ ¿ · Ã Â ¶ Ä À µ ¿ ¸ ¶ · Â Å
for all .¶ Â µ Æ ·Å ½
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Finally, let . Then,  and, for all
Ç È É Ê Ë Ç Ì È Ë Í Ì È Î~   Ï Ð Ë Í Ì Ñ

Ò Ó Ç É Ë Ò Ì Ó Ô Õ É Ë Ò Ì È É Ë Ò Ì
, one has and Hence, (a) holds  .  ~ ~ ~~Ð Ö × Õ Ø

for a Borel function .×  Ù
A first remark on Theorem 2, even if not essential, is that the

function  in condition (a) can always be taken Borel measurable.Ú
Apart from this fact, two other points need to be discussed. One is the
possible meaning of (b) and the other is that, taking (b) as a starting
point, various other sufficient conditions for (a) can be obtained.

4.1. Meaning of condition (b)

From a statistical point of view, to get condition (a) (which is our
goal, as explained in Section 3), it would be desirable to ask conditions
only on the way summarizes data. More precisely, it would be

Û~ 
desirable to ask conditions on , in particular on its connections with~Û Ü Ý
predictive distributions, but not on the behaviour of  on .

Û~  Þ ß Ýà á
Strictly speaking, this is not possible in general. Suppose in fact 

that , choose any Borel function  on , and take â ãä å æ ç è å é ê åë ì
to be any Borel set with . Then, apart from trivial cases, â ãä é æ ç íë ì
admits two Borel extensions to , say  and , such that (b) holds~ ~é î îë ì ë ï
for  and fails for . In view of Theorem 2, condition (a) holds for ~ ~ ~î î îë ï ë
but fails for , even if    .~ ~ ~î î ð å ç ç î ð åï ë ïã

In Theorem (7.2) of FLR, for instance, continuity of is asked on
î~ 

all . However, all other conditions of Theorem (7.2) concern ~ 
é î ð åë ì

only, and also the continuity assumption looks admissible. Indeed,
when is continuous on and admits a continuous extension to

î é~    
å ë ì

(e.g., when  is uniformly continuous on ), it is natural to take on~î å î~ é ë ì  as such continuous extension.
Generally, condition (b) deals with the behaviour of on ,

î~  
é ñ åë ì

and in this sense it does not have an intuitive statistical content.
Nevertheless, (b) is also necessary, and thus one can think in term of it
without any real loss of generality. In addition, (b) makes clear which
properties are requested to in order that  can be reduced through :~ ~î ò î~ 
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over a set  of -probabili ty ,  must be able to distinguish between~ó ô õö
two different weak limits of empirical measures.

4.2. Other sufficient conditions for (a)

By using Theorem 2, sufficient conditions for (a) can be obtained.
Moreover, it is possible to give a shorter (and more direct) proof of
Theorem (7.2). We begin with the latter point.

Proof of Theorem (7.2) of FLR
Since  is countable and  for all , there is

÷ ÷ø ù ú û ü ý þ û ÿ�� � � � � � � � � � � 	 � 
 � � � � � � 
 
 � �� � ���
 with  and  for all  and~� � � � � � � � � � � 	 � ��

. Moreover, , -a.s., where the  are as in~ ~� � �
condition (* ).

Let

� � � � � � � � � � � � � � � � � � � � � � � � � � 	 �� � � ��~ ~ ~ .

Since  is an analytic set and , there is  with~	 � � � � � � � � �  � � ! �� � " 	 � � � �  � � � # �  � ! �~  and . Let . By definition of ,$ � %
continuity of  and condition (* ), it follows that  whenever~ ~ ~& ' ( ) * + ' ( , *
) - , . / & 0 ' ( ) * + & 0 ' ( , * & 1

 and . Hence,  is injective on , and since~ ~ ~~ ~2 2( 1 * + ( * + 34 5 6
, condition (b) holds. By Theorem 2, this

concludes the proof. 7
Let us turn now to some other sufficient conditions for (a). If

assumptions on the behaviour of  on are allowed, then, by
&~   

4 8 95 6
Theorem 2, a plenty of conditions are available. Because of the
remarks in Subsection 4.1, however, we focus on conditions
concerning  only, apart from continuity of which is asked on all

& &~ ~ 
: 9

4 5 6
. Then, one possible candidate is:

(c) There is a set ,  such that
; . ( < * = ( ; * + 3 -> ?
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@ A B C D E F G H I J G K L M H I J G N L L O PQ R Q Q~ ~

whenever  and
K M N S T

@ A B A U V G J G K L M J G N L L O PQ Q QW

where  is a metric for  and  is Prohorov metric on 
X Y Z [\ ]W

We recall that Prohorov metric  on  is given by W Z ]
W ^ ^ _` a b c d e f g h i j k l a ` m d n c ` m d o m p ` q d rs

 for all 

where ,  being a metric for .
t u v w x y z w { t | } ~ y �s � ��

Theorem 3
Let  be Polish spaces,  an exchangeable on

� � � �
 p.m.  ,

� � � ��
and  a Borel  function. If  is continuous on  and~ ~   

� �� � � � �� �� �
� � � � � �� �

, then conditions  and  are equivalent.(a), (b) (c)

Proof
Let be continuous on with By Theorem 2, it is

�~    . � � � � � �� �� ��
enough to prove that (b) and (c) are equivalent.

(c) (b). Let  be defined as at the beginning of Section 4. Since� �
� � � � � � � � � � � �~  is analytic and has -outer measure , there is � � �
with  and . Then, (b) holds with~� � � � � � � � � � � � � �
� � � � � � �

. To see this, the only non trivial fact is injectivity of  on~�
� � � � � � �   � ¡ � ¢ £ ¤

. Fix  such that , and take  with¥ ¦ ¥ ¦ §¨ © ¨ ª « ¬ ­ © ® ¯ ° ª ± ª « ¬ ¯ ± ª « ¬ ¬ © ª ¨ ¯ ¨ ¬ ² ³´ ´ µ ¶ µ · ¶ ·µ~  for . Then, ,lim ¸ ¸
due to  and , and thus continuity of and condition« ¯ « ¹ º ¨ » ¨ ¼¶ · ¶ · ~ 
(c) yield

½ ª ¼ ª ¨ ¬ ¯ ¼ ª ¨ ¬ ¬ © ½ ª ¼ ¾ ± ª « ¬ ¯ ¼ ¾ ± ª « ¬ ¬ ² ³¿ ¶ · ¿ µ ¶ µ ·µ~ ~ ~ ~ .lim
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(b) (c). Define , note that , and fixÀ Á Â Ã Ä Å Æ Ç Á È Â É~  Ê Ë Ç Ì È
Í Î Ï Ð Á Ñ Ò Ó Ò Ô Õ Ç Ö Ç Í È Î Ö Ç Ï È È × Ø Å Ç Í È Î such that . Then, ~Ù Ù ÙÚ
Å Ç Ï È Ð Ì Í Î Ï Ð Ã~  and, since ,

Ú ÚÇ Å Ç Í È Î Å Ç Ï È È Â Ç Ö Ç Í È Î Ö Ç Ï È È × Ø~ ~ .limÙ Ù Ù

Thus, continuity and injectivity of  on  yield~Û Ì

limÙ Ü Ù Ù ÜÝ Ç Û Þ Ö Ç Í È Î Û Þ Ö Ç Ï È È Â Ý Ç Û Þ Å Ç Í È Î Û Þ Å Ç Ï È È × Ø~ ~ ~ ~~ ~ . ß

By Theorem 3, in the relevant case where  is continuous on~Û à Ë á
and , (c) is equivalent to (a). Moreover, in line with theâ Ç à È Â ÉË á
remarks in Subsection 4.1, condition (c) deals with  only. Hence,~Û ã ä
Theorem 3 is an improvement of Theorem (7.2).

Next, given a function  with  and  metric spacesÕ å æ ç æ æ æè è
(with distances  and ), let us call  "uniformly injective" in case: For

Ý Ý Õè
each  there is  such that  wheneveré ê êë ì ë ì í î ï î ð ñ ò ï î ó ñ ñ ôõ
ð ò ó ö ÷ í î ð ò ó ñ ô ø ù and . If  is uniformly injective on , then~ú
condition (c) trivially holds. Thus, by Theorem 3, it is enough for
condition (a) that  is uniformly injective on  and continuous on ,ø ù û~ ü ý
with .þ î û ñ ÿ �ü ý

We close this section by noting that condition (c) becomes more
meaningful if  is translated into a sort of distance� î � î � ñ ò � î � ñ ñ� �
between  and . To this end, it is convenient toî � ò � � � ò � ñ î � ò � � � ò � ñ� �� �
replace Prohorov distance with some other equivalent metric. Let  be

�
the set of real valued functions  on  such that, for all ,

	 
 � � 
 � 

� � � � � � � � � � � � � � � � � � � �� .

The so called bounded Lipschitz metric on  is defined as
� �

� � � � � �  ! " � � � � � � � � � �# $ % & $ ' ' ,
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and it can be shown to satisfy  (see, e.g., Huber, 1981,( () * +, - , .
Corollary 4.3, p. 33). Thus, by using  instead of , condition (c)

- * + (
can be equivalently written as:

(c) There is a set ,  such that
/ 0 1 2 3 4 1 / 3 5 6 78 9

: ; < = > ? - 1 @ A B 1 C 3 7 @ A B 1 D 3 3 E FG H G G~ ~

whenever  and
C 7 D 0 /

: ; < ; I J = > ? K J 1 C 3 L J 1 D 3 K E F MG N O + P PQ QG GP R Q P R Q
G GS S

5. The stationary case

This section includes versions of Theorems 2 and 3 and a
convergence result for the case where  is stationary. Some remarks

4
on Bayesian nonparametric inference for stationary data, or more
generally for data with invariant distribution, are also given. We begin
with a result asserting that, under general conditions, every invariant
p.m. is a unique integral mixture of extreme points.

Given a measurable space  and a class  of measurable
1 7 3T U V

functions , let  be the set of those p.m.'s  on 
W X Y Z [ \ Y Z [ ]^ _ ^ _ ` _

which are -invariant, i.e.,  for all . Further, let 
a ab c b d e e f g h ij k` ` `

 be the set of extreme points of , and let  be equipped with the
g h i

trace -field . According to Section 2, l ` m _ ` m _n g h i o p n o n g h i o p n o
is generated by the maps , from  into the

q r q n s o t s f g h i_ `
reals. We also recall that a p.m.  on  is  if, for each -

b _ _
perfect

measurable function , there is  such that
e u v w f n ox y z y{ | } ~ � � ~ } � { � � �x

 and . Next Theorem 4, due to Maitra (1977),
unifies results of Bogoliouboff, de Finetti, Farrel, Kryloff and
Varadarayan.
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Theorem 4 (Maitra)
Suppose  is countable,  is countably generated and includes

� �
the singletons, and every on  is perfect. Then, for each  p.m. 

� �� �
there is a unique   on  such thatp.m. � � � � � � � � �� � �� � � � � � � � � � � � � � �� � � � � �

 for all .
�

In our case,  where  is Polish, so that
� � � � �   � �   � �  ¡ � ¢£ £� � � � ¤ ¥ ¦¡ � §

 meets the conditions of Theorem 4 and the -field ¨ © � ¢ ¨ ª� « � � � ¤ ¥ ¦ �
 reduces to . If is the class of all finite 

permutations of , then  is the set of exchangeable p.m.'s and 
  ¤ ¥ ¦£ ¨¨ ¨

 the set of product p.m.'s, i.e., . Hence, the
¤ ¥ ¦ � ¬ ­ ® ­ ¯ ° ±£ ²

equivalence between (i) and (ii) in Theorem 1 follows from Theorem 4,
after noting that  and  are connected by the relation ,

� ³ � ³ ´� µ ¶ ²
where  for . In other terms, at least formally, de

´ � ­ � � ­ ­ ¯ °£ ²
Finetti's theorem can be embedded into a more general result on
invariant p.m.'s.

Since de Finetti's theorem is fundamental in Bayesian
nonparametric inference for exchangeable data, one could hope that,
taking Theorem 4 as a starting point, a relevant part of the usual theory
can be extended to the invariant case. In principle, this is possibly true.
However, moving from the exchangeable to the invariant case, the
problem becomes technically much more intricated. So, developing a
nonparametric theory for invariant data, analogous to the usual one for
exchangeable data, seems to be very hard. In particular, it looks hard
to get usable statistical procedures. On the other hand, it would be
interesting to investigate which part, if any, of the usual Bayesian
nonparametric theory can be extended to invariant data.

In the sequel, as a significant example, we discuss the stationary
case. Let  be the shift transformation:· ®   ¸  £ £
· � ¥ � ¥ � ¹ ¹ ¹ � � � ¥ � ¥ � ¹ ¹ ¹ � º �   �» ¼ ¼ ½ ¾. A p.m.  on  is  if

¿
stationaryÀ ÁÂ Ã Â Ã Ä Ä Ä Å À Â Ã Â Ã Ä Ä Ä Å~ ~ ~ ~   » ¼ ¼ ½and have the same distribution under , or

equivalently if . Clearly,  is stationary in case is
Á Æ Á Ç È ÁÉ »

exchangeable, but the converse is not true. If  is stationary and
ÁÁ À Ê Å Ë Ì Í Ã Î Ï Ê Ê Æ È Ê Á

 for each Borel set  with , then  is said toÉ »
be . When  is stationary or ergodic, we will also say that  is~ergodic

Á Â
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stationary or ergodic under . Let  be the set of ergodic p.m.'s and
Ð ÑÒ Ó Ô ÕÖ × the set of all p.m.'s on ; cf. Section 2. By relying on an

Ø
argument of Maitra (1977), we now prove that  is a Borel subset of

ÑÒ Ö .

Lemma 5
If  is a separable metric space, then

Ô
 .

Ñ Ù Ó Ò ÕØ Ö
Proof

Let: ,  the set of stationary p.m.'s,
Ú ÛÜ Ý Þ ßà á âã ä å æ ç è é ê ë ç å é ã ì ë æ íî

 for all , andï ð ñ òó ô õ ö ÷ ø ù ú û ÷ õ ÷ ü õ ù ù ó ý û ö þ ÿ� � �
 for all  By Lemma 4

of Maitra (1977), the -field  is sufficient (in the classical sense) for� ïò ð ï
. Since  is countably generated, sufficiency of  implies÷ ø ù�

existence of a sufficient and countably generated -field  such that� ï �ï ï � ï �� �� � � � 	 ; cf. Burkholder (1961, Theorem 1). Fix
countable fields  and  such that  and


 
 � � 

 
 
� � �� � 
� � � � � ��
, and define

� � � � � � � � � � � � � � � � � � �� � �  for all ,



and  for all .� � � � � � �  ! " � � "
 


Since  and  are countable,  is Borel, and since

 

 �

� � 
 #� � � � � � � $ � � � ��
, one has . Let . Since  is degenerate

on the -class , then  is also degenerate on .% 
 & � 
 &
 
' � � ' �
Since , it follows that . Hence,

� � � & � 
 &$ � ' � � � ' � � � (
 
� $ ( � ) ( ( � � � � � �, while it is clear that . To sum up, . 
� � *

Setting , Theorem 4 applies to stationary p.m.'s, and the
+ � � � "

set of extreme points of stationary p.m.'s coincides with . Hence,(
each stationary  admits the representation  for� � � , � � - � , � � . - �/ 0
some unique p.m.  on . Furthermore, just as in the exchangeable

0 � � ( �
case,  is the probabili ty distribution of , for some Borel function~0 1
1 � � 2 ( 1 � � � � � 3 � � 4 1 �~ ~ ~ ~ such that  is a version of  for all

�
� � � � �� �

.
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To realize the program sketched above, i.e., to develop a Bayesian
nonparametric theory for stationary data, one has to assess priors on5

. Precisely, one should "propose" some reasonable class of priors 6
on , and calculate the corresponding posterior and predictive

7 8 5 9
distributions. Such priors should have large support, so as to obtain a
real nonparametric theory. Further, they should cover a broad range of
potential beliefs, and the posterior and predictive distributions should
be not too difficult to evaluate. Clearly, it is not easy to put together all
these requisites.

As a preliminary step, we investigate, for stationary data, the same
problem of Section 4, i.e., existence of underlying parametric models.

A different kind of empirical measure is to be used. Given: ; < = > ?@
, define:

 , , for ,A B B B C~ ~ ~    D D D E FG H C I J ; @

K G L M :N O P QN R P S T
Q

N R PU V W
~X     for .

For fixed ,  and , is a p.m. on . To obtain aY Z [ \ ] ^ _ [ ` _ ] `a b c de f b    
g

p.m. on , we fix any  and we refer to  instead 
g _ ] ^ ha e f b` \ ij jk

of . (For each p.m.  on ,  denotes the p.m. on
l m n o pq r s s t uv v wx

 x y z { | { | } } } ~� � � � � � � �~ � y
 under which has distribution , has~ ~ ~  v

distribution , and is independent of ). Clearly, thisw � y~ ~ ~  
� � � � � � �{ | { | } } } ~

is only a rough device to transform into a p.m. on , and 
� y z� � � �

  
x ~ w

will not play any essential role. Next, call  the integer part of 
� � � ��

and define

� �� � �� � � � � .

Thus, each  is a Borel function, and it is a summary of
� � � � �� ��

the data , , . When  is stationary, we will use the  as
� � �~ ~  � �� � � �   � �

empirical measures. One reason is the following.
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Theorem 6
If  is a Polish space and  a stationary on then  p.m.  , 

¡ ¢ £ ¤ ¡ ¥¦
§ ¨ © ¢ª ~   -a.s.

where " " stands for weak convergence of 
¨

p.m.'s.

Proof
Conditionally on ,  is ergodic with distribution . Hence, it is~ ~ ~© « ©

enough to show that, if  is ergodic then , -a.s.. Suppose
¢ § ¨ ¢ ¢ª

that  is ergodic, and fix . Let  be the canonical projection of
¢ ¬ ­ ® ¯ °

¡ ¡ ¡¦ ° ± ² ° ± ²
 onto . Since the sequence of -valued random variables¤ ³ ´ ´ ´ « ¢~ ~ ~  ª ª ª ± °µ ¶ ­ ¥ · ¤ ¤ « ¥ µ ¶ ­ ¥® ®

, , is ergodic under , one has§ ¨ ¢ ¸ª ¹ ° ¯ £° º ² ° ± ²
 -a.s. as . Further, for all  and

¢ ¶ » ¼ ½ ­ ¤ ¡ ¥
¶ ¾ ¿ ¬ À Á

, a direct calculation shows that

§ ¤ ½ ¥ª ° º ²¸ · § ¤ ½ Â ¡ ¥ · § ¤ ½ ¥¯ ª ¹ ° ª º ° ± ° ¹ °° º °
Ã ÃÃ .

Thus, , -a.s. as , and this concludes
§ ¢ ¶ » ¼ª ° °º ² º ²¸ ¨ ¢ ¸¯ ¯

the proof. Ä
Since  (and not ) is now used as empirical measure, the notion

§ Åª ª
of statistic is to be slightly modified, too. Let

Æ Ç È É Ê Ë Ì Í Ë Î Ï Ð Ñ Î ÒÓ Ô Õ
be the union of the ranges of all the , and let be such

É Ó Ö Î Ê Ö Ì× Ø ×Ù
  

that . In what follows, in line with the notion adopted so far, a Ö Ú Æ× Ø
statistic is meant as the restriction to , of any Borel function

Æ Û~ , 
Ü Æ

Û~ Í Ö Ý Þ× Ø .
At this stage, the argument proceeds essentially as in Sections 3

and 4. The first part of Section 3 remains unaffected, apart from
"exchangeable" is to be replaced by "stationary", "i.i.d." by "ergodic",ß à by , and  by . In particular, given a stationary  and a Borel~ ~á â ã



57

function where  and , condition , ~ä å æ ç å èé å ê ë å ì íî îï ïî ï îð
(a) simply becomes

(a )ñ  and , a.s., for some Borel functionò ó ô~ ~ ~   -~õ ö ÷ ô ò ø ø ù ò úû üó ý þ ÿ ö û .

A slight difference between (a ) and (a), suggested by Theorem 2, is�
that  is now asked to be a Borel function, and not merely a -ó �� ô þ ø
measurable function. In any case, if (a ) holds then, conditionally on�÷ ô ò ø �~ ~ ~ ~ , is ergodic with distribution . So, under (a ), the "originalò �
random parameter"  can be reduced through  i.e., the random~ò ÷~,
parameter can be taken to be . Next, conditions (b) and (c)

~ ~ ~ � ù ÷ ô ò ø
turn into:

(b )ñ     ~÷ � � õ ô ö øis injective on , for some  such that ;� �û ü ô � ø ù �

(c )ñ  There is a set ,  such that
� õ ô 	 ø ú ô � ø ù � 
� �

� 
 � � � � � ô ÷ � � ô � ø 
 ÷ � � ô � ø ø � �� � � �~ ~

whenever  and� 
 � õ �
� 
 � 
 � � ô � ô � ø 
 � ô � ø ø � �� � �� ;

where  is now Prohorov metric on  As in Section 4, condition� ö �û
(c ) is perhaps more expressive if  is replaced by some other� �
equivalent metric, like the bounded Lipschitz metric on .ö û

Finally, the arguments for proving Theorems 2 and 3 do not
depend on exchangeabili ty of , and can be repeated for a stationaryú
ú . In fact, up to a proper choice of the empirical measure (and thus up
to Theorem 6), the results in this section hold for any -invariant p.m.

�
ú ô 	 ø on , with  countable. We state the stationary versions of� ��
Theorems 2 and 3 jointly, and we omit proofs.
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Theorem 7
Let  be Polish spaces,  a stationary on and

� �  !
 p.m.  , 

" # � $%
&~  a Borel  function. Then, is equivalent to' ( )  * +   (a )  (b )., ,
Moreover, if   is continuous on  and , then conditions~ 

& ( # ( $ - .* *+ +/
(a ), (b ) (c ), , , and  are equivalent.
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