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Summary: People using economic time series would like them to be available as soon as
possible after the end of the reference period. However there can be difficulties in getting
all the responses required to produce a series of acceptable quality in a timely manner.
The earlier the time series is released the more likely there will be tardy respondents,
thus the series will have to be estimated without their responses. As the quarterly gross
domestic product (QGDP) is the aggregation of a large number of economic time series
the difficulties are compounded.

An adequate preliminary estimate of QGDP may be made by using models parsi-
monious in the number of time series involved. Graphical models assist us in obtaining
such parsimonious models by identifying the relevant components in a saturated struc-
tural VAR enabling us to eliminate unnecessary delays. Even if an earlier release is
not possible we could target work to improve the timeliness of series identified in the
parsimonious models.
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1. Introduction

A National Statistical Office (NSO) produces a large number of time
series which are updated on regular basis. Some are estimates from sur-
veys run by the NSO, some from data collected by another organization



for their administrative purposes (e.g. customs records), and others are
combinations of a range of time series (e.g. Consumer Price Index (CPI),
Quarterly Gross Domestic Product (QGDP)).

It is required to produce these statistical outputs to published quality
standards and in a timely manner. To some extent these criteria are related
so that care must be taken that improving one aspect of the data (e.g.
timeliness) does not impact on another (e.g. quality).

One key technical advance would be the ability to easily identify sig-
nificant relationships between time series. Each time series has particular
issues. A knowledge of the relation between different time series would
assist NSOs in assessing the benefits of changes in the way particular time
series are compiled, particularly for those outputs, such as QGDP, that are
combinations of a range of time series.

We have been investigating the feasibility of using graphical mod-
elling to identify and model the relationships between time series, partic-
ularly to identify where improvements in timeliness could be made with-
out materially affecting quality, or increasing cost.

2. Components of time series

As outlined above, the main concern of NSOs is to release data that
reflect the social or economic concept that they are meant to represent,
within the budget allocated for this work and, crucially, with little or no
revisions after release. Much of the reporting on NSO outputs focusses
on the movement represented by the new data point, that is the first dif-
ference, rather than its absolute value.

For any series that is seasonal a large part of any first difference is
caused by movements in the seasonal component. Hence the desire for
NSOs to seasonally adjust where appropriate. For this reason most sta-
tistical agencies provide the measured figure, along with the seasonally
adjusted value (where appropriate) and, increasingly, the trend estimates,
and direct users to the latter series rather than the unadjusted figures.

To provide seasonally adjusted and trend estimates Statistics New
Zealand currently uses Census Method II Variant X-12, commonly called



X-12 (Findley et al., 1998). For seasonally adjusted or non-seasonal se-
ries, work done by Statistics New Zealand (Kazakova, 2001) shows that
movements over short time spans will be dominated by the movement
in the irregular component. As one of the key conditions for seasonal
adjustment is that the seasonal pattern is stable we assume the seasonal
factors are not changing significantly over a short time span. What is of
interest to many uses are turning points in the trend estimate. It is well
known that estimating trend components at the end of a series is difficult,
with identification of turning points being particularly problematic. Of-
ten evidence of a turning point will appear first in atypical behavior of
the irregular component. Therefore it is important that the estimate of the
irregular component is not substantially revised. Consequently estimat-
ing the next value for all the components bar the irregular should be done
well. Therefore any attempt to find a more parsimonious model for any
time series should ensure that the irregular component is consistent with
that from the more complex model. For this reason we have focussed our
attention on estimation of the irregular component. A byproduct of inves-
tigating the irregular component is that it is stationary.

3. Models for multivariate time series

The relation among several autoregressions can be modelled with the
vector autoregression of orderk, VAR(k)

xt = c + Φ1xt−1 + Φ2xt−2 + . . . + Φkxt−k + et, (1)

wherext, xt−1, . . . , xt−k are n-dimensional vectors, with the correspond-
ing coefficient vectorsΦ1, Φ2, . . . , Φk, c is the constant andet is the er-
ror vector (which is assumed iid). If the covariance matrix,H, of et is
not diagonal, the set of linear equations (1) corresponds to a system of
seemingly unrelated regressions (Zellner, 1962) and inH are hidden the
relations among the components ofxt. To highlight such relations we
can represent the canonical VAR(k) in (1) in its structural form (SVAR)
(Bernanke, 1986; Blanchard and Watson, 1986; Sims, 1986):

Θ0xt = d + Θ1xt−1 + Θ2xt−2 + . . . + Θkxt−k + ut (2)



whereΘi = Θ0Φi for i = 1, . . . , k, d = Θ0c and ut = Θ0et with
covariance matrixΘ0HΘ′

0 = D, which is diagonal.
If there are no zeros in the coefficient vectors the SVAR is saturated,

but in many cases some lagged variables on the right hand side in (2)
do not play any role in explaining the current variables,xt. In this case
the value of the corresponding coefficient is zero and hence the SVAR is
sparse.

The order,p, of the regression may be determined by various methods
including inspection of a multivariate partial autocorrelation sequence,
see (Reinsel, 1993, pp 69-70), or minimization of an order selection cri-
terion such as AIC (Akaike, 1973), HIC (Hannan and Quinn, 1979), SIC
(Schwarz, 1978), corrected AIC (Hurvitch and Tsai, 1989). The latter is
particularly advisable given its small sample properties and it is the one
we use in this paper.

We require a further condition onΘ0, that it represents a recursive
dependence of each component ofxt on other contemporaneous compo-
nents. This is equivalent to the existence of a re-ordering of the elements
of xt such thatΘ0 is triangular with unit diagonal. Each possible ordering
of xt therefore gives a potentially distinct form of (2), but these are all
statistically equivalent, corresponding to different factorizations of

D = Θ0HΘ′
0. (3)

This inverse problem contrasts with the unique form of (1), which is an
attractive feature of that model from a time-series modelling viewpoint.
The value of (2) therefore lies in the possibility that there is one particu-
lar form which, as a consequence of its representing the data generating
process, is more parsimonious in its parameterization than either (1) or
the other forms of (2). This would be reflected in the ability to exclude
many of the elements ofΘ0 andΘi from the model without penalizing the
adequacy in comparison with the saturated or other forms of either (1) or
(2).



4. Conditional independence graphs

Neglecting, for the present treatment, any effects of time series model
estimation, we suppose that we have observations on the vector Gaussian
white noise innovations processet with the usual sample covariance ma-
trix Ĥ. We wish to determinefrom the datathe form of possible sparse
structural matricesΘ0 which are compatible withD. There may be no
such unique form without imposing further constraints using insight from
the modelling context.

Tunnicliffe Wilson (1992) and Swanson and Granger (1997) consider
a similar problem. The latter authors focus more on testing for the con-
straints implied by a particular structural form ofΦ0 which has commonly
occurred in practice. Their tests are expressed in terms of partial autocor-
relations which, as they remark, are not directional and would therefore
appear less appropriate for recursive models.

We follow the approach proposed by Reale and Tunnicliffe Wilson
(2001) and use pair-wise partial autocorrelations, conditioning on all re-
maining variables (i.e. components ofet). With respect to backward
stepwise regression this approach has the advantage of leaving the condi-
tioning set unchanged. Nevertheless there is a problem of multiple testing
to deal with and later we’ll describe a strategy to tackle this issue.

The partial correlations, given the Gaussianity, are used to construct
the conditional independence graph (CIG) of the variables, following pro-
cedures presented, for example, in Whittaker (1990). As Swanson and
Granger (1997, p. 359) also remark, the structural form of dependence
between the variables is naturally expressed by (and is equivalent to) a
directed acyclic graph (DAG), in which nodes representing variables are
linked with arrows indicating the direction of any dependence. A DAG
implies a single CIG for the variables, but the possible DAGs which might
explain a particular CIG may be several or none. The point is that, subject
to sampling variability, the CIG is a constructible quantity and a useful
one for expressing the data determined constraints on permissible DAG
interpretations.

The CIG consists of nodes representing the variables, two nodes being
withouta link if and only if they are independent conditional uponall the



remaining variables. In a Gaussian context this conditional independence
is indicated by a zero partial autocorrelation:

ρ (eit, ejt|{ekt, k 6= i, j}) = 0. (4)

In the linear least squares context the linear partial autocorrelations
in (4) still usefully indicate lack of linear predictability of one variable
by another given the inclusion of all remaining variables. The link with
Granger causality is quite evident. The set of all such partial correlations
required to construct the CIG is conveniently calculated by making use of
the inverse variance lemma(Whittaker, 1990) as

ρ (eit, ejt|{ekt, k 6= i, j}) = −Wij/
√

(WiiWjj) (5)

whereW = H−1. The sample values are obtained by substituting the
sample valuêH for H.

We then test their significance using thresholds obtained by exploit-
ing the relationship between a regressiont value and the sample partial
correlationρ̂ given by

ρ̂ = t/
√

(t2 + ν) (6)

(see Greene, 1993, p. 180), whereν is the residual degrees of freedom in
the regression of one of the variables in the partial autocorrelation, upon
all the other variables. Thet value is that attached, in this regression,
to the other variable in the partial autocorrelation. This is a relationship
deriving from the linear algebra of least squares, and is not reliant upon
statistical assumptions. Standard assumptions are needed to support the
usual distribution oft under the null hypothesis that the true value of the
relevant variable is zero, which is equivalent toρ = 0. There are of course
statistical pitfalls in applying the test simultaneously to all sample partial
autocorrelations.

Our approach is to use these values to suggest possible models, and
after fitting these, we apply more formal tests and diagnostic checks to
converge on an acceptable model.



5. From conditional independence graphs to directed acyclic graphs

Central to the interpretation of a CIG is the separation theorem. The
CIG is constructed by pairwise separation of variables which are inde-
pendent conditional on the remainder. The separation theorem states that
if two blocksof variables are separated, that is there is no link between
any member of the first block and any member of the second, then the
two blocks are completely independent conditional on the remaining vari-
ables. See, for example, Whittaker (1990, pp. 64-67) for a general proof
and references to more straightforward proofs in the Gaussian case, where
the result can be read directly from the joint density.

To illustrate the theorem, let us consider the conditional independence
graph in Figure , whereA, B andC are either random variables or groups
of random variables. The graph implies thatA⊥⊥C|B or alternatively that
A|B, C = A|B. While the CIG leaves room for several possible alterna-

A B C

Figure 1: Markov property for conditional independence graphs.

tive factorizations of the joint density function, the DAG provides a more
precise definition. As an example let us consider the DAG in Figure ; it is
very similar to the CIG in Figure where the lines, also callededges, are
replaced by arrows. Nevertheless the definition in terms of density is now
very precise,f(A,B, C) = f(A|B)f(B|C)f(A). Using the graphical
modelling terminology we would say, in this case, thatB is aparentof A
andC is a parent ofB. Although the DAG and the CIG represent a differ-

A B C

Figure 2: Density factorization implied by a DAG.

ent definition of the joint probability, there is a correspondence between



these two graphs which is embodied by themoralizationrule (Lauritzen
and Spiegelhalter 1988). Because of this result we can obtain the CIG
from the DAG by transforming the arrows into lines and linking unlinked
parents. These kinds of edges are defined asmoral.

To better explain moralization let us consider a simplified example:
obtaining the New Zealand residency. You can become NZ resident (C)
for two reasons: general skills (A) or business reasons (B), which basi-
cally means having money to invest in New Zealand. We can effectively
represent this system with the graph on the left hand side of Figure where
bothA andB affectC: A andB are parents ofC. Assuming no relation-
ship between being rich and being skilful (many real cases would support
this assumption) there is no link betweenA andB. The DAG clearly pro-
vides a precise description of the pairwise independence relations. The
CIG on the other hand provides a description of more global indepen-
dence relations, considering the effect of all the variables present in the
graph. If the joint distribution of the variables in the graph is not Gaus-
sian, relations should be interpreted in terms of partial correlation. In our
example although we assumed no direct dependence between money and
skills, the joint consideration of the third variable, the obtainment of the
New Zealand residency, would change the situation. In fact, information,
for a certain applicant, about the level of skills and the outcome of the
application can be revealing about the business capability. The resulting
CIG is shown on the right hand side of Figure .

A A

B B

C C

Figure 3: Moralization of a directed acyclic graph.

Moralization brings us to the next step which is to determine what
DAG structures can explain a CIG. This is part of a much wider prob-



lem of the search for causal structure, covered for example by Spirtes,
Glymour and Scheines (2000).

The DAG is very attractive because of its causal interpretation (Pearl
2000), but all we can observe in practice is the CIG obtained by the sam-
ple partial correlation. So actually we need to perform the inverse oper-
ation of the moralization, which we termdemoralization. Unfortunately
while the transformation of a DAG into a CIG is unique, there are several
DAG’s which can give the same CIG. As an example, consider the CIG
on the right end side in Figure : it could result from the moralization of all
the DAG’s in Figure . So we need to identify the moral links and remove

Figure 4: Possible directed acyclic graph.

them. To do that we need to use all the knowledge we have about the
relationships among the random variables in the system. As we shall see
in the application in the next section, the search for the DAG is simplified
when we are in a structural VAR framework.

6. A graphical model for the quarterly gross national expenditure in
New Zealand

The quarterly general domestic product is one of the most relevant
time series for economic and social analyses and there is more and more
pressure to release early reliable estimates for this aggregate. In our anal-
ysis we consider a subcomponent of QGDP but the same methodology



could be extended to all the subcomponents and eventually we could pos-
sibly consider the main time series for each subcomponent jointly.

We have QGDP on an expenditure basis (QGDE) from the June quar-
ter of 1988 to the December quarter of 2002, a series of 65 values. As
QGDE is quarterly gross national expenditure (QGNE) plus exports mi-
nus imports we have investigated the relationship between the top level
components of QGNE only for our preliminary investigations.

The quarterly general national expenditure is equal to the sum of pri-
vate final consumption expenditure (PFCE), government final consump-
tion expenditure (GFCE), gross fixed capital formation (GFKF) and stock
changes (STOCK). That is

QGNE = PFCE + GFCE + GFKF + STOCK (7)

Note that STOCK can have negative and positive values.
We only model the irregular components produced by Statistics New

Zealand’s seasonal adjustment procedure. In order to provide earlier reli-
able estimates of the QGNE, our strategy is to focus on the most volatile
component and rely on the stability of the others. The irregular compo-
nents of PFCE, GFCE, GFKF and STOCK are plotted in Figures and
.
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Figure 5: Irregular components of PFCE and GFCE.

These time series are stationary by definition as confirmed by inspec-
tion. Nevertheless the methodology we are going to use can be applied to
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Figure 6: Irregular components of GFKF and STOCK.

systems integrated of the first order without any concern for cointegration
as proved by Tunnicliffe Wilson and Reale (2002).

Using the corrected AIC we identified a vector autoregression of order
4. We then proceeded with the methodology explained above to obtain the
conditional independence graph in figure . We first calculated the sample
partial correlation by using the inverse variance lemma (5) and then tested
their significance by using (6).

In using this testing procedure we have to deal with the issue of mul-
tiple testing. A strategy to try to minimize type I and type II errors would
be to use different levels of significance of partial correlations. This infor-
mation combined with cross-correlations of residuals, prior information
and moralization consistency will assist in selecting a specific DAG.

Looking at the independence graph (Figure ) one of the advantages of
graphical modelling is immediately obvious. It is considerably easier to
see the intricacies of the relationship between different series at differing
orders of lag.

Note that in the CIG we represent only the relations with current vari-
ables, excluding the relations between past variables. This is because it
is the current relations we are interested in. Nevertheless relationships
between past variables can sometimes be of help; their use and sampling
properties have been studied by Reale and Tunnicliffe Wilson (2002).

From Figure general higher level patterns can be clearly identified.
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Figure 7: Conditional independence graph.

It can be seen that there is a web of relationships between GFCE and
GFKF at various lags, most at 0.99 significance. There are only two links
connecting this group. Both are to PFCE, one from current GFKF and
the other from lag 4 GFCE. It can also be seen that PFCE is linked to
STOCKS. While this CIG is useful, for official statistics purposes we
need also some indication of a causal structure.

In order to identify a causal structure among the irregulars we need
to identify the DAG and hence the direction of the edges among con-
temporaneous variables, the direction of the other edges being obvious
given the time framework. Therefore we need to determine the causal
structure for the contemporaneous relationship between STOCKS, PFCE
and GFKF. Using moralization there are three possible directed structures
among contemporaneous variables. They are presented in figure .

Because of the knowledge we have of the system we can exclude
structureB. We then proceed with subset selection and use information
criteria, in particular the one proposed by Schwarz (1978), to select the
best models for contemporaneous structuresA andC (figures and ). Ac-
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Figure 8: Possible structures among contemporaneous variables.

cording to both the Schwarz and Hannan and Quinn criteria the model in
figure provides a better representation of the data.

The following table provides the number of parameters, deviance,
AIC, HIC and SIC for the saturated model, best model and alternative
model.

Model k DEV AIC HIC SIC
Saturated 70 416.47 556.47 612.65 700.70
Best 14 541.36 569.36 580.59 598.20
Alternative 20 555.12 595.12 611.17 636.33

At this point we now have a model that may be useful for official sta-
tistical purposes. We see that GFKF and GFCE are linked to past values
of both, so both would be required for total QGNE. Current STOCKS and
GFKF are related to current PFCE, which is an AR(1) process. So there
is some evidence that a good current value for PFCE is not necessary to
produce current QGNE, but rather its information is already contained in
the other variables in the graph. We would still need to eventually have a
good value for PFCE in order to use it in the PFCE AR(1) model for the
next quarter’s estimate of QGNE.
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Figure 9: Best model.

However any decision as to when to release QGNE would require fur-
ther investigation of the subcomponents of the series that we have used,
plus using information on the time the various series are available for use.
Also we would need to analyse the early estimates from any proposed
model with the final estimates as given by Statistics NZ.

7. Conclusions

Graphical modelling has been developed to help draw population in-
ferences. While NSOs produce models as part of their outputs the primary
task of an NSO is to produce a broad range of timely quality data for use
by society. To this end it would be useful to identify the relationships
between time series to select those that are crucial to the release of an
acceptable first estimate. These crucial series could merit work to im-
prove their timeliness, whereas less important series could be either not
collected or have less resources applied to their collection.

Our preliminary work shows graphical modelling has potential, but
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Figure 10: Alternative model.

as a NSO often approaches time series analysis with different purposes
than straight prediction more work will be required to identify under what
conditions and in what areas it will be most useful.

An extension of this approach for instance could be devised by includ-
ing all the components of the time series. Graphical modelling could also
be succesfully applied in reducing the number of time series collected by
eliminating time series giving information already given by others.

The large quantity of data available to a NSO offers applications to
data mining, a field where graphical modelling is successful (Borgelt and
Kruse, 2002).
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