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Summary In this note, we study the first four moments of the MUB randeariable,
that is a mixture of two discrete random variables, receimtisoduced for the fitting
of ranks data models. After a brief review of the location &adability indexes, the
paper derives and discusses the asymmetry and the kurteasunes, investigating the
shape properties of this distribution on the admissibleupatric space. Finally, the
usefulness of the parameters moment estimators is showdén  get starting values
for the maximum likelihood estimation procedure.
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1. Introduction

In a series of recent works, it has been established thelnssfuof a
mixture distribution for the modelling of ranks. This apaob helps in the
analysis and the interpretation of statistical data agisiom preferences
or evaluation contexts.

In this area, a stochastic model can be generated by thexcooni-
nation of the probability distributions of a discrete Umifoand a shifted
Binomial random variables, both defined on the supgare, ... m}.
This model has been called MUB distribution. It allows maistributio-
nal shapes depending on the parameter values; thus, it selavant to
study their interpretative content via the first four monsestaluations.
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From inferential and computational point of views, maximlike-
lihood (ML) parameters estimation is obtained in an efficieay via
the E-M algorithm, as proposed by D’Elia (2003) and Piccd603).
However, the convergence of the algorithms involved in tHé Estima-
tion towards the final estimates may be significantly acester starting
from some preliminary consistent valded hus, the introduction of the
moments estimates is a significant issue for this aim.

All these considerations support the opportunity to deeenin-
terpretation of the parameters, their relationships withmoments and
their role in the specification of the structure and the shafghe MUB
distribution.

The paper is organized as follows. In the next section, wediice
the main probabilistic structure for the MUB random vareabhd discuss
some fundamental issues about the meaning of the paramehsliessec-
tion 3 is devoted to notations and some algebraic resultsn;Tih section
4 we discuss the expectation and the variance of such moaklnasec-
tion 5 we derive an asymmetry measure; some relationshipst alvese
moments are also presented. In section 6, a formula for thedis is
obtained and the results are commented with regard to theesbfathe
distribution. Then, in section 7 consistent parameteisasbrs are deri-
ved from the first two sample moments; their usefulness #éslinalues
is discussed with the empirical support of several moddimaged from
a real data set. Some concluding remarks end the paper.

2. The MUB random variable

We suppose that a set of objects (or a set ofz ordered evaluation
degrees) has been defined, and the rank assigned by a single rater to
a given item. Thus, our analysis concerns just the preferémweards a
single object (or the evaluation of a single item). Alsootighout the

1The E-M algorithm has the drawback of a lengthy convergeocthé ML ma-
ximum. Thus, many solutions have been proposed in the titexdor accelerating
this convergence: McLachlan and Krishnan (1997), pp.181L-McLachlan and Peel
(2000), pp.70-73.
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paper, we assume that= 1 means “most preferred” while = m means
“least preferred”. Since the number of objects (or the gsaléhe evalua-
tion process) to be ranked is generally known in advancks, a prefixed
number.

Then, D’Elia and Piccolo (2003) defined a MUB random variaiid
denoted itbyR ~ MUB (m,w,¢§) if:

m— 1 1 e 1
PT(R—T)—?T(T_1>(1 ) T EMTT+(1 W)m,r—l,Q,...,m.
Thus, the generating process is determined by the tfipler, &),
wherem > 3 is a positive integérand the parametric space of, ¢)

is[0,1] x [0, 1].

Many interpretations can be derived from the elicitatiorchaism
that drives the raters’ choice; for instance, it is immeslittt convince
oneself thatr is a measure that is inversely related to the uncertainty of
the choice, whilef is positively related to the degree of liking expres-
sed by the raters towards the prefixed object. We noterthat 0 sup-
ports a shifted Binomial distribution while — 1 supports amdifference
preferencechoice since any rank value included{ih, 2, ... m} may be
chosen with the same probability.

In some circumstances, it may be convenient to express #wopis
formula of the probability distribution in the following mae#:

—1
Pr (R =r) = (unc) + (imp) (T_ 1) (dis)", r=1,...,m;
where:
T = e s = 128
une=—_=; imp = g " dis = ——

In fact, the parameternc is a measure of thencertainty sharehat
drives the choice, the parametenp is animpact coefficienthat raises

2The requirementn > 3 is a formal one; indeed, we need 2 degrees of freedom for
the parameters and one more for satisfying the unit sum giribigabilities.

3Although this parametrization has been found useful in soomaparative studies,
it is not a one-to-one transformation, since the new quastére obviously related each
other.
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the values of the probability distribution, and the paraméis is a sort of
disliking odd measursince it is defined as the ratio of a non-preference
to a preference quantity.

In this paper, we discuss the expectatjotr,&) and the variance
o? (m, &) of the MUB random variable; then, we will derive the formulae
for an asymmetry measurésym (7, £) and for the kurtosigurt (, £)
of R ~ MUB (m,,&). Generally, for obtaining a scale-invariant mea-
sure, the asymmetry coefficient is defined as the ratid gfm (7, &) to
[o (T, 5)]3 : however, since we are just interested to the sign of the asym-
metry measures we prefer to consider -throughout this roty-the nu-
merator of the coefficient of asymmetry, that is the thirdtamMmoment
of R.

Formally, we let:

N(Wag) :]E(R)a 02<7Ta§) :E(R_“(W7£))2;

E (R~ p(r,€)"
(02 (m, &))"
To get some idea about this aspect, wentet= 12 and in Table 1 we

show the main characteristics of some MUB random varialdesdme
admissible parameters values.

Asym (7?76) =E (R —H (71—75))3; Kurt (71‘,5) =

Table 1. Some MUB distributions and their main charactersst

(m, &) unc imp dis 1 o? | Asym | Kurt
0.75, 0.90| 0.021| 2.11822| 0.111 | 3.200| 7.352| 35.623| 5.440
0.80, 0.50( 0.017 | 0.00039| 1.000| 6.500| 4.583| 0.000| 3.223
0.05, 0.50( 0.079| 0.00002| 1.000 | 6.500| 11.458| 0.000| 1.840
0.50, 0.25| 0.042 | 0.00000| 3.000| 7.875| 8.880| -20.840| 2.700

S| Q| |

The corresponding plots of the probability distributione presented
in Figure 1.

Figure 1 confirms that the MUB random variable is able to take i
accounts distributions with several different shapesuidiclg symmetric,
positively and negatively skewed (in a moderate or strorgyels, pea-
ked, bell-shaped and platykurtic shapes. Moreover, theuataf uncer-
tainty is inversely related to as can be seen by comparing models B and
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Figure 1. Probability distributions for the MUB models oftila 1
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C, for instance. Of course, these characteristics are alla@lto the first
moments of the MUB random variable.

3. Notation and preliminary results

In this note, we study the first four moments of the MUB randan v
riable and discuss the effect of the parameteasnd< on the location, the
variability and the shape of the mixture distribution. Thierthis section
we establish some results about the moments of a mixturebdisons
and the main algebraic result about the moments of a shiftadrgal
distribution.

Let B ~ h(r;6,) andU ~ g (r;02) be two discrete random variables,
both defined on the suppoft,,2,...,m}, and characterized by some
parameters vectors, 6,, respectively. Then, a mixture random variable
R is defined by the probability mass function:

fr(ry=mh(r;01)+ (1 —m) g(r;0), r=1,...,m,

and the parameter € [0, 1]
The generating functions(t), Gg(t), Gy (t) of the random variables
R, B, U are related, respectively, by:

G(t) =nmGp(t)+ (1 —7) Gu(t), vt € R.
Then, thek-th moments from the origin ok are:
E(R*) =nEp (X*)+(1—7) Ey (U*), k=0,1,...,

where the expectation operatdis Eg, E;, are to be applied with re-
spect to the distributions of the random variablesB, U, respectively.
From these results, central and standardized moments azbtdieed by
standard formulae.

We denote byBin (n, 1)) a classical Binomial distribution characteri-
zed by the parameters ), wheren is the number of independent experi-
ments and) is the constant probability of the event of interest in each e
periment. Then, in our cas®, is a shifted Binomial random variable re-
latedto X ~ Bin(m — 1,1 —1)by: B= X + 1. Instead]J ~ Ud (m)
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is a Uniform (rectangular) random variable defined o{&r2, ..., m}.
Their moments are well known in the literature (see: JohrasahKotz,
1969, for instance).

Using a convenient matrix-oriented notation, the basialtder the
following pages is the formula:

r & m
m 2 -1 B 2 2
Zl :3 (7:'/_ 1) (1 o S)T 1 Sm—r — (m — 1) B(m) §3 + Zg 5
r= rd 54 mi

where the non-zero elemerits of the B ,,,) matrix depend only upon
m and are defined by:

bu = -1

by = —(2m—1);

by, = — (3m2 —3m + 1) ;

by = —(2m—1)(2m* —2m+1);
bye = (m—2);

b = 3(m—1)(m—2);

b = (m—2)(6m*—12m+7);
by3 = —(m—2)(m—3);

bigy = —2(m—2)(m—3)(2m —3);
by = (m—2)(m—3)(m—4).

The previous formula has been obtained, after some algefanipula-
tions, from the moments of the Binomial random variable vartitoment
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or the factorial generating functichs

4. Expectation and variance of the MUB random variable

Following the previous approach, it is immediate to derive éxpec-
tation of the MUB random variable:

uim) = -1 (5 -¢) + 52

Starting from the mid-range of the distributigmy + 1) /2, the mean
value of R increases (decreases) as long &sless than (more thar%)

Figure 2 shows the behavior of the expectationfobver the para-
metric space. It confirms that when bothand¢ increase towards the
mean value converges to 1, and thus the MUB model implies @gre
preference for the given object.

In a similar way, we obtain the variance of the MUB distrilouti

2
02(77,5)—(m—l){wf(l—f)—i—(l—ﬂ) [ml—;l—i—ﬂ(m—l) (%—{) ]}

The variance reaches its minimum when betand¢ increase td;
for a givenr, the variance has a maximum whes- %
Re-arranging the formula of the variance, we can write:

o?(m,€)
(m—1)

and from this alternative formulation it is immediate tolimathat:
o’ (m,&) =0 (m,1-¢),

confirming that the variability of thé? distribution is symmetric around
¢ =1/2 (Figure 3).

37 (m —1) 4+ (m +1)]
12 ’

=mé(1—=¢2—m+7m(m—1)]+(1—m)

4All the results of this paper have been checked from a symboiint of view by the
Maple® language and from a computational point of view by the G&uysgramming
language.
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5. Asymmetry of the MUB random variable

In this section, we derive and discuss an asymmetry measuthd
MUB random variable. In fact, as it concerns the sign of thgrame-
try coefficient, it is sufficient to study only the third cesmtmoment as
defined in the section 2.

After a lengthy algebra, we found that:

[A(m) §(1 = &) + B (m)]

Asym (m,€) = (m — 1) (26 ~ 1) - ,

where:

Ar) = 4m =112 =6(m—1)(m—=2)7+2(m —2)(m —3);
B(r) = (m=1[1—-m)1+m(m—1));

are functions only of the parameter

From this formula, we can derive some general results:
i) Asym (m,3) =0, Vr € [0,1];
i) Asym (m, &) = —Asym (n,1 =¢),Vr € [0,1].

Figure 4 shows the behavior dfsym (7, &) over the parametric spa-
ce.

There is an immediate relationship between the asymmethyttzan
expectation of the MUB random variable, as the mean valudisfdi-
stribution increases (decreases) as long as the asymmnsetmarkedly
negative (positive). This fact has an interpretative cqusace since it
shows that the mean preference of the raters towards a fiyect aficrea-
ses (decreases) with respect to the mid-range togetheithathegative
(positive) value of the asymmetry measure. Briefly, a pasifivegative)
asymmetry is accompanied by a preference (adversity) tbtharobject.
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Figure 4. Asymmetry measure of the MUB random variable

6. Kurtosis of the MUB random variable

In this section, we derive and discuss the kurtosis of the NaHslom
variable defined as the fourth standardized moment; fomtieigsure it is
more convenient to take into account also the effect of tmmuoenator.

Indeed, we need a scale invariant index for referring oursmesato the
kurtosis of the standardized Gaussian random variable.

The relevance of this aspect stems from three facts:

i) peaked ranks distributions are those with a neat preferéadver-
sity) depending upon the positive (negative) sigricof 1/2);

i) in the family of MUB random variables, very peaked dibtriions
are allowed only when there is a modefat 1 or atR = m;

iii) a large number of items increases the performance oCéetral

Limit theorem on the elicitation mechanism since, in thisegahe
uncertainty factor is greater.

11
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Proceeding as in the previous sections, we get the follofonghe
numerator of the kurtosis

3N (m,§)
5 (m—1) D(m¢)’

Kurt(m,m,&) =
where

N (&) = Ao+ AT + As(§)m* + A(m® + Ay(E)
2

D (m ¢ = (Bo + Bi(§)m + 32(5)72) ;
and the coefficients are defined by:

Ay = (m+1)(3m2—7);
Ai(§) = 4(m—2)[co+ b+l +e8(2-9)];
Ax(§) = 30(m—1)(m—2) (26 —1)°[8 (1= &) (m—2) — (m—1)];
A3(§) = 60(m—2)(m—1)* (2 —1)* (67 — 65 + 1) ;
A48 = —45(m—1)* (26 - 1)
By = m+1,
Bi(§) = 2(m—2) (66 —6£+1);
By(€) = —3(m—1)(26—1)".

For simplifying the expression of; (£), we let:
00:(3m2—6m+1); 01:—30(m2—4m+5);

¢ =30 (3m* — 18m +29) ; ¢5 = —60 (m — 3) (m — 4).

Then, we examine the plot dfurt (7, ), for varyingm and¢ over
their parametric space (Figure 5). The surface enhancesythmetry of
the kurtosis and the quick increase of this measure towhedlsdrders of
the parametric space; indeed, the kurtosis coefficient cabencomputed
on the border since, fagr = 0 and{ = 1, we obtain a zero variance.

SAlthough the denominator of this formula is related to thaaed variance of the
MUB distribution, we prefer a more compact expression fonpatational purposes.
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From the kurtosis formula, we found that:
Kurt (m,&) = Kurt (m,1 — &), Vm > 3.

Thus, it turns out that it is useful to study kurtosis only o< ¢ < 1/2.
A direct interpretation of the kurtosis formula is extregnelimberso-

me; thus, we limit ourselves to quote some useful propedixained in
several specific cases.

When¢ = 1/2, the distribution is symmetric and the kurtosis coeffi-
cient can be greatly simplified:

Kurt (71',1> _3lm+1) Bm* —7) — (m —2) (3m2+921—34) ]
2 5 (m—1)[(m—2)7 — (m+1)

When¢ = 1/2 and the kurtosis approaches the valug afe expect a
bell-shaped distribution. Indeed, the equatiéfurt (7, 1) = 3, has two
real and admissible solutions only for > 10:
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B Tm?— 9m—+ 24 £ /9m4 — 126m3+ 417m?2 — 432m+ 616
B 10 (m — 1) (m —2) ’

Uy

i=1,2.

Note that:

lim 7w, =1;

m—00

lim 7, =2/5=0.4.

Table 2 gives the solutions dfurt (m;,1) = 3 for some common
values ofm. The values ofr reported in the table are those implied by
a MUB distribution whose shape is mostly symmetric and sintib the
Gaussian random variable.

Table 2. Solutions oK'urt (m, ) = 3 for some values ofp.

m =10 | m; = 0.94261 | m5 = 0.81850
m=11 | m; = 0.97100 | my = 0.74455
m=12 | m; = 0.98193 | w5 = 0.69807
m=13 | m; = 0.98770 | m9 = 0.66381
m=14 | m; = 0.99117 | w5 = 0.63703
m— oo | m — 1 e — 2/5 =04

The fact that a kurtosis df is admissible only whem: > 10 is a
confirmation of the empirical founding that in the preferefewaluation
studies the distributions are symmetric, unimodal and-$ediped only
when the number of items is moderately large.

Moreover,
3(3m? —1T)
5(m2—1)"
this result is consistent with the fact th@&t~ MU B (m,0,¢) is indeed
the Uniform discrete random variaBlever {1,2,...,m}. We note al-
so that ifm — oo, thenKurt (0,£) — 1.8, that is the kurtosis of the
continuous Uniform random variable over any finite interval

Kurt (0,£) =

SHere, we writeR ~ MUB (m, 0, ¢) for consistency with the previous notation.
However, this distribution is function only ofi, since the effect of is cancelled out
whenr = 0.
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Finally, we obtain:
1+3(m—=3)¢§(1-¢)

(m-1)¢1-¢
and Kurt (1,§) — 3 if m — oo. Indeed, whenr = 1 the MUB di-
stribution is a Shifted Binomial random variable, that is aerging
distribution to the Gaussian one for — oco.

As far as it concerns the kurtosis and asymmetry relatigsstihe
previous discussion confirms that (given a relatively higiue of m)
the MUB random variable converges to the Gaussian distoibut it is
symmetric and ifr is not too small; in fact, small values afinduce a
platykurtic shape in the distribution (like model C in FigLk).

Kurt (1,¢&) =

7. Moment estimators for the MUB parameters

In this section we deal with the derivation of the momentreators
of 7 and¢ from the first two sample moments. These relationships pro-
duce consistent estimators of the parameters and thus émelec quite
effective for getting starting values for an efficient maxim likelihood
estimation procedufe

If we compute the sample moments, m, from the observed ranks
data, then the solutions of the two non-linear equations:

E(R) = (7§ =my;
E(R?) = pa(m, &) =my;

are expressed By

s 2(1+3m1m—m2>—3(m1+m2):t\/Z . m+1.
§= (3(m7)2)(2m17m71) , iFmy 7 5=
A~ 2mi—(m+1 e £ 1.

"The effects of good starting points are more relevant in taerpng of simulation
experiments.

8The solutions are a couple of two quadratic expressions doh @arameter. If
these solutions are different, only one of them producesissilote solutions for the
parameters.
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A = dy+dimi+ dgmf;
do = m*+ (3ma+1)m*+3(3ma+2)m+ (4+6ma+ 9m3) ;
di = -3(m+1)[m2m—1)+6(my+1)];
dy = 3(4m*+2m+7).
We observe that if the empirical distribution of the rankpésfectly

symmetric, the first moment is the midrange; = (m + 1) /2, and this
implies¢ = % Thus, neither of the previous solutions are defined.

In this case, we lef = % and we derive the estimates ferfrom
the second moment equation (in fact, in this case, the fitstemn is not
informative forr). Specifically, for an empirical symmetrical distribution
of the ranks the solutions are:

{5 =1, it my = 2L,

L 2(2m243mA1-6ma) o2 g
T=——mma - T{=735

If we 1t Oom =Fmoms Emom) @ANA 0Oy =iz, E1i1) for the mo-
ment and maximum likelihood estimates, respectively, therguantity:

dist = \/(émom — éML)/ (émom — éML)

is a measure of the Euclidean distance between the two elifestima-
tes. Of course, its range |8, v/2].

Then, to show the effectiveness of using the moment estenate
examine both the statistical efficiencies of the momentresgs and the
computational advantages in using these values as a gtpdints for the
E-M algorithm. We choose the 'Cities preferences’ expresged= 183
young people, a data set fully discussed by D’Elia and Pac(2003).

From a statistical point of view, we compare the moment et
and the maximum likelihood estimates for 12 estimated idigtions.
These models exhibit quite different locations, varidiedi and shapes;
thus, this experiment includes a large variety of real naglsituations.

Table 3 presents the different estimates obtained and tokdEan
distance dist) previously defined.




Table 3. A comparison between moment and ML estimates.

On the moments of the MUB random variable

Cities Tmom fmom TML £ML dist

Florence| 0.89279| 0.86971| 0.83369| 0.87884| 0.05980
Venice | 0.53843| 0.56439| 0.53480| 0.57872| 0.01478
Turin 0.69113| 0.23111| 0.33974| 0.14190| 0.36254
Bari 0.81228| 0.18621| 0.67249| 0.16480| 0.14142
Bologna | 0.64931| 0.82385| 0.53869| 0.84661| 0.11294
Catania | 0.79513| 0.22272| 0.63518| 0.20490| 0.16094
Genoa | 0.67658| 0.45479| 0.64187| 0.48942| 0.04903
Palermo | 0.76662| 0.27114| 0.63137| 0.28688| 0.13616
Milan 0.60985| 0.34815| 0.15460| 0.30267| 0.45752
Naples | 0.67649| 0.84161| 0.56582| 0.86156| 0.11245
Rome 0.83037| 0.87346| 0.74971| 0.88884| 0.08211
Verona | 0.51337| 0.20128| 0.16803| 0.01364| 0.39302

Although in some limited case (Turin, Milan, Verona) theseisub-
stantial discrepancy between the two estimates (mainltherr para-
meter), the results confirm that the preliminary momentsnedes are
generally quite good as a starting point for the final maximikelihood
estimates. With a few exceptions, the distance betweealiamnd final
estimates on the parametric space is a very small quantity.

Then, from a computational point of view, we compare the nemnalb
iterations that the same E-M algorithm required in ordeetich the con-
vergence to the final maximum likelihood estimates. Indesdgxamine
the effects of the following starting points:

o)

init

0
o =

= (0.1,0.1);

<0.5, m—m1>';
m—1

~

eﬁg())m = <7Armom7 5mom>/ .

The rationale for these values derives from the followingsidera-
tions:
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o the 01% values set the starting points@t, assuming no prelimi-
nary information on the parameters estimates;

e the Qg} values were proposed by D’Elia and Piccolo (2003). They
set ther initial estimate at its midrange and that the ML estimate
of the shifted Binomial component of the mixture. Thus, ¢hai-
tial estimates uses the sample information contained isdingple
rank averagen;

o thed' ), values are the moment estimates previously discussed.

Finally, we letN IT <9(°)

init

). NIT (65)), NIT (62 ) be the num-

ber of iterations required for the convergence in the thtadisg values
approaches, respectively. In Table 4, the numbers in balidstindicates
for each model the best result in terms of minimum numbereshttons
required for the convergence.

Table 4. Number of iterations for the convergence of E-M atpors.

cites | N17 (60),) [ N1 (65,) | N1T (050,
Florence 42 20 17
\Venice 47 20 13
Turin 74 89 86
Bari 29 20 23
Bologna 54 20 21
Catania 33 21 26
Genoa 41 26 22
Palermo 35 25 24
Milan 188* 90 85
Naples 57 19 21
Rome 48 18 17
\erona 59 81 70

(*) Convergence achieved at a singular point.
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The results confirm the relevance of the starting values iryicey
out the E-M algorithm. As a matter of fact, Table 4 shows norufefi
dominance of a single approach, although the second ankitdertethod
for the starting values are the only suitable candidatet) widistinct
preference for the moment estimator in the case of well ethalata.
The fact that in one case (Milan data) generic starting \&loglied a
convergence of the E-M algorithm towards a singular poird fsirther
evidence of the usefulness of a consistent preliminarynagés in this
kind of numeric procedures.

8. Concluding remarks

In this paper, we have derived the formulae for the asymmesty
the kurtosis of the MUB random variable and we have discusisei
interpretations over the admissible parametric space.

Finally, we obtained the moment estimates for the MUB disitri
tion parameters and we checked their usefulness with respseveral
models estimated on a real data set.

In this regard, further developments include the possgjit set the
moment solutions as automatic starting points in the E-Mrtlgms of
the maximum likelihood procedure. The statistical and micat effi-
ciencies of this proposal should be evaluated by a simulaiperiment
to be planned by generating data from several MUB models speéad
over the parametric space.
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