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Summary: In this note, we study the first four moments of the MUB randomvariable,
that is a mixture of two discrete random variables, recentlyintroduced for the fitting
of ranks data models. After a brief review of the location andvariability indexes, the
paper derives and discusses the asymmetry and the kurtosis measures, investigating the
shape properties of this distribution on the admissible parametric space. Finally, the
usefulness of the parameters moment estimators is shown in order to get starting values
for the maximum likelihood estimation procedure.
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1. Introduction

In a series of recent works, it has been established the usefulness of a
mixture distribution for the modelling of ranks. This approach helps in the
analysis and the interpretation of statistical data arising from preferences
or evaluation contexts.

In this area, a stochastic model can be generated by the convex combi-
nation of the probability distributions of a discrete Uniform and a shifted
Binomial random variables, both defined on the support{1, 2, . . . m}.
This model has been called MUB distribution. It allows many distributio-
nal shapes depending on the parameter values; thus, it seemsrelevant to
study their interpretative content via the first four moments evaluations.
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From inferential and computational point of views, maximumlike-
lihood (ML) parameters estimation is obtained in an efficient way via
the E-M algorithm, as proposed by D’Elia (2003) and Piccolo (2003).
However, the convergence of the algorithms involved in the E-M estima-
tion towards the final estimates may be significantly accelerated starting
from some preliminary consistent values1. Thus, the introduction of the
moments estimates is a significant issue for this aim.

All these considerations support the opportunity to deepenthe in-
terpretation of the parameters, their relationships with the moments and
their role in the specification of the structure and the shapeof the MUB
distribution.

The paper is organized as follows. In the next section, we introduce
the main probabilistic structure for the MUB random variable and discuss
some fundamental issues about the meaning of the parameters, while sec-
tion 3 is devoted to notations and some algebraic results. Then, in section
4 we discuss the expectation and the variance of such model, and in sec-
tion 5 we derive an asymmetry measure; some relationships about these
moments are also presented. In section 6, a formula for the kurtosis is
obtained and the results are commented with regard to the shape of the
distribution. Then, in section 7 consistent parameters estimators are deri-
ved from the first two sample moments; their usefulness as initial values
is discussed with the empirical support of several models estimated from
a real data set. Some concluding remarks end the paper.

2. The MUB random variable

We suppose that a set ofm objects (or a set ofm ordered evaluation
degrees) has been defined, andr is the rank assigned by a single rater to
a given item. Thus, our analysis concerns just the preference towards a
single object (or the evaluation of a single item). Also, throughout the

1The E-M algorithm has the drawback of a lengthy convergence to the ML ma-
ximum. Thus, many solutions have been proposed in the literature for accelerating
this convergence: McLachlan and Krishnan (1997), pp.141-151; McLachlan and Peel
(2000), pp.70-73.
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paper, we assume thatr = 1 means “most preferred” whiler = m means
“least preferred”. Since the number of objects (or the grades in the evalua-
tion process) to be ranked is generally known in advance,m is a prefixed
number.

Then, D’Elia and Piccolo (2003) defined a MUB random variableand
denoted it byR ∼MUB (m,π, ξ) if:

Pr (R = r) = π

(

m− 1

r − 1

)

(1 − ξ)r−1 ξm−r+(1 − π)
1

m
, r = 1, 2, ...,m.

Thus, the generating process is determined by the triple(m,π, ξ),
wherem ≥ 3 is a positive integer2 and the parametric space of(π, ξ)
is [0, 1] × [0, 1].

Many interpretations can be derived from the elicitation mechanism
that drives the raters’ choice; for instance, it is immediate to convince
oneself thatπ is a measure that is inversely related to the uncertainty of
the choice, whileξ is positively related to the degree of liking expres-
sed by the raters towards the prefixed object. We note thatπ → 0 sup-
ports a shifted Binomial distribution whileπ → 1 supports anindifference
preferencechoice since any rank value included in{1, 2, . . . m} may be
chosen with the same probability.

In some circumstances, it may be convenient to express the previous
formula of the probability distribution in the following manner3:

Pr (R = r) = (unc) + (imp)

(

m− 1

r − 1

)

(dis)r , r = 1, . . . ,m;

where:

unc =
1 − π

m
; imp =

π

1 − ξ
ξm; dis =

1 − ξ

ξ
.

In fact, the parameterunc is a measure of theuncertainty sharethat
drives the choice, the parameterimp is an impact coefficientthat raises

2The requirementm ≥ 3 is a formal one; indeed, we need 2 degrees of freedom for
the parameters and one more for satisfying the unit sum of theprobabilities.

3Although this parametrization has been found useful in somecomparative studies,
it is not a one-to-one transformation, since the new quantities are obviously related each
other.
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the values of the probability distribution, and the parameterdis is a sort of
disliking odd measuresince it is defined as the ratio of a non-preference
to a preference quantity.

In this paper, we discuss the expectationµ (π, ξ) and the variance
σ2 (π, ξ) of the MUB random variable; then, we will derive the formulae
for an asymmetry measureAsym (π, ξ) and for the kurtosisKurt (π, ξ)
of R ∼ MUB (m,π, ξ). Generally, for obtaining a scale-invariant mea-
sure, the asymmetry coefficient is defined as the ratio ofAsym (π, ξ) to
[σ (π, ξ)]3 ; however, since we are just interested to the sign of the asym-
metry measures we prefer to consider -throughout this note-only the nu-
merator of the coefficient of asymmetry, that is the third central moment
of R.

Formally, we let:

µ (π, ξ) = E (R) ; σ2 (π, ξ) = E (R− µ (π, ξ))2 ;

Asym (π, ξ) = E (R− µ (π, ξ))3 ; Kurt (π, ξ) =
E (R− µ (π, ξ))4

[σ2 (π, ξ)]2
.

To get some idea about this aspect, we letm = 12 and in Table 1 we
show the main characteristics of some MUB random variables for some
admissible parameters values.

Table 1. Some MUB distributions and their main characteristics.

( π, ξ ) unc imp dis µ σ2 Asym Kurt

A 0.75, 0.90 0.021 2.11822 0.111 3.200 7.352 35.623 5.440
B 0.80, 0.50 0.017 0.00039 1.000 6.500 4.583 0.000 3.223
C 0.05, 0.50 0.079 0.00002 1.000 6.500 11.458 0.000 1.840
D 0.50, 0.25 0.042 0.00000 3.000 7.875 8.880 -20.840 2.700

The corresponding plots of the probability distributions are presented
in Figure 1.

Figure 1 confirms that the MUB random variable is able to take into
accounts distributions with several different shapes including symmetric,
positively and negatively skewed (in a moderate or strong degree), pea-
ked, bell-shaped and platykurtic shapes. Moreover, the amount of uncer-
tainty is inversely related toπ as can be seen by comparing models B and
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Figure 1. Probability distributions for the MUB models of Table 1
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C, for instance. Of course, these characteristics are all related to the first
moments of the MUB random variable.

3. Notation and preliminary results

In this note, we study the first four moments of the MUB random va-
riable and discuss the effect of the parametersπ andξ on the location, the
variability and the shape of the mixture distribution. Then, in this section
we establish some results about the moments of a mixture distributions
and the main algebraic result about the moments of a shifted Binomial
distribution.

LetB ∼ h(r; θ1) andU ∼ g (r; θ2) be two discrete random variables,
both defined on the support{1, 2, . . . ,m}, and characterized by some
parameters vectorsθ1, θ2, respectively. Then, a mixture random variable
R is defined by the probability mass function:

fR(r) = π h(r; θ1) + (1 − π) g (r; θ2) , r = 1, . . . ,m,

and the parameterπ ∈ [0, 1] .
The generating functionsG(t), GB(t), GU(t) of the random variables

R,B,U are related, respectively, by:

G(t) = π GB(t) + (1 − π) GU(t), ∀t ∈ R.

Then, thek-th moments from the origin ofR are:

E
(

Rk
)

= π EB

(

Xk
)

+ (1 − π) EU

(

Uk
)

, k = 0, 1, . . . ,

where the expectation operatorsE, EB, EU are to be applied with re-
spect to the distributions of the random variablesR,B,U , respectively.
From these results, central and standardized moments can beobtained by
standard formulae.

We denote byBin (n, ψ) a classical Binomial distribution characteri-
zed by the parametersn, ψ, wheren is the number of independent experi-
ments andψ is the constant probability of the event of interest in each ex-
periment. Then, in our case,B is a shifted Binomial random variable re-
lated toX ∼ Bin (m− 1, 1 − ψ) by: B = X + 1. Instead,U ∼ Ud (m)
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is a Uniform (rectangular) random variable defined over{1, 2, . . . ,m}.
Their moments are well known in the literature (see: Johnsonand Kotz,
1969, for instance).

Using a convenient matrix-oriented notation, the basic result for the
following pages is the formula:

m
∑

r=1









r
r2

r3

r4









(

m− 1

r − 1

)

(1 − ξ)r−1 ξm−r = (m− 1) B(m)









ξ
ξ2

ξ3

ξ4









+









m
m2

m3

m4









,

where the non-zero elementsbij of theB(m) matrix depend only upon
m and are defined by:

b11 = −1;

b21 = − (2m− 1) ;

b31 = −
(

3m2 − 3m+ 1
)

;

b41 = − (2m− 1)
(

2m2 − 2m+ 1
)

;

b22 = (m− 2) ;

b32 = 3 (m− 1) (m− 2) ;

b42 = (m− 2)
(

6m2 − 12m+ 7
)

;

b33 = − (m− 2) (m− 3) ;

b43 = −2 (m− 2) (m− 3) (2m− 3) ;

b44 = (m− 2) (m− 3) (m− 4) .

The previous formula has been obtained, after some algebraic manipula-
tions, from the moments of the Binomial random variable via the moment
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or the factorial generating functions4.

4. Expectation and variance of the MUB random variable

Following the previous approach, it is immediate to derive the expec-
tation of the MUB random variable:

µ (π, ξ) = π (m − 1)

(

1

2
− ξ

)

+
(m + 1)

2
.

Starting from the mid-range of the distribution,(m+ 1) /2, the mean
value ofR increases (decreases) as long asξ is less than (more than)1

2
.

Figure 2 shows the behavior of the expectation ofR over the para-
metric space. It confirms that when bothπ andξ increase towards1 the
mean value converges to 1, and thus the MUB model implies a greater
preference for the given object.

In a similar way, we obtain the variance of the MUB distribution:

σ2 (π, ξ) = (m − 1)

{

π ξ (1 − ξ) + (1 − π)

[

m + 1

12
+ π (m − 1)

(

1

2
− ξ

)2
]}

.

The variance reaches its minimum when bothπ andξ increase to1;
for a givenπ, the variance has a maximum whenξ = 1

2
.

Re-arranging the formula of the variance, we can write:

σ2 (π, ξ)

(m − 1)
= πξ (1 − ξ) [2 − m + π (m − 1)]+(1 − π)

[3π (m − 1) + (m + 1)]

12
,

and from this alternative formulation it is immediate to realize that:

σ2 (π, ξ) = σ2 (π, 1 − ξ) ,

confirming that the variability of theR distribution is symmetric around
ξ = 1/2 (Figure 3).

4All the results of this paper have been checked from a symbolic point of view by the
Maplec© language and from a computational point of view by the Gaussc© programming
language.
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Figure 2. Expectation of the MUB random variable

Figure 3. Variance of the MUB random variable
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5. Asymmetry of the MUB random variable

In this section, we derive and discuss an asymmetry measure for the
MUB random variable. In fact, as it concerns the sign of the asymme-
try coefficient, it is sufficient to study only the third central moment as
defined in the section 2.

After a lengthy algebra, we found that:

Asym (π, ξ) = π (m− 1) (2ξ − 1)
[A (π) ξ (1 − ξ) +B (π)]

4
,

where:

A (π) = 4 (m− 1)2 π2 − 6 (m− 1) (m− 2)π + 2 (m− 2) (m− 3) ;

B (π) = (m− 1) [(1 − π) (1 + π (m− 1))] ;

are functions only of the parameterπ.

From this formula, we can derive some general results:

i) Asym
(

π, 1
2

)

= 0, ∀π ∈ [0, 1] ;

ii) Asym (π, ξ) = −Asym (π, 1 − ξ) , ∀π ∈ [0, 1] .

Figure 4 shows the behavior ofAsym (π, ξ) over the parametric spa-
ce.

There is an immediate relationship between the asymmetry and the
expectation of the MUB random variable, as the mean value of this di-
stribution increases (decreases) as long as the asymmetry is markedly
negative (positive). This fact has an interpretative consequence since it
shows that the mean preference of the raters towards a fixed object increa-
ses (decreases) with respect to the mid-range together withthe negative
(positive) value of the asymmetry measure. Briefly, a positive (negative)
asymmetry is accompanied by a preference (adversity) toward the object.
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Figure 4. Asymmetry measure of the MUB random variable

6. Kurtosis of the MUB random variable

In this section, we derive and discuss the kurtosis of the MUBrandom
variable defined as the fourth standardized moment; for thismeasure it is
more convenient to take into account also the effect of the denominator.
Indeed, we need a scale invariant index for referring our measure to the
kurtosis of the standardized Gaussian random variable.

The relevance of this aspect stems from three facts:

i) peaked ranks distributions are those with a neat preference (adver-
sity) depending upon the positive (negative) sign of(ξ − 1/2);

ii) in the family of MUB random variables, very peaked distributions
are allowed only when there is a mode atR = 1 or atR = m;

iii) a large number of items increases the performance of theCentral
Limit theorem on the elicitation mechanism since, in this case, the
uncertainty factor is greater.
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Proceeding as in the previous sections, we get the followingfor the
numerator of the kurtosis5:

Kurt(m,π, ξ) =
3N (π, ξ)

5 (m− 1) D (π, ξ)
,

where

N (π, ξ) = A0 + A1(ξ)π + A2(ξ)π
2 + A3(ξ)π

3 + A4(ξ)π
4;

D (π, ξ) =
(

B0 +B1(ξ)π +B2(ξ)π
2
)2

;

and the coefficients are defined by:

A0 = (m+ 1)
(

3m2 − 7
)

;

A1(ξ) = 4 (m− 2)
[

c0 + c1ξ + c2ξ
2 + c3ξ

3 (2 − ξ)
]

;

A2(ξ) = 30 (m− 1) (m− 2) (2ξ − 1)2 [8ξ (1 − ξ) (m− 2) − (m− 1)] ;

A3(ξ) = 60 (m− 2) (m− 1)2 (2ξ − 1)2 (

6ξ2 − 6ξ + 1
)

;

A4(ξ) = −45 (m− 1)3 (2ξ − 1)4 ;

B0 = m+ 1;

B1(ξ) = 2 (m− 2)
(

6ξ2 − 6ξ + 1
)

;

B2(ξ) = −3 (m− 1) (2ξ − 1)2 .

For simplifying the expression ofA1(ξ), we let:

c0 =
(

3m2 − 6m+ 1
)

; c1 = −30
(

m2 − 4m+ 5
)

;

c2 = 30
(

3m2 − 18m+ 29
)

; c3 = −60 (m− 3) (m− 4) .

Then, we examine the plot ofKurt (π, ξ), for varyingπ andξ over
their parametric space (Figure 5). The surface enhances thesymmetry of
the kurtosis and the quick increase of this measure towards the borders of
the parametric space; indeed, the kurtosis coefficient can not be computed
on the border since, forξ = 0 andξ = 1, we obtain a zero variance.

5Although the denominator of this formula is related to the squared variance of the
MUB distribution, we prefer a more compact expression for computational purposes.
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Figure 5. Kurtosis of the MUB random variable

From the kurtosis formula, we found that:

Kurt (π, ξ) = Kurt (π, 1 − ξ) , ∀m ≥ 3.

Thus, it turns out that it is useful to study kurtosis only for0 ≤ ξ ≤ 1/2.
A direct interpretation of the kurtosis formula is extremely cumberso-

me; thus, we limit ourselves to quote some useful propertiesobtained in
several specific cases.

Whenξ = 1/2, the distribution is symmetric and the kurtosis coeffi-
cient can be greatly simplified:

Kurt

(

π,
1

2

)

=
3 [(m+ 1) (3m2 − 7) − (m− 2) (3m2 + 9m− 34)π]

5 (m− 1) [(m− 2) π − (m+ 1)]2
.

Whenξ = 1/2 and the kurtosis approaches the value of3 we expect a
bell-shaped distribution. Indeed, the equation:Kurt

(

π, 1
2

)

= 3, has two
real and admissible solutions only form ≥ 10:



14 D. Piccolo

πi =
7m2− 9m+ 24 ±

√
9m4− 126m3+ 417m2− 432m+ 616

10 (m− 1) (m− 2)
, i = 1, 2.

Note that:

lim
m→∞

π
1

= 1; lim
m→∞

π
2

= 2/5 = 0.4.

Table 2 gives the solutions ofKurt
(

πi,
1
2

)

= 3 for some common
values ofm. The values ofπ reported in the table are those implied by
a MUB distribution whose shape is mostly symmetric and similar to the
Gaussian random variable.

Table 2. Solutions ofKurt
(

π, 1
2

)

= 3 for some values ofm.

m = 10 π1 = 0.94261 π2 = 0.81850
m = 11 π1 = 0.97100 π2 = 0.74455
m = 12 π1 = 0.98193 π2 = 0.69807
m = 13 π1 = 0.98770 π2 = 0.66381
m = 14 π1 = 0.99117 π2 = 0.63703
. . . . . . . . . . . . . . . . . . . . . . . .
m→ ∞ π1 → 1 π2 → 2/5 = 0.4

The fact that a kurtosis of3 is admissible only whenm ≥ 10 is a
confirmation of the empirical founding that in the preference/evaluation
studies the distributions are symmetric, unimodal and bell-shaped only
when the number of items is moderately large.

Moreover,

Kurt (0, ξ) =
3 (3m2 − 7)

5 (m2 − 1)
;

this result is consistent with the fact thatR ∼ MUB (m, 0, ξ) is indeed
the Uniform discrete random variable6 over {1, 2, . . . ,m}. We note al-
so that ifm → ∞, thenKurt (0, ξ) → 1.8, that is the kurtosis of the
continuous Uniform random variable over any finite interval.

6Here, we writeR ∼ MUB (m, 0, ξ) for consistency with the previous notation.
However, this distribution is function only ofm, since the effect ofξ is cancelled out
whenπ = 0.
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Finally, we obtain:

Kurt (1, ξ) =
1 + 3 (m− 3) ξ (1 − ξ)

(m− 1) ξ (1 − ξ)
;

andKurt (1, ξ) → 3 if m → ∞. Indeed, whenπ = 1 the MUB di-
stribution is a Shifted Binomial random variable, that is a converging
distribution to the Gaussian one form→ ∞.

As far as it concerns the kurtosis and asymmetry relationships, the
previous discussion confirms that (given a relatively high value ofm)
the MUB random variable converges to the Gaussian distribution if it is
symmetric and ifπ is not too small; in fact, small values ofπ induce a
platykurtic shape in the distribution (like model C in Figure 1).

7. Moment estimators for the MUB parameters

In this section we deal with the derivation of the moment estimators
of π andξ from the first two sample moments. These relationships pro-
duce consistent estimators of the parameters and thus they can be quite
effective for getting starting values for an efficient maximum likelihood
estimation procedure7.

If we compute the sample momentsm1,m2 from the observed ranks
data, then the solutions of the two non-linear equations:

E (R) = µ1 (π, ξ) = m1;

E
(

R2
)

= µ2 (π, ξ) = m2;

are expressed by8







ξ̂ =
2(1+3m1m−m2)−3(m1+m2)±

√
∆

3(m−2)(2m1−m−1)
, if m1 6= m+1

2
;

π̂ = 2m1−(m+1)

(m−1)(1−2ξ̂)
, if ξ̂ 6= 1

2
;

7The effects of good starting points are more relevant in the planning of simulation
experiments.

8The solutions are a couple of two quadratic expressions for each parameter. If
these solutions are different, only one of them produces admissible solutions for the
parameters.
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where

∆ = d0 + d1m1 + d2m
2
1;

d0 = m4 + (3m2 + 1)m2 + 3 (3m2 + 2)m+
(

4 + 6m2 + 9m2
2

)

;

d1 = −3 (m+ 1) [m (2m− 1) + 6 (m2 + 1)] ;

d2 = 3
(

4m2 + 2m+ 7
)

.

We observe that if the empirical distribution of the ranks isperfectly
symmetric, the first moment is the midrange:m1 = (m+ 1) /2, and this
implies ξ̂ = 1

2
. Thus, neither of the previous solutions are defined.

In this case, we let̂ξ = 1
2

and we derive the estimates forπ from
the second moment equation (in fact, in this case, the first equation is not
informative forπ). Specifically, for an empirical symmetrical distribution
of the ranks the solutions are:

{

ξ̂ = 1
2
, if m1 = m+1

2
;

π̂ =
2(2m2+3m+1−6m2)

(m−1)(m−2)
, if ξ̂ = 1

2
.

If we let θ̂mom =(π̂mom, ξ̂mom)′ and θ̂ML =(π̂ML, ξ̂ML)′ for the mo-
ment and maximum likelihood estimates, respectively, thenthe quantity:

dist =

√

(

θ̂mom − θ̂ML

)′ (
θ̂mom − θ̂ML

)

is a measure of the Euclidean distance between the two different estima-
tes. Of course, its range is

[

0,
√

2
]

.
Then, to show the effectiveness of using the moment estimates, we

examine both the statistical efficiencies of the moment estimates and the
computational advantages in using these values as a starting points for the
E-M algorithm. We choose the ’Cities preferences’ expressedbyn = 183
young people, a data set fully discussed by D’Elia and Piccolo (2003).

From a statistical point of view, we compare the moment estimates
and the maximum likelihood estimates for 12 estimated distributions.
These models exhibit quite different locations, variabilities and shapes;
thus, this experiment includes a large variety of real ranking situations.

Table 3 presents the different estimates obtained and the Euclidean
distance (dist) previously defined.
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Table 3. A comparison between moment and ML estimates.
Cities π̂mom ξ̂mom π̂ML ξ̂ML dist
Florence 0.89279 0.86971 0.83369 0.87884 0.05980
Venice 0.53843 0.56439 0.53480 0.57872 0.01478
Turin 0.69113 0.23111 0.33974 0.14190 0.36254
Bari 0.81228 0.18621 0.67249 0.16480 0.14142
Bologna 0.64931 0.82385 0.53869 0.84661 0.11294
Catania 0.79513 0.22272 0.63518 0.20490 0.16094
Genoa 0.67658 0.45479 0.64187 0.48942 0.04903
Palermo 0.76662 0.27114 0.63137 0.28688 0.13616
Milan 0.60985 0.34815 0.15460 0.30267 0.45752
Naples 0.67649 0.84161 0.56582 0.86156 0.11245
Rome 0.83037 0.87346 0.74971 0.88884 0.08211
Verona 0.51337 0.20128 0.16803 0.01364 0.39302

Although in some limited case (Turin, Milan, Verona) there is a sub-
stantial discrepancy between the two estimates (mainly forthe π para-
meter), the results confirm that the preliminary moments estimates are
generally quite good as a starting point for the final maximumlikelihood
estimates. With a few exceptions, the distance between initial and final
estimates on the parametric space is a very small quantity.

Then, from a computational point of view, we compare the number of
iterations that the same E-M algorithm required in order to reach the con-
vergence to the final maximum likelihood estimates. Indeed,we examine
the effects of the following starting points:

θ
(0)
init = (0.1, 0.1)′ ;

θ
(0)
DP =

(

0.5,
m−m1

m− 1

)′

;

θ(0)
mom =

(

π̂mom, ξ̂mom

)′
.

The rationale for these values derives from the following considera-
tions:
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• theθ(0)
init values set the starting points at0.1, assuming no prelimi-

nary information on the parameters estimates;

• theθ(0)
DP values were proposed by D’Elia and Piccolo (2003). They

set theπ initial estimate at its midrange and theξ at the ML estimate
of the shifted Binomial component of the mixture. Thus, theξ ini-
tial estimates uses the sample information contained in thesample
rank averagem1;

• theθ(0)
mom values are the moment estimates previously discussed.

Finally, we letNIT
(

θ
(0)
init

)

,NIT
(

θ
(0)
DP

)

,NIT
(

θ
(0)
mom

)

be the num-

ber of iterations required for the convergence in the three starting values
approaches, respectively. In Table 4, the numbers in bold italics indicates
for each model the best result in terms of minimum number of iterations
required for the convergence.

Table 4. Number of iterations for the convergence of E-M algorithms.

Cities NIT
(

θ
(0)
init

)

NIT
(

θ
(0)
DP

)

NIT
(

θ
(0)
mom

)

Florence 42 20 17
Venice 47 20 13
Turin 74 89 86
Bari 29 20 23
Bologna 54 20 21
Catania 33 21 26
Genoa 41 26 22
Palermo 35 25 24
Milan 188* 90 85
Naples 57 19 21
Rome 48 18 17
Verona 59 81 70

(*) Convergence achieved at a singular point.
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The results confirm the relevance of the starting values in carrying
out the E-M algorithm. As a matter of fact, Table 4 shows no definite
dominance of a single approach, although the second and the third method
for the starting values are the only suitable candidates, with a distinct
preference for the moment estimator in the case of well behaved data.
The fact that in one case (Milan data) generic starting values implied a
convergence of the E-M algorithm towards a singular point isa further
evidence of the usefulness of a consistent preliminary estimates in this
kind of numeric procedures.

8. Concluding remarks

In this paper, we have derived the formulae for the asymmetryand
the kurtosis of the MUB random variable and we have discussedtheir
interpretations over the admissible parametric space.

Finally, we obtained the moment estimates for the MUB distribu-
tion parameters and we checked their usefulness with respect to several
models estimated on a real data set.

In this regard, further developments include the possibility to set the
moment solutions as automatic starting points in the E-M algorithms of
the maximum likelihood procedure. The statistical and numerical effi-
ciencies of this proposal should be evaluated by a simulation experiment
to be planned by generating data from several MUB models wellspread
over the parametric space.
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