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Summary We discuss some computational issues arising in the mamitikelihood
estimation of a statistical model for the ranks. The mainltes the paper is a unified
approach to the E-M algorithm for estimating both the partanseof the model and the
coefficients of the raters’ covariates. Emphasis is givethéimplementation of the
algorithms in a matrix-oriented language for an effectieedhtion of the estimates and
of their asymptotic standard errors. In order to supportsigeificance of the results,
some experiences on a real data set are also reported.
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1. Introduction

The usefulness of rank modelling for the analysis and/oittezpre-
tation of statistical data arising from preferences or @atabn contexts
has been established in many recent works (Marden, 199%ndfliand
Verducci, 1999). In this area, a more general approach hers dherived
by D’Elia and Piccolo (2003) that introduced a mixture mdidglof both
the uncertainty and liking/disliking feeling processes.

The random variable suggested for this processNixdure of a di-
screteUniform and a shiftedinomial random variables, and the model
has been definedtlUB model. For a fixed number of objects, this model
depends upon the values of two parameters. Moreover, D(E083b)
derived the maximum likelihood (ML) estimators (and thesyiaptotic
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standard errors) for the parameters of the MUB model whenobriee
parameter is explicitly related to a set of rater’s covasat

In this paper, we derive the single steps which are necessagn
effective implementation of the estimation procedure imapletely ge-
neral framework: that is, when none, one or both the modelmaters
are related to the raters’ covariates.

The opportunity for assessing a unifying notation and atigor could
be considered as a useful byproduct of this work. Then, wediorselves
to quote the structure of the MUB model and the E-M algorittoméan
essential understanding of the single steps; more exeddcussions
can be found in the references mentioned above.

The paper is organized as follows: in the next section wedhice
notations for the MUB model. Then, in section 3 we reprodiessingle
steps for the parameters estimation and in section 4 we d@asymp-
totic expressions for the standard errors of the ML estinsatdSome
empirical evidences and final comments conclude the paper.

2. The MUB model: introduction and notation

Suppose that a set af objects (or a set ofn ordinal evaluation de-
grees) has been well defined anddbe the rank assigned by a single
rater to a given item; we assume that 1 means “most preferred” while
r = m means “least preferred”. We stress thats a known and prefixed
number, and the analysis concerns with the preference dswasingle
object or the evaluation of a single item.

Then, we interpret the value ofas the observed value of a discrete
random variableR defined on the suppoftl,2,...m}. A probabilistic
mixture model fork has been introduced by D’Elia and Piccolo (2003)
that definedR ~ MUB (m,,§) if:

m— 1
r—1

Pr<R:r):7r<

Both the parameters and¢ are defined or0, 1]; however,r is a
measure related to the uncertainty that it is generallyaatsa with the

) (1—&)" ' emT+(1—n) % r=1,2,...,m.
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elicitation mechanism, whilg is positively related to the degree of liking
expressed by the raters towards the prefixed object; fupitogrerties of
this random variables, and the relations of these parameiér the first
four moments are discussed by Piccolo (2003).

In the following, we letd = (7, &) for the set of parameters to be
estimated by the ML method, and we definebds; ¢) the probability
distribution of a shifted Binomial random variable. Thus, have:

m—1

b(r;§) = W( 1) (1= temr r=1,2.m
r—
Then, the MUB random variable probability distribution bates:

1 1
Pr(R=r|f)=m (b(r;f) — —> +—, r=12,..m.
m m
After a simple algebra, the previous formula can be re-foatedl in
a different manner:

m— 1

)(dis)r,rzl,...,m;

where the quantities:

-mT s . 1-¢
unC= —— imp= ———&™ dis= —=>
m ) p 1 _ 5 5 ) 5 Y
are defined for a more immediate meaning of the parameters.
In fact, we can introduce for these parameters the follownibeypre-

tation:

unc is theuncertainty shargethat is a constant baseline that is present in
the probability of any rank, and thus in the elicitation pss;

imp is a constant that raises the values of the probabilityidigion and
thus it is anmpact coefficientor a higher probability of a specific
rank value;

dis is a sort ofdisliking odd measursince it is the ratio of a non-preference
to a preference quantity.
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As section 5 will confirm, the use of such parameters may haip f
appealing interpretations of the MUB models estimatesnipan com-
parative studies.

In the following, we will distinguish the MUB model with no ea-
riates (the distribution of ranks is accounted solely bygheameters in
f) from the MUB models with one or two sets of covariates (usad f
explaining the different preferences of subsets of raters)

In the first case, the information contained in the samplénefdb-
served ranks for the subjects:r = (1,7, ...,r,,) is strictly equivalent
to that contained in the vector of the observed frequendiéseoordered
ranks:n = (ni, ns, ..., n,y,) . This information is necessary and sufficient
to make inference on the parameterg.in

In the second case, the probabilistic models are able taextie
ranks distribution by means af (which may be related to raters’ cova-
riates by a parameters vect@) and/or by means of (which may be
related to raters’ covariates by a parameters vegjorHowever, diffe-
rently from the first case when the information consist ohbibe ranks
and the raters’ covariates, we cannot aggregate the sslébtthe same
rank since they generally have different values for the gates. Thus,
the sample data will be collected in the design maftix= (r|1 X)
wherel is ann—length vector ofl, and X is the covariates matrix.

Thus,

T1 1 T11 Tip

T2 1 T21 )
D= P

m 1 Ty Tnp

In the following, we denote the subset of variables related with
(1 Y) and those related towith (1 W'). Now, the two subsets are not
generally disjoint and we cannot assume tKat= (Y'|W); moreover,
we need to include the vectarin any set of variables.

Among thep covariates ofX, let us assume that one chodsas
variables for explaining the value afonly those whose indexes are in the

1Such selection can be based ampriori grounds or on some preliminary experi-
mental evidences; for instance, on the comparison of thle asarages or patterns in
different subsets of raters.
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set:I; = {s1,s2,...,sp, }; then, we need, + 1 parameters to explain the

m, and we assume -throughout the paper- that the length g8 tector

is p, + 1. Similarly, for explaining the value df, let us assume that one
chooses —among thecovariates ofX— only those whose indexes are

in the set: I, = {t1,t2,...,1,, }; then, we neegh; + 1 parameters to
explain thet, and we assume —throughout the paper— that the length of
the~ vector isp; + 1.

As a consequence, in order to simplify the notation wep)dbr the
i-th row of the predictor in any case; specificaly= (1x;)’ if the cova-
riates are theX matrix, p; = (1y;)’ for the Y matrix, andp; = (1 w;)’
for the W matrix. In this way, conditioning the parameter/parangeter
values top; may be expressed simply 0§|p;).

Then, as motivated by D’Elia (2003b), we let:

1 ¢ 1
y SlPi =
1+ exp (—piB) 1+ exp (—piy)

andB = (B, B1, -, B) s ¥ = (v0,71, ---,7) are the parameter vec-
tors to be estimated for the corresponding predictors. Ofsm the role

of 3y and~, consists of a baseline effect when the covariates are et to
Finally, when both the parameters are related to the ratexsiriates
we apply the following notation:

9

T|pi =

0lps = ( 1 1 )’
P\ e (cyiB) T+ ep(—wn))

3. The maximum likelihood estimation via the E-M algorithm

In this section we discuss the computational steps invoiwede E-
M algorithm for the ML estimation of the parameters in the MbiBdel.
First of all, we present the algorithm in absence of covasidfable 1);
then, the procedure is shown when only one set of covaridtdsds 2
and 3); finally, the general MUB model when both the paransetee
functions of two (different or coincident) sets of covaesis presented
(Table 4).
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A fully discussion of the E-M algorithm is contained in Mcltdan
and Krishnan (1997) and specifically for a mixture model inUsichlan
and Peel (2000). The formal derivation of the first model watsimed by
D’Elia and Piccolo (2003), while for the MUB models with jushe set
of covariates the main results were obtained by D’Elia (2)0&inally,
computational issues related to the E-M algorithm (Tablart) asymp-
totic derivations (section 4) for the general MUB model wathvariates
are derived in this paper.

The main advantage of the E-M algorithm derives from thettamd
of the involved log-likelihood in two functions where thesglved quan-
tities and the missing ones (that is the probabititthat the observation
comes from one of the two sub-populations) are well definetregatly
separated. This situation implies that it is possible tavat# two al-
ternating but converging steps of Expectation and Maxitronaowards
the ML estimate®. Moreover, the derivation of the asymptotic standard
errors of the ML estimators can be performed by straightéodasteps.

For establishing a notation, we define the log-likelihoodction of
the MUB model without covariates, that is:

logL(0) = anlog{Pr(R:rW)}

= anlog{ ( rf)——) %}

When the covariates are present for explaining only-tip@arameter,
thatism = f (Y, 3) , the log-likelihood function of the MUB model with
covariates forr is:

(—yiB)
log L (0 Zlog 1—|—e ylﬁ Zlog( ri; € 6 ) :

m
=1

When the covariates are present for explaining only¢tparameter,
thatis¢ = g (W, ), the log-likelihood function of the MUB model with
covariates fok is:

n m—1 e(—wiv)(ri—1) 1
log L (0) = l —— .
og ( ) ; 0og {7? ((n _ 1) (1 n e(wﬂ))ml) m}
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Finally, when the covariates are present for explainingd tle¢ 7w and
the ¢ parameters, thatis = f (Y, ) and¢ = f (W, ~),then the log-
likelihood function of the general MUB model with covariats:

n 1 m—1 e(—wi')’)(ri_l) 1
log L (0) = l — T
og L (0) ; ) { 1 + e(-uiB) ((7“@ - 1) (1+ e(—ww))mfl -

All the steps required for the E-M procedures are expliaiégorted
in the Tables 1-4.

Table 1. E-M Algorithm for a MUB model without covariates.

| MU B Model (withm, &)

0= (m &) e=1075 dim () = 2.
() =log L(0) =3"" nlog {m (b(r;€) — ;) + 5}
Steps
0 00 = (70 ) = (% , m;})'; 10 = log L (6).
1 b(r;&®) = (") (1- S(k))r_l (€™ I r=1,2,...,m.
=
.nk)\ — 1—7(*) —
2 T(T79())_"1+W ,r=1,2...,m.
— B\ Z;"’ern,«'r(rﬂ(k))
3 R, (6®) = ST ()
4 ) = L5 7 (r;00)).
mfﬁn(e(k))
5 ¢ = —1
6
7 plE+1) — W(k—i—l), €(k+1) ’_
8 (D) = Jog L (9%1D).
9 if 1D 1B > ¢ ke k4 1; gotol;
if 1D B e g = gD gpop,




Table 2. E-M Algorithm of a MUB model with covariates far

‘ MU B Model withm = f (3;y)

0= (88" e=1075% dim (0) = pr + 2.

1(6) = log L (9) = — 1y log (1+ %) — 57 log (b (ris€) + <27 ).

Steps

0 |0 =(30,60) = (01,....01 ﬂ;——_ﬁ;)'; 1O = log L (9©).

1 b (rae®) = (") (1— €Y (™) =12,

Ti—

=T
(k) _ 1 . .pk) — e~vi#®) -
2 ™, —W,T(T‘i,g())—lrl—l-m =12 n
3 R, (g0) = 2=

Py 7'(7”1';9('“)) )

4 Qi (8W) = -3, {509 (1 + e‘yi'ﬁ(k)> + (1 =7 (r;;6®)) e—y{ﬁ“)}.

BED = argmaz Q; (ﬁ(k)).
5

m—1 )
7 gk+1) — (5/(k+1)7 5(k+1))’_
8 (D) = log L (D).
9 if 1) 10 > ¢ kpk4+1; gotol;
if 1D B < e g = gD stop.

002214 'Q



Table 3. E-M Algorithm of a MUB model with covariates for

MUB Model with €& = g (v;w)

0=(r,1"); e=10"%dim () = pe + 2.
_ o m—1y e(~win)(ri—1) 1

Z(Q) - log L (0) - Zi:l log {Tr ((7-2.1) <1+€(—wi’y))m_1> m}
Steps
0 00 = (z0,,0) = (3, 0.1,...,0.0); 10 = log L (7).

(k) _ . . _ (m—1 e*(Tifl)“’i’Y(k) o
1 & = He_i;_we)v b(ri; ™) = (7)) (reer®) t=12...,n

-1
ok (k) .
2 T (ri,e( )) = {1 + m<1_7r(k>)b(7,m(k>)w =12 ....n
3
4 1) :121 1T(r“ ))_
5 Q- ( )) =y T (ri, 9(’“)) {(7’Z — D) wy® + (m —1)log |1+ e~ wr™
6 YD = argmaz Q2 ().
Y

7 glk+1) — W(k—f—l), 7/(1c+1) 4
8 (D) = [og L (9%1D).
9

if 1) — 1B > ¢ kpk41; gotol;
if 1D B e g = gD gtop,

sajelrenoD ynm Bulj|spon yuey Joj sanss| reuoieindwod



Table 4. E-M Algorithm for a general MUB model with covariates

MUB Model withm = f(3;y); £ =g (v;w)

0= (87" e=1075 dim(0) = pr +pe + 2.

0= 1o010) = o0 (55 ) -

Steps
0 00 = (3,0 = (0.1,...,0.1; 0.1,...,0.1); 10 = log L (§©).
1 (k) _ 1 - (k)Y _ (m—1 e_(”"i_l)wﬂ(k) 19
fi - 1+e—wﬂ(k)7 (7%7 ) — <”_1)W’ 1=1,4,...,1N.
=

(k) _ 1 . . _ e*yiﬁ(k) .
2| = e T 00) = {1 * mw i=12..n.
3
4 Q1 (ﬁ(k)) =", {log (1 + e—yiﬁ(k)> n (1 . (T’i; G(k))) e_yi/g(k-)}.
5 Q2 (VW) = = XL, 7 (ris 0W) {(n — D) wA® + (m —1)log |1 + e @™
6 6(k’+1) = a?"g/’f@ﬂ@l‘ Ql (ﬁ(k‘)) ; r}/(k’-‘rl) = arg;rynaaj Q2 (7(]9))
7 gE+1) — (ﬁ (k1) 7/(kﬂ))’_
8 (D = Jog L (6(k+1))_
9 if 100 — 1% > ¢, kwk +1; gotol;

if 1R+D (k) < ¢ 6 — 0D stop.

0T

002214 'Q
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Some words of comments may be useful for a correct interjivata
of the previous steps:

i) in order to stress the correspondence among the fourdahle
drew a blank line where the correspondent step does not;apply

i) the initial values for the parameters fhare derived by one of the
following criteria: form, we choose the midrange of the parameter
space; for¢, we choose the moment estimator; for tHeand ~
vectors we start from arbitratysmall values (e.g().1);

iii) the conditioned average rank, () in Tables 1-2 is the average
rank weighted with the posterioriprobability that each observed
rank originates from the first component distributiofr; £);

iv) many proposals have been suggested for acceleratingotieer-
gence of the algorithm (McLachlan and Krishnan, 1997, pp- 70
73); in fact, the E-M procedure is generally slow, if compuhwath
the second order convergence rates of the ML routines. Hemvev
in our experience (both for estimating models for real data and
for running extensive simulations experiments), we neeexdsuch
modifications.

4. Asymptotic standard errors of the estimators

In order to derive the asymptotic standard errors of the Minegors,
again we have to distinguish the MUB model without covagdtem the
models where one or both set of covariates are included.

In the first model (no covariates), the asymptotic standamat® can
be obtained by exploiting a Rao (1973, pp. 367—-368) propasajrbou-
ped data. In fact, D’Elia and Piccolo (2003) proved that tegnaptotic

20f course, when somepriori information are available is better to start from more
definite initial values.

3In fact, Piccolo (2003) showed that moment estimates of wwegarameters are
convenient starting values for accelerating the convergehthe E-M algorithm.
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variance-covariance matrix of the ML estimatérs:

1/(d.. d.\ "
V== T 3
n <d7r£ d55> ’

where:

—~ p(r;0)
m {81)(9(29)}2
d - )
&€ ; D 7",(9)
m (ap(r;e)) <6p<r;e>>
on ¢
de = 2 p(r;0) '

Exploiting the recursive nature of the Binomial distributjcthese
guantities can be easily obtained if one observes that:

Op(r;0) _ birg) — L.
or ’ m’

op(r;0) b(r m—§(m—1)—
R A s

Further simplifications are possible for saving computinget

When the MUB model includes one or two sets of covariates, then

D’Elia (2003b) proved that the asymptotic variance-camace of the ML

estimatorg) may be conveniently estimated by the observed information

matrix. In fact, thanks to the nature of the complete logllikood func-
tion, it is possible to separate the effect of the uncenaiatrameter £

or the corresponding parameters vector) from the preference parame-
ter € or the corresponding parameters vector). As a consequence, the

asymptotic variance-covariance matrix of the ML estimatsiblock dia-
gonal and thus the estimator (o3 estimators) and thg estimator (ory
estimators) are asymptotically jointly Gaussian and irehejent.

Specifically, relying on the quoted D’Elia (2003b) resuitss imme-
diate to derive the corresponding asymptotic formulae:
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e FortheMUB model with covariates far, the asymptotic variance-
covariance matrid/ of the ML estimators is:

1 1%
V = — [ de
(5 )

n

B 1 m ' 1-28 &
d&_((l—f)z 52>;TZ+(1_§)252;“%

and the elements of thB matrix are defined by:

where:

82
OBr 0;

while the@; (3) function is defined by the step 4 in Table 2.

{B}),; = Q1 (B) = —% Zyihyij [1 4 cosh (y;8)] " ;

e FortheMUB model with covariates faf, the asymptotic variance-
covariance matrid/ of the ML estimators is:

Y
— _ | dux
ve (o)

n .
7(l—m)’
and the elements of tHe matrix are defined by:

where:
d7r7r = -

0? 1 & o
{F}hj = m Q2 (v) = ) ;Ti wipw;j [1 + cosh (w;y)];

while the@- (+) function is defined by the stepin Table 3.

e For thegeneral MUB model with covariates both ferand¢, the
asymptotic variance-covariance matkxof the ML estimators is:

B—l 0/
v--(% )
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where the elements of thB, T matrices are defined respectively

by:
(B}, = 872 Q. (8) = 1 zn:yihyij [1 4 cosh (x;8)]";
T 0By 0B, 2 =
82

Q2 (y) = —% Z T; wipwjj [1 + cosh (wm/)]_1 :

i=1

| ) e —
T Oy O

and the, (3), Q- () functions are defined by the steps5 in
Table 4.

5. Some empirical evidences

In this section we applied the previous algorithms to a redh det
consisting of the preferences towards = 12 colors expressed by a
sample ofn = 169 young people. No ties were allowed.

We choose to compare the ranks given forf®ek coloras modelled
by the proposed four MUB models, without and with the covariaex
(= 0, for Masculine= 1, for Feminine).

These models will be denoted by MUB-00 (no covariates), MUB—
10 (covariates only forr), MUB-01 (covariates only fot), MUB-11
(covariates for bothr and¢), respectively. Similarly, the values of their
corresponding log-likelihood functiori$éd) computed at maximum will
be denoted by, 10, lo1, l11, respectively.

The results —reported in Table 5— show that all the parametey
significant (standard errors are in parentheses). The valluthe corre-
sponding parameters conditioned to the covariate vakdds (, respec-
tively) are also reported.

“In this case-study we found significant the effect of the saavariate on the raters’
preferences. Of course, this situation is not strictly seaey, since the E-M algorithm
presented in Table 4 allows for completely general set cdates.
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From the discussion of section 2, we deduce Table 6 wheretblésid
distribution probabilities for the ranks expressed by thigjects towards
the Pink color (for each of the four estimated models) arevsho

Table 5. Estimated MUB models for the Pink color.

‘ Models Parameters estimates 1(0)
1. MUB (7, &) m = 0.481 (0.063) € =0.180 (0.018) | —398.995
2.MUB (3,€) | o= 0.586 (0.244) €=0.171 (0.013) | —397.082
B = —1.171 (0.324)
Condit. estim. (wlzi1 = 0) = 0.642
(7T|.%'l‘1 = 1) =0.358
3.MUB (m,) 7 = 0.498 (0.038) | ~o = —1.831 (0.141) | —397.119
7 = 0.722 (0.175)
Condit. estim. (&lxin = 0) = 0.138
4. MUB (8,7) | o= 0.506 (0.242) | ~o = —1.678 (0.123) | —396.246

B, = —0.853 (0.318)

v = 0.548 (0.166)

Condit. estim.

(7T|xl‘1 = 0) = 0.624

(§|x,1 = O) = 0.157

(7T|.1:i1 = 1) =0.414

(§|CE,1 = 1) =0.244

From Table 6, it is possible to assess that:

a) theuncertainty shargunc is systematically higher for the wo-
men in all the models (except for the MUB-01 model wheres
unchanged), thus explaining the larger variability of tlodioices;

b) theimpact coefficienfimp) increases dramatically in moving from

men to women (when we model preference by mean of the cova-

riate Sex, as in the MUB-01 and MUB-11 models);




16 D. Piccolo

c) the disliking odds (dis) are in the ratio of about : 1 for the men
with respect to the womén

Finally, we report in the last column of Table 6 the probapibf a
strong disliking towards the Pink color as measured®yR > 9); this
guantity is the probability to put the Pink color in the wogstarter of
the rank preferences distribution. Again, the results etbe expected
values. Indeed, in the data set, the relative frequenciegeafand women
that assigned a rank greater or equal to 9 are 0.671 and Oggl&cti-
vely; the corresponding values predicted by the general MuBlel are
0.699 and 0.497, that are almost coincident with the engdidoes, given
the sampling variability.

Table 6. A comparison among the estimated MUB models.

MUB Models unc | impx 102 dis || Pr(R >9)
[00] no covariates 0.04323 684 | 4.55185 0.596
[10] cov. form (Sex = 0) 0.02980 486 | 4.84659 0.695
[10] cov. form (Sex = 1) 0.05351 271 | 4.84659 0.535
[01] cov. for (Sex = 0) 0.04181 28 | 6.24271 0.639
[01] cov. for& (Sex = 1) 0.04181 35861 | 3.03226 0.525
[11] cov. form, & (Sex = 0) || 0.03135 172 | 5.35042 0.699
[11] cov. form, & (Sex = 1) || 0.04882 24742 | 3.09366 0.497

Figure 1 shows the estimated MUB probability distributics im-
plied by the general MUB model where both the parametersalaiaed
by the covariate Sex. The probability distributions of tharfestimated
MUB models are reported in the Figure 2. As a whole, they ecdaoth
the r—role, in supporting the uncertainty of the elicitation pess, and
the£—role, in supporting the subjects’ preferences.

From these evidences, some points deserve a discussion:

I) there is a substantial disliking towards the Pink coloribis shar-
per for the men (supported by a stronger asymmetry with a rabde

SSome caution should be used in order to avoid a strict ingémpion ofdis. Anyway,
it is a useful quantity to compare models for sub-samples) Hss case.
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Figure 1. Rank preference distributions for Males (——) aethiine
(- --) towards the Pink color.

R = 11) than for the women (moderate asymmetry with a mode at
R = 10). These points are reflected in the estimaiqrhrameters
(Table 5), that are 0.157 and 0.244, respectively;

i) it seems evident that the preferences are assessed irreamaat
way for the men sinceé is significantly higher for the men than for
the women (0.624 and 0.414, respectively). In fact,uheertainty
shares as measured byl — 7)/m, are estimated by 3.13% and
4.88%, respectively.

As a consequence, the women preferences distribution Ssrilgist-
shifted, with a higher minimum level. On the contrary, thennagstri-
bution is clearly peaked upon high values of the ranks, degeat strong
disliking towards the Pink color.
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From an inferential point of view, it is worth to note that timelu-
sion of covariates for both the parameters seems an impastue for
improving the rank modelling of our data. In fact, as Tableorfams,
the deviance is almost significant if we compare estimated\ibdels
with and without covariatés

Table 7. Deviances of the estimated MUB models for the raetepr
rences towards the Pink color.

Comparisons Deviance| g | X{,0.05)
lio VS. oo 3.82490 | 3-2=1| 3.841
lo1 vS.loo 3.75298 | 3-2=1| 3.841
l11 vS. 1o 5.49882 | 4-2=2| 6.635

As a further result, in Table 8 we present the (theoreticglpetations
derived from the corresponding estimated MUB models. Thakees are
to be compared with the averages of 8.775 (for the aggreg#teds233
(for the men) and 8.427 (for the women), respectively.

Table 8. Expectations for the estimated MUB models.

MUB models Expectations
MUB-00 (no-covariates) 8.193 (aggregate)

Masculine| Feminine
MUB-10 (covariates forr) 8.824 7.795
MUB-01(covariates fof) 8.484 7.881
MUB-11(covariates forr, &) 8.851 7.665

Some bias emerges from these resultowever, given the sample

80f course, we are assuming that the asymptotic theory ofiied ratio tests
applies, that is: —2 (log (6p) — log (61)) /%X%g:O.O5)’ where g is the difference of
dimensions between the vectékgando; .

"Empirical averages are larger than the expectations: fhi$ & bias is mainly
caused by a mode & = 12 in the distribution of the observed ranks (more pronounced
for the men than for the women) that increases the averags.rémfact, the estimated
MUB models imply a mode arounfl = 10, 11. In these situations it is worth to consider
also the IHG models as discussed by D’Elia (1999, 2003a).
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MUB model with a covariate for m (MUB—10)

MUB model without covariates (MUB—00)

Figure 2. Probability distributions of the rank prefererscewards the
Pink color as implied by different estimated MUB models: vkggte
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size, the differences of the sample averages and of thedfieairexpec-
tations are always in the same directions for both the gender

Finally, the reported experience and more extensive exyeris (here
not discussed) support the idea that the MUB modelling witvaciates
is an approach valuable for catching the relevant prefe®mnteasures
expressed by the subjects, also in the special cases of atedeample
sizes and dichotomous variables.

6. Concluding remarks

All the steps reported in the sections 3-4 have been trausiato
the Gaus® programming language and the speed performance has been
checked on two PCs-Pentium.

The experimerftwas performed by estimating a general MUB model
with covariates (MUB-11) on the following data sets:

Dataset 1: n = 169; Pink color preferences fitted to a MUB model
where both parameters are expressed as logistic functiotise o
covariate Sex;

Dataset 2. n = 169; Brown color preferences fitted to a MUB model
where both parameters are expressed as logistic functiotiee o
covariates Smoking and Sex, respectively;

Data set 3: n = 1000; Simulated rank data fitted to a MUB model where
both parameters are expressed as logistic functions of tivicie
dent and balanced dummy variables;

8The reported times include the E-M procedure until convecgeand also the com-
putations necessary for getting the asymptotic standaotsenf the ML estimators. We
used throughout the experiments a G&IS0S version 3.2.23. The new Ga(¥$.0,
Windows version, reduced time significantly. For instanme,the first PC, the 16.7
seconds for Data set 3 become 12.9 seconds, with a reduatitor bf 23%.
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Although the elapsed time depends on the chosen data, Tahtagd
give some idea of the efficiency of the implemented algorithatifferent
situations.

Table 9. Computing times (in seconds) for different dataaedsPCs.

PCs (256 MB—-RAM) | Data set 1| Data set 2| Data set 3
Pentium 11 (700Mhz) 2.47 3.52 16.70
Pentium IV(754Mhz) 1.56 2.65 12.79

As a concluding remark, we observe that the statistical fhsatiscus-
sed in this paper seem consistent with the empirical evieeradthough
the use of rigorous asymptotic fitting measures is not adeqwexe.

In fact, notwithstanding the moderate sample size (we dssdl of
the preferences expressed by 96 women and 73 men), thesresuolt-
gly support the usefulness of the general MUB model for eoimgrthe
main features of one predictor variable (in our case, thalgeof the
subject) and for explaining substantial differences inltkiag/disliking
choices. Moreover, the applied algorithms are efficientedores from
a computational point of view.

Finally, the future steps in the MUB modelling approach witiva-
riates should include some fitting measure of the adequattyeaiodel
and the derivation of asymptotic tests for inferring abdgt parameters
differences in selected sub-samples.
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