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Summary: We discuss some computational issues arising in the maximum likelihood
estimation of a statistical model for the ranks. The main result of the paper is a unified
approach to the E-M algorithm for estimating both the parameters of the model and the
coefficients of the raters’ covariates. Emphasis is given tothe implementation of the
algorithms in a matrix-oriented language for an effective derivation of the estimates and
of their asymptotic standard errors. In order to support thesignificance of the results,
some experiences on a real data set are also reported.
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1. Introduction

The usefulness of rank modelling for the analysis and/or theinterpre-
tation of statistical data arising from preferences or evaluation contexts
has been established in many recent works (Marden, 1995; Fligner and
Verducci, 1999). In this area, a more general approach has been derived
by D’Elia and Piccolo (2003) that introduced a mixture modelling of both
the uncertainty and liking/disliking feeling processes.

The random variable suggested for this process is aMixture of a di-
screteUniform and a shiftedBinomial random variables, and the model
has been defined “MUB model”. For a fixed number of objects, this model
depends upon the values of two parameters. Moreover, D’Elia(2003b)
derived the maximum likelihood (ML) estimators (and their asymptotic
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standard errors) for the parameters of the MUB model when oneof the
parameter is explicitly related to a set of rater’s covariates.

In this paper, we derive the single steps which are necessaryfor an
effective implementation of the estimation procedure in a completely ge-
neral framework: that is, when none, one or both the model parameters
are related to the raters’ covariates.

The opportunity for assessing a unifying notation and algorithm could
be considered as a useful byproduct of this work. Then, we limit ourselves
to quote the structure of the MUB model and the E-M algorithm for an
essential understanding of the single steps; more extensive discussions
can be found in the references mentioned above.

The paper is organized as follows: in the next section we introduce
notations for the MUB model. Then, in section 3 we reproduce the single
steps for the parameters estimation and in section 4 we show the asymp-
totic expressions for the standard errors of the ML estimators. Some
empirical evidences and final comments conclude the paper.

2. The MUB model: introduction and notation

Suppose that a set ofm objects (or a set ofm ordinal evaluation de-
grees) has been well defined and letr be the rank assigned by a single
rater to a given item; we assume thatr = 1 means “most preferred” while
r = m means “least preferred”. We stress thatm is a known and prefixed
number, and the analysis concerns with the preference towards a single
object or the evaluation of a single item.

Then, we interpret the value ofr as the observed value of a discrete
random variableR defined on the support{1, 2, ...m}. A probabilistic
mixture model forR has been introduced by D’Elia and Piccolo (2003)
that definedR ∼ MUB (m,π, ξ) if:

Pr (R = r) = π

(

m − 1

r − 1

)

(1 − ξ)r−1 ξm−r+(1 − π)
1

m
, r = 1, 2, ...,m.

Both the parametersπ and ξ are defined on[0, 1]; however,π is a
measure related to the uncertainty that it is generally associated with the
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elicitation mechanism, whileξ is positively related to the degree of liking
expressed by the raters towards the prefixed object; furtherproperties of
this random variables, and the relations of these parameters with the first
four moments are discussed by Piccolo (2003).

In the following, we letθ = (π, ξ)′ for the set of parameters to be
estimated by the ML method, and we define asb (r; ξ) the probability
distribution of a shifted Binomial random variable. Thus, wehave:

b (r; ξ) = π

(

m − 1

r − 1

)

(1 − ξ)r−1 ξm−r, r = 1, 2, ...,m.

Then, the MUB random variable probability distribution becomes:

Pr (R = r|θ) = π

(

b (r; ξ) −
1

m

)

+
1

m
, r = 1, 2, ...,m.

After a simple algebra, the previous formula can be re-formulated in
a different manner:

Pr (R = r) = (unc) + (imp)

(

m − 1

r − 1

)

(dis)r , r = 1, . . . ,m;

where the quantities:

unc=
1 − π

m
, imp =

π

1 − ξ
ξm, dis =

1 − ξ

ξ
,

are defined for a more immediate meaning of the parameters.
In fact, we can introduce for these parameters the followinginterpre-

tation:

unc is theuncertainty share, that is a constant baseline that is present in
the probability of any rank, and thus in the elicitation process;

imp is a constant that raises the values of the probability distribution and
thus it is animpact coefficientfor a higher probability of a specific
rank value;

dis is a sort ofdisliking odd measuresince it is the ratio of a non-preference
to a preference quantity.
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As section 5 will confirm, the use of such parameters may help for
appealing interpretations of the MUB models estimates, mainly in com-
parative studies.

In the following, we will distinguish the MUB model with no cova-
riates (the distribution of ranks is accounted solely by theparameters in
θ) from the MUB models with one or two sets of covariates (used for
explaining the different preferences of subsets of raters).

In the first case, the information contained in the sample of the ob-
served ranks for then subjects:r = (r1, r2, ..., rn)′ is strictly equivalent
to that contained in the vector of the observed frequencies of the ordered
ranks:n = (n1, n2, ..., nm)′. This information is necessary and sufficient
to make inference on the parameters inθ.

In the second case, the probabilistic models are able to explain the
ranks distribution by means ofπ (which may be related to raters’ cova-
riates by a parameters vectorβ) and/or by means ofξ (which may be
related to raters’ covariates by a parameters vectorγ). However, diffe-
rently from the first case when the information consist of both the ranks
and the raters’ covariates, we cannot aggregate the subjects with the same
rank since they generally have different values for the covariates. Thus,
the sample data will be collected in the design matrixD = (r |1X)
where1 is ann−length vector of1, andX is the covariates matrix.

Thus,

D =









r1 1 x11 . . . x1p

r2 1 x21 . . . x2p

. . . . . . . . . . . . . . .
rn 1 xn1 . . . xnp









.

In the following, we denote the subset of variables related to π with
(1 Y ) and those related toξ with (1W ). Now, the two subsets are not
generally disjoint and we cannot assume thatX = (Y |W ); moreover,
we need to include the vector1 in any set of variables.

Among thep covariates ofX, let us assume that one chooses1 as
variables for explaining the value ofπ only those whose indexes are in the

1Such selection can be based ona priori grounds or on some preliminary experi-
mental evidences; for instance, on the comparison of the rank averages or patterns in
different subsets of raters.
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set:Iπ = {s1, s2, . . . , spπ
}; then, we needpπ+1 parameters to explain the

π, and we assume -throughout the paper- that the length of theβ vector
is pπ + 1. Similarly, for explaining the value ofξ, let us assume that one
chooses —among thep covariates ofX— only those whose indexes are
in the set: Iξ =

{

t1, t2, . . . , tpξ

}

; then, we needpξ + 1 parameters to
explain theξ, and we assume —throughout the paper— that the length of
theγ vector ispξ + 1.

As a consequence, in order to simplify the notation we letρi for the
i-th row of the predictor in any case; specifically,ρi = (1 xi)

′ if the cova-
riates are theX matrix, ρi = (1 yi)

′ for theY matrix, andρi = (1 wi)
′

for the W matrix. In this way, conditioning the parameter/parameters
values toρi may be expressed simply by(θ|ρi).

Then, as motivated by D’Elia (2003b), we let:

π|ρi =
1

1 + exp (−ρiβ)
; ξ|ρi =

1

1 + exp (−ρiγ)
;

andβ = (β0, β1, . . . , βp)
′ , γ = (γ0, γ 1, . . . , γp)

′ are the parameter vec-
tors to be estimated for the corresponding predictors. Of course, the role
of β0 andγ0 consists of a baseline effect when the covariates are set to0.

Finally, when both the parameters are related to the raters’covariates
we apply the following notation:

θ|ρi =

(

1

1 + exp (−yiβ)
,

1

1 + exp (−wiγ)

)′

.

3. The maximum likelihood estimation via the E-M algorithm

In this section we discuss the computational steps involvedin the E-
M algorithm for the ML estimation of the parameters in the MUBmodel.
First of all, we present the algorithm in absence of covariates (Table 1);
then, the procedure is shown when only one set of covariates (Tables 2
and 3); finally, the general MUB model when both the parameters are
functions of two (different or coincident) sets of covariates is presented
(Table 4).
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A fully discussion of the E-M algorithm is contained in McLachlan
and Krishnan (1997) and specifically for a mixture model in McLachlan
and Peel (2000). The formal derivation of the first model was obtained by
D’Elia and Piccolo (2003), while for the MUB models with justone set
of covariates the main results were obtained by D’Elia (2003b). Finally,
computational issues related to the E-M algorithm (Table 4)and asymp-
totic derivations (section 4) for the general MUB model withcovariates
are derived in this paper.

The main advantage of the E-M algorithm derives from the splitting
of the involved log-likelihood in two functions where the observed quan-
tities and the missing ones (that is the probabilityπ that the observation
comes from one of the two sub-populations) are well defined and neatly
separated. This situation implies that it is possible to activate two al-
ternating but converging steps of Expectation and Maximization towards
the ML estimateŝθ. Moreover, the derivation of the asymptotic standard
errors of the ML estimators can be performed by straightforward steps.

For establishing a notation, we define the log-likelihood function of
the MUB model without covariates, that is:

log L (θ) =
m
∑

r=1

nr log {Pr (R = r|θ)}

=
m
∑

r=1

nr log

{

π

(

b (r; ξ) −
1

m

)

+
1

m

}

.

When the covariates are present for explaining only theπ parameter,
that isπ = f (Y , β) , the log-likelihood function of the MUB model with
covariates forπ is:

log L (θ) = −

n
∑

i=1

log
(

1 + e(−yiβ)
)

−

n
∑

i=1

log

(

b (ri; ξ) +
e(−yiβ)

m

)

.

When the covariates are present for explaining only theξ parameter,
that isξ = g (W , γ) , the log-likelihood function of the MUB model with
covariates forξ is:

log L (θ) =
n
∑

i=1

log

{

π

(

(

m − 1

ri − 1

)

e(−wiγ)(ri−1)

(1 + e(−wiγ))
m−1

)

−
1

m

}

.
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Finally, when the covariates are present for explaining both theπ and
the ξ parameters, that isπ = f (Y , β) andξ = f (W , γ) , then the log-
likelihood function of the general MUB model with covariates is:

log L (θ) =
n
∑

i=1

log

{

1

1 + e(−yiβ)

(

(

m − 1

ri − 1

)

e(−wiγ)(ri−1)

(1 + e(−wiγ))
m−1

)

−
1

m

}

.

All the steps required for the E-M procedures are explicitlyreported
in the Tables 1–4.

Table 1. E-M Algorithm for a MUB model without covariates.

MUB Model (withπ, ξ)

θ = (π, ξ)′ ; ǫ = 10−6; dim (θ) = 2.
l (θ) = log L (θ) =

∑m

r=1 nr log
{

π
(

b (r; ξ) − 1
m

)

+ 1
m

}

.

Steps

0 θ(0) =
(

π(0), ξ(0)
)′

=
(

1
2
, m−Rn

m−1

)′

; l(0) = log L
(

θ(0)
)

.

1 b
(

r; ξ(k)
)

=
(

m−1
r−1

) (

1 − ξ(k)
)r−1 (

ξ(k)
)m−r

, r = 1, 2, . . . ,m.

2 τ
(

r; θ(k)
)

=

[

1 + 1−π(k)

m π(k) b(r;ξ(k))

]−1

, r = 1, 2, . . . ,m.

3 Rn

(

θ(k)
)

=
∑m

r=1 r nr τ(r;θ(k))
∑m

r=1 nr τ(r;θ(k))
.

4 π(k+1) = 1
n

∑m

r=1 nr τ
(

r; θ(k)
)

.

5 ξ(k+1) =
m−Rn(θ(k))

m−1
.

6

7 θ(k+1) =
(

π(k+1), ξ(k+1)
)′

.
8 l(k+1) = log L

(

θ(k+1)
)

.

9

{

if l(k+1) − l(k) ≥ ǫ, k ◮k + 1; go to 1;

if l(k+1) − l(k) < ǫ, θ̂ = θ(k+1); stop.
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Table 2. E-M Algorithm of a MUB model with covariates forπ.
MUB Model withπ = f (β;y)

θ = (β ′, ξ)′ ; ǫ = 10−6; dim (θ) = pπ + 2.

l (θ) = log L (θ) = −
∑n

i=1 log
(

1 + e(−yiβ)
)

−
∑n

i=1 log
(

b (ri; ξ) + e(−yiβ)

m

)

.

Steps

0 θ(0) =
(

β ′(0), ξ(0)
)′

=
(

0.1, . . . , 0.1, m−Rn

m−1

)′

; l(0) = log L
(

θ(0)
)

.

1 b
(

ri; ξ
(k)
)

=
(

m−1
ri−1

) (

1 − ξ(k)
)ri−1 (

ξ(k)
)m−ri , i = 1, 2, . . . , n.

2 π
(k)
i = 1

1+e
−y

′

i
β(k) ; τ

(

ri; θ
(k)
)

=

[

1 + e−y
′

i β(k)

m b(ri;ξ(k))

]−1

, i = 1, 2, . . . , n.

3 Rn

(

θ(k)
)

=
∑n

i=1 ri τ(ri;θ
(k))

∑n
i=1 τ(ri;θ(k))

.

4 Q1

(

β(k)
)

= −
∑n

i=1

{

log
(

1 + e−y
′

i β(k)
)

+
(

1 − τ
(

ri; θ
(k)
))

e−y
′

i β(k)
}

.

5 β(k+1) = argmax
β

Q1

(

β(k)
)

.

6 ξ(k+1) =
m−Rn(θ(k))

m−1
.

7 θ(k+1) =
(

β′(k+1), ξ(k+1)
)′

.
8 l(k+1) = log L

(

θ(k+1)
)

.

9

{

if l(k+1) − l(k) ≥ ǫ, k ◮k + 1; go to 1;

if l(k+1) − l(k) < ǫ, θ̂ = θ(k+1); stop.
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Table 3. E-M Algorithm of a MUB model with covariates forξ.
MUB Model with ξ = g (γ;w)

θ = (π, γ ′)′ ; ǫ = 10−6; dim (θ) = pξ + 2.

l (θ) = log L (θ) =
∑n

i=1 log

{

π

(

(

m−1
ri−1

)

e(−wiγ)(ri−1)
(

1+e(−wiγ)
)m−1

)

− 1
m

}

Steps

0 θ(0) =
(

π(0), γ ′(0)
)′

=
(

1
2
, 0.1, . . . , 0.1

)′
; l(0) = log L

(

θ(0)
)

.

1 ξ
(k)
i = 1

1+e
−w

′

i
γ(k) ; b

(

ri; γ
(k)
)

=
(

m−1
ri−1

)

e− (ri−1) wiγ(k)

(

1+e−wiγ(k)
)m−1 , i = 1, 2, . . . , n.

2 τ
(

ri; θ
(k)
)

=

[

1 + π(k)

m(1−π(k)) b(ri;γ(k))

]−1

, i = 1, 2, . . . , n.

3

4 π(k+1) = 1
n

∑n

i=1 τ
(

ri; θ
(k)
)

.

5 Q2

(

γ(k)
)

= −
∑n

i=1 τ
(

ri; θ
(k)
)

{

(ri − 1) wiγ
(k) + (m − 1) log

[

1 + e−wiγ
(k)
]}

.

6 γ(k+1) = argmax
γ

Q2

(

γ(k)
)

.

7 θ(k+1) =
(

π(k+1), γ ′(k+1)
)′

.
8 l(k+1) = log L

(

θ(k+1)
)

.

9

{

if l(k+1) − l(k) ≥ ǫ, k ◮k + 1; go to 1;

if l(k+1) − l(k) < ǫ, θ̂ = θ(k+1); stop.
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Table 4. E-M Algorithm for a general MUB model with covariates.
MUB Model withπ = f (β;y) ; ξ = g (γ;w)

θ = (β ′; γ ′)′ ; ǫ = 10−6; dim (θ) = pπ + pξ + 2.

l (θ) = log L (θ) =
∑n

i=1 log

{

1

1+e(−yiβ)

(

(

m−1
ri−1

)

e(−wiγ)(ri−1)
(

1+e(−wiγ)
)m−1

)

− 1
m

}

Steps

0 θ(0) =
(

β ′(0); γ ′(0)
)′

= ( 0.1, . . . , 0.1; 0.1, . . . , 0.1)′ ; l(0) = log L
(

θ(0)
)

.

1 ξ
(k)
i = 1

1+e−wiγ(k) ; b
(

ri; γ
(k)
)

=
(

m−1
ri−1

)

e− (ri−1) wiγ(k)

(

1+e−wiγ(k)
)m−1 , i = 1, 2, . . . , n.

2 π
(k)
i = 1

1+e−yiβ(k) ; τ
(

ri; θ
(k)
)

=

[

1 + e−yiβ(k)

m b(ri;ξ(k))

]−1

, i = 1, 2, . . . , n.

3

4 Q1

(

β(k)
)

= −
∑n

i=1

{

log
(

1 + e−yiβ
(k)
)

+
(

1 − τ
(

ri; θ
(k)
))

e−yiβ
(k)
}

.

5 Q2

(

γ(k)
)

= −
∑n

i=1 τ
(

ri; θ
(k)
)

{

(ri − 1) wiγ
(k) + (m − 1) log

[

1 + e−wiγ
(k)
]}

.

6 β(k+1) = argmax
β

Q1

(

β(k)
)

; γ(k+1) = argmax
γ

Q2

(

γ(k)
)

.

7 θ(k+1) =
(

β ′(k+1), γ ′(k+1)
)′

.
8 l(k+1) = log L

(

θ(k+1)
)

.

9

{

if l(k+1) − l(k) ≥ ǫ, k ◮k + 1; go to 1;

if l(k+1) − l(k) < ǫ, θ̂ = θ(k+1); stop.
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Some words of comments may be useful for a correct interpretation
of the previous steps:

i) in order to stress the correspondence among the four tables, we
drew a blank line where the correspondent step does not apply;

ii) the initial values for the parameters inθ are derived by one of the
following criteria: forπ, we choose the midrange of the parameter
space; forξ, we choose the moment estimator; for theβ and γ

vectors we start from arbitrary2 small values (e.g.,0.1);

iii) the conditioned average rankRn

(

θ(k)
)

in Tables 1-2 is the average
rank weighted with thea posterioriprobability that each observed
rank originates from the first component distributionb (r; ξ);

iv) many proposals have been suggested for accelerating theconver-
gence of the algorithm (McLachlan and Krishnan, 1997, pp. 70-
73); in fact, the E-M procedure is generally slow, if compared with
the second order convergence rates of the ML routines. However,
in our experience (both for estimating models for real data sets and
for running extensive simulations experiments), we never need such
modifications3.

4. Asymptotic standard errors of the estimators

In order to derive the asymptotic standard errors of the ML estimators,
again we have to distinguish the MUB model without covariates from the
models where one or both set of covariates are included.

In the first model (no covariates), the asymptotic standard errors can
be obtained by exploiting a Rao (1973, pp. 367–368) proposal for grou-
ped data. In fact, D’Elia and Piccolo (2003) proved that the asymptotic

2Of course, when somea priori information are available is better to start from more
definite initial values.

3In fact, Piccolo (2003) showed that moment estimates of the two parameters are
convenient starting values for accelerating the convergence of the E-M algorithm.
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variance-covariance matrix of the ML estimatorsθ̂ is:

V =
1

n

(

dππ dπξ

dπξ dξξ

)−1

,

where:

dππ =
m
∑

r=1

{

∂ p(r;θ)
∂ π

}2

p (r; θ)
;

dξξ =
m
∑

r=1

{

∂ p(r;θ)
∂ ξ

}2

p (r; θ)
;

dπξ =
m
∑

r=1

(

∂ p(r;θ)
∂ π

)(

∂ p(r;θ)
∂ ξ

)

p (r; θ)
.

Exploiting the recursive nature of the Binomial distribution, these
quantities can be easily obtained if one observes that:

∂ p (r; θ)

∂ π
= b (r; ξ) −

1

m
;

∂ p (r; θ)

∂ ξ
= π b (r; ξ)

m − ξ (m − 1) − r

ξ (1 − ξ)
.

Further simplifications are possible for saving computing time.
When the MUB model includes one or two sets of covariates, then

D’Elia (2003b) proved that the asymptotic variance-covariance of the ML
estimatorŝθ may be conveniently estimated by the observed information
matrix. In fact, thanks to the nature of the complete log-likelihood func-
tion, it is possible to separate the effect of the uncertainty parameter (π
or the correspondingβ parameters vector) from the preference parame-
ter (ξ or the correspondingγ parameters vector). As a consequence, the
asymptotic variance-covariance matrix of the ML estimators is block dia-
gonal and thus theπ estimator (orβ estimators) and theξ estimator (orγ
estimators) are asymptotically jointly Gaussian and independent.

Specifically, relying on the quoted D’Elia (2003b) results,it is imme-
diate to derive the corresponding asymptotic formulae:
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• For theMUB model with covariates forπ, the asymptotic variance-
covariance matrixV of the ML estimators is:

V = −

( 1
dξξ

0′

0 B−1

)

where:

dξξ =

(

1

(1 − ξ)2 −
m

ξ2

) n
∑

i=1

τi +
1 − 2ξ

(1 − ξ)2 ξ2

n
∑

i=1

ri τi;

and the elements of theB matrix are defined by:

{B}hj =
∂2

∂βh ∂βj

Q1 (β) = −
1

2

n
∑

i=1

yihyij [1 + cosh (yiβ)]−1 ;

while theQ1 (β) function is defined by the step 4 in Table 2.

• For theMUB model with covariates forξ, the asymptotic variance-
covariance matrixV of the ML estimators is:

V = −

(

1
dππ

0′

0 Γ−1

)

where:
dππ = −

n

π (1 − π)
;

and the elements of theΓ matrix are defined by:

{Γ}hj =
∂2

∂γh ∂γj

Q2 (γ) = −
1

2

n
∑

i=1

τi wihwij [1 + cosh (wiγ)]−1 ;

while theQ2 (γ) function is defined by the step5 in Table 3.

• For thegeneral MUB model with covariates both forπ andξ, the
asymptotic variance-covariance matrixV of the ML estimators is:

V = −

(

B−1 0′

0 Γ−1

)
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where the elements of theB, Γ matrices are defined respectively
by:

{B}hj =
∂2

∂βh ∂βj

Q1 (β) = −
1

2

n
∑

i=1

yihyij [1 + cosh (xiβ)]−1 ;

{Γ}hj =
∂2

∂γh ∂γj

Q2 (γ) = −
1

2

n
∑

i=1

τi wihwij [1 + cosh (wiγ)]−1 ;

and theQ1 (β), Q2 (γ) functions are defined by the steps4–5 in
Table 4.

5. Some empirical evidences

In this section we applied the previous algorithms to a real data set
consisting of the preferences towardsm = 12 colors expressed by a
sample ofn = 169 young people. No ties were allowed.

We choose to compare the ranks given for thePink coloras modelled
by the proposed four MUB models, without and with the covariate Sex4

(= 0, for Masculine;= 1, for Feminine).
These models will be denoted by MUB–00 (no covariates), MUB–

10 (covariates only forπ), MUB–01 (covariates only forξ), MUB–11
(covariates for bothπ andξ), respectively. Similarly, the values of their
corresponding log-likelihood functionsl(θ) computed at maximum will
be denoted byl00, l10, l01, l11, respectively.

The results –reported in Table 5– show that all the parameters are
significant (standard errors are in parentheses). The values of the corre-
sponding parameters conditioned to the covariate values (= 0, 1, respec-
tively) are also reported.

4In this case-study we found significant the effect of the samecovariate on the raters’
preferences. Of course, this situation is not strictly necessary, since the E-M algorithm
presented in Table 4 allows for completely general set of covariates.
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From the discussion of section 2, we deduce Table 6 where the implied
distribution probabilities for the ranks expressed by the subjects towards
the Pink color (for each of the four estimated models) are shown.

Table 5. Estimated MUB models for the Pink color.

Models Parameters estimates l (θ)

1.MUB (π, ξ) π = 0.481 (0.063) ξ = 0.180 (0.018) −398.995

2.MUB (β, ξ) β0 = 0.586 (0.244) ξ = 0.171 (0.013) −397.082

β1 = −1.171 (0.324)

Condit. estim. (π|xi1 = 0) = 0.642

(π|xi1 = 1) = 0.358

3.MUB (π, γ) π = 0.498 (0.038) γ0 = −1.831 (0.141) −397.119

γ1 = 0.722 (0.175)

Condit. estim. (ξ|xi1 = 0) = 0.138

(ξ|xi1 = 1) = 0.248

4.MUB (β, γ) β0 = 0.506 (0.242) γ0 = −1.678 (0.123) −396.246

β1 = −0.853 (0.318) γ1 = 0.548 (0.166)

Condit. estim. (π|xi1 = 0) = 0.624 (ξ|xi1 = 0) = 0.157

(π|xi1 = 1) = 0.414 (ξ|xi1 = 1) = 0.244

From Table 6, it is possible to assess that:

a) the uncertainty share(unc) is systematically higher for the wo-
men in all the models (except for the MUB–01 model whereπ is
unchanged), thus explaining the larger variability of their choices;

b) theimpact coefficient(imp) increases dramatically in moving from
men to women (when we model preference by mean of the cova-
riate Sex, as in the MUB–01 and MUB–11 models);
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c) the ’disliking odds’ (dis) are in the ratio of about2 : 1 for the men
with respect to the women5.

Finally, we report in the last column of Table 6 the probability of a
strong disliking towards the Pink color as measured byPr(R ≥ 9); this
quantity is the probability to put the Pink color in the worstquarter of
the rank preferences distribution. Again, the results support the expected
values. Indeed, in the data set, the relative frequencies ofmen and women
that assigned a rank greater or equal to 9 are 0.671 and 0.542,respecti-
vely; the corresponding values predicted by the general MUBmodel are
0.699 and 0.497, that are almost coincident with the empirical ones, given
the sampling variability.

Table 6. A comparison among the estimated MUB models.

MUB Models unc imp×1012 dis Pr(R ≥ 9)

[00] no covariates 0.04323 684 4.55185 0.596

[10] cov. for π (Sex = 0) 0.02980 486 4.84659 0.695

[10] cov. for π (Sex = 1) 0.05351 271 4.84659 0.535

[01] cov. for ξ (Sex = 0) 0.04181 28 6.24271 0.639

[01] cov. for ξ (Sex = 1) 0.04181 35861 3.03226 0.525

[11] cov. for π, ξ (Sex = 0) 0.03135 172 5.35042 0.699

[11] cov. for π, ξ (Sex = 1) 0.04882 24742 3.09366 0.497

Figure 1 shows the estimated MUB probability distribution as im-
plied by the general MUB model where both the parameters are explained
by the covariate Sex. The probability distributions of the four estimated
MUB models are reported in the Figure 2. As a whole, they enhance both
theπ−role, in supporting the uncertainty of the elicitation process, and
theξ−role, in supporting the subjects’ preferences.

From these evidences, some points deserve a discussion:

i) there is a substantial disliking towards the Pink color but it is shar-
per for the men (supported by a stronger asymmetry with a modeat

5Some caution should be used in order to avoid a strict interpretation ofdis. Anyway,
it is a useful quantity to compare models for sub-samples, asin this case.
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Figure 1. Rank preference distributions for Males (——) and Feminine
(- - -) towards the Pink color.

R = 11) than for the women (moderate asymmetry with a mode at
R = 10). These points are reflected in the estimatedξ̂ parameters
(Table 5), that are 0.157 and 0.244, respectively;

ii) it seems evident that the preferences are assessed in a more neat
way for the men sincêπ is significantly higher for the men than for
the women (0.624 and 0.414, respectively). In fact, theuncertainty
shares, as measured by(1 − π̂)/m, are estimated by 3.13% and
4.88%, respectively.

As a consequence, the women preferences distribution is less right-
shifted, with a higher minimum level. On the contrary, the men distri-
bution is clearly peaked upon high values of the ranks, denoting a strong
disliking towards the Pink color.
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From an inferential point of view, it is worth to note that theinclu-
sion of covariates for both the parameters seems an important issue for
improving the rank modelling of our data. In fact, as Table 7 confirms,
the deviance is almost significant if we compare estimated MUB models
with and without covariates6.

Table 7. Deviances of the estimated MUB models for the rank prefe-
rences towards the Pink color.

Comparisons Deviance g χ2
(g;0.05)

l10 vs. l00 3.82490 3-2=1 3.841
l01 vs. l00 3.75298 3-2=1 3.841
l11 vs. l00 5.49882 4-2=2 6.635

As a further result, in Table 8 we present the (theoretical) expectations
derived from the corresponding estimated MUB models. Thesevalues are
to be compared with the averages of 8.775 (for the aggregate set), 9.233
(for the men) and 8.427 (for the women), respectively.

Table 8. Expectations for the estimated MUB models.

MUB models Expectations
MUB–00 (no-covariates) 8.193 (aggregate)

Masculine Feminine
MUB–10 (covariates forπ) 8.824 7.795
MUB–01(covariates forξ) 8.484 7.881
MUB–11(covariates forπ, ξ) 8.851 7.665

Some bias emerges from these results7; however, given the sample

6Of course, we are assuming that the asymptotic theory of likelihood ratio tests

applies, that is:−2 (log (θ0) − log (θ1))
a
∼χ2

(g;0.05), where g is the difference of
dimensions between the vectorsθ0 andθ1.

7Empirical averages are larger than the expectations: this kind of bias is mainly
caused by a mode atR = 12 in the distribution of the observed ranks (more pronounced
for the men than for the women) that increases the average ranks. In fact, the estimated
MUB models imply a mode aroundR = 10, 11. In these situations it is worth to consider
also the IHG models as discussed by D’Elia (1999, 2003a).
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Figure 2. Probability distributions of the rank preferences towards the
Pink color as implied by different estimated MUB models: Aggregate
(.-.-.-.-.), Males (——) and Feminine (- - -) .
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size, the differences of the sample averages and of the theoretical expec-
tations are always in the same directions for both the genders .

Finally, the reported experience and more extensive experiments (here
not discussed) support the idea that the MUB modelling with covariates
is an approach valuable for catching the relevant preferences measures
expressed by the subjects, also in the special cases of moderate sample
sizes and dichotomous variables.

6. Concluding remarks

All the steps reported in the sections 3-4 have been translated into
the Gaussc© programming language and the speed performance has been
checked on two PCs-Pentium.

The experiment8 was performed by estimating a general MUB model
with covariates (MUB-11) on the following data sets:

Data set 1: n = 169; Pink color preferences fitted to a MUB model
where both parameters are expressed as logistic functions of the
covariate Sex;

Data set 2: n = 169; Brown color preferences fitted to a MUB model
where both parameters are expressed as logistic functions of the
covariates Smoking and Sex, respectively;

Data set 3: n = 1000; Simulated rank data fitted to a MUB model where
both parameters are expressed as logistic functions of two coinci-
dent and balanced dummy variables;

8The reported times include the E-M procedure until convergence and also the com-
putations necessary for getting the asymptotic standard errors of the ML estimators. We
used throughout the experiments a Gaussc© DOS version 3.2.23. The new Gaussc© 5.0,
Windows version, reduced time significantly. For instance,on the first PC, the 16.7
seconds for Data set 3 become 12.9 seconds, with a reduction factor of 23%.
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Although the elapsed time depends on the chosen data, Table 9should
give some idea of the efficiency of the implemented algorithmin different
situations.

Table 9. Computing times (in seconds) for different data setsand PCs.

PCs (256 MB–RAM) Data set 1 Data set 2 Data set 3
Pentium III (700Mhz) 2.47 3.52 16.70
Pentium IV(754Mhz) 1.56 2.65 12.79

As a concluding remark, we observe that the statistical models discus-
sed in this paper seem consistent with the empirical evidences, although
the use of rigorous asymptotic fitting measures is not adequate here.

In fact, notwithstanding the moderate sample size (we discussed of
the preferences expressed by 96 women and 73 men), the results stron-
gly support the usefulness of the general MUB model for enhancing the
main features of one predictor variable (in our case, the gender of the
subject) and for explaining substantial differences in theliking/disliking
choices. Moreover, the applied algorithms are efficient procedures from
a computational point of view.

Finally, the future steps in the MUB modelling approach withcova-
riates should include some fitting measure of the adequacy ofthe model
and the derivation of asymptotic tests for inferring about the parameters
differences in selected sub-samples.
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