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Summary: We derive some approximations for the asymptotic variance of the
Maximum Likelihood estimator for the parameter of the Inverse Hypergeometric
random variable. For most statistical models, the asymptotic variance is usually
derived after some algebraic manipulations. In this paper, we show that this lengthy
calculations can be overcome by simple and accurate linear approximations. The
interest for this result arises from a statistical model for preferences that has been
recently proposed for evaluation studies, preferences analyses and marketing
researches.
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1. Introduction

The Inverse Hypergeometric (IHG) random variable is a discrete
probabilistic modd firgtly discussed in Wilks (1963, pp. 141-143) and fully
developed by Guenther (1975). As for most of the discrete models, the
IHG random variable is generated by consecutive drawing of balls from an
urn that contains a known compostion of coloured balls.
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In fact, while the Binomid and Hypergeometric random variaboles are
generated by drawing a fixed number of bdls (with and without
replacement, respectively), the Inverse Binomid and Inverse
Hypergeometric random variables are defined as the number of drawings
(with and without replacement, respectively) necessary in order to achieve
a prefixed number of balls. In this sense, Binomid and Hypergeometric
probabilistic modds refer to a direct drawing while Inverse Binomid and
Inverse Hypergeometric refer to an inverse drawing. As pointed out by
Wilks, the inverse scheme of drawing can be interpreted as a discrete
waiting time modeling.

The interest in modeling procedures for the preferences has recently
arisen in the literature as it is shown by the works by Marden (1995) and
Taplin (1997). In this area, D'Elia (1999; 2000) has proposed to use the
IHG random variable to modd the preferences that a sample of subjects
expresses towards an ordered collection of objects.

In fact, the IHG random variable can be defined as the number of
drawings necessary in order to achieve a"first success': this number can be
interpreted as the rank associated with an item in a set of ordered objects,
sarvices, brands, opinions, etc. Also, the performance of the modd has
been successfully exploited in many fieds for the evauation of people,
methods and structures (D'Elia, 20014).

The paper is organized as follows. In the next section, we discuss the
probabilistic implications of the IHG random variable; then, in section 3, we
derive the asymptotic variance of the maximum likelihood (ML) estimator
of the parameter of interest providing some recursve formula. Then, in
section 4, we develop an gpproximation for this variance and discuss its
accuracy. Finally, some concluding remarks end the paper.
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2. The probabilistic model and itsimplications

In a series of consecutive drawings without replacement of balls from an
urn containing B white bals and m — 1 not-white balls, we define R asthe
number of drawings necessary to firgly obtain a white bal. Of course, the
support of R is{1,2,...,m} depending on the circumstance if the white
bal isdrawn & firg, ..., or a most after m drawings.

For a fixed m, the sample space conssts of a partition of (B;L”_Ifl)

equiprobable elementary events and (B‘Lg;__?}_r) of them generate

exactly the event (R =), r=1,2,...,m. Thus, the probability mass
function is given by:

(B—|—m—1—7‘)

m—r

- 2 r=1.2....,m
B+m—1
(%)

This expresson can be interpreted in a straight way since:

B m—1 B
5 pr=2)= :
B+m-—1’ T ) B+m—-1B+m-—2’

PrlR=r)=

PrlR=1)=

B m— 1 m — 2 B '
- B4+m-—-1B+m—-2B+m—-3""

Pr(R = 3)

These results confirm the structure of the random experiment and,
moreover, they show that any probability is a function of the ratio
B/(B + m — 1), that is the probability of drawing awhite bal firgly. In a
preference modd, this expresson is the probability of the best sdlection
(R =1) of an item among m Smilar items. Thus, we define this quantity as
the preference parameter of the modd by letting:
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B
r(f ) B+m-—1 0
Then, in the following, for a fixed m, we re-parameterize the IHG random
variable by means of the § parameter instead of B.

This step deserves some comments. We introduced the parameter B as
the (discrete) number of white bals in the urn, so that the parameter space
of BisQ(B)={B: B=0,1,2,...}. On the other end, we are now
introducing @, which is a probability, as a (continuous) parameter
expressing the likeihood of the event, and then the parameter space of 6 is
Q) ={6:0<6<1}.

To overcome the problem, for any fixed m, we introduce a theoretical
un such tha, for any 6 € (0,1], thee exitss a B* such tha
|$§1_1 — 0] <e, forany smdl e >0. If B* isan integer number then
the urn has a physicd meaning; otherwise, the modd refers to an unfeasible
urn with a red number of B* white bals. In this paper, the IHG random
vaiable will be examined in term of the preference parameter  and a
theoretica urn system will be associated to it.

An immediate advantage of this gpproach is that the preference
parameter is invariant with respect of the number of items; thus, we could
compare the degree of preference for different objects, brands,
professions, colours, and so on.

After some agebra, the new parameterization is the following:

0 r=1;
— — r—1
Prif =)= G 0(1=0 I (m—s—1+s0)"1r=2,...,m;
s=1
r—1
wherec, =[[(m—s)=(m—-1)!/(m —7)!,r=2,...,m.
s=1

Alternative parameterizations can be derived. For instance, one is given

by:
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(m—s)(1 —0)

— | r=1,2,...,m;
m—1-—s1-0)

r—1
Pr(R=r)= Glj(r =D)+J0r#1) []
s=1

where 7 (.) istheindicator function:

1, if the condiition A istrue;
jL@Z:{Qﬁmemeansmwa

Notice that, from a computationa point of view, it is more efficient to
introduce the recursive formula :

P{R=1)=0; PrR=r+1)=Pi(R=r)(1 —0)#_{%,7“:1 .....

From the previous expression, we deduce that the IHG random variable
has a mode either in R=1, if 6 >1/m, or in R=m, if 6 <1/m. If
6 =1/m, then the IHG random varigble coincides with a discrete Uniform
random variable defined over the support {1,2,...,m}. Thus, the IHG
random variable digribution is

i) amonotone decreasing function when 6 >1/m (podtive asymmetry);
i) amonotone increasing function when 6 <1 /m (negative assymmetry);

i) a symmetric congant didribution over the fird m integers when
0=1/m.

The mean vaue and the variance are, respectively:

m—6 (m —1)%(m — 0)8(1 — 0)

B BT T T ST

At this point, it is useful to derive explicitdy the probability distributions
of the IHG random variables for the first vaues of m. They are shown in
theTablelform=1,2,...,5.
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First of dl, we note that the case m = 1 refers to a degenerate random
varigble that assumes the vaue (R = 1) with probability 1, sinceit refersto
an urn condsting of B white balls, sothat 6 =1.

Table 1. Probability distributions, mean value and variance for the
Hypergeometric random variables, m=1,2,...,5.

m=1] m=2 m =3 m =4 m=5
PrR=1)| 1 0 0 0 i
20(1-0) 30(1-0) 40(1-0)
Pr(R =2) 1—-46 7o) 10 (3+0)
(1-0)° 66(1-6)” 60(1-0)
Pr(R=3) (1+0) (2+0) (1+20) (146)(3+9)
2(1-6)° 120(1-6)*
Pr(R =4) (2+0)(1+20) | (1+6)(1+30)(3+0)
3(1-0)*
Pr(R=5) (14+0) (1+36) (3+6)
Pr(R =6)
Pr(R=1)
E(R) HER 177 T30 T
20(1-0)(3-9) | 99(1-0)(4-6) 80(1-0)(5-0)
Var(R) 0 [6(1-0) (136) (2+0)(1120)% | (1+0)(1+30)2

Then, the case m =2 refars to a Bernodlli trid ("success-falure’
system, or an urn with 2 bals one of which is white). The IHG random
variable is defined as the number of drawings necessary for afirgt "success'
(thet is the drawing of a white bal). Thus, its support is {1,2} with a
probability distribution defined by:

Pr(R=1)=0; Pr(R=2)=1-9.

The random variable R is a shifted Bernoulli random variable in the sense
thet if X ~ Ber(f) than R = 2 — X. The mean vaue and the variance are:
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E(R) =2 — 0; Var(R) =0(1 — 0).

The case m = 3 has been fully discussed by Ficcolo (2000) as a
convenient modd for ranking preferences in many political and sociologica
fields. For this digtribution it is possible to derive an explicit expresson for
the ML egstimator of the preference parameter. Moreover, the moment
generating function is

t

140

c(y=——{o+[o+e-0)]"},
and the mean value and the variance are;

30 200103 0)
B(R) =55 Var(R)=—

The case m =4 is quite common in evaudion sudies, modly in
Education and Marketing, where respondents are asked to choose among
two ordered disagreement and two ordered agreement answers. Some
experiences have shown that when the number of dternatives is even and
amall, an amount of undesirable varigbility can mask the red agreement of
the subjects since an unknown proportion of indifference answers may be
uncorrectly reported as likeness or disagreement.

Findly, wefind interesting to reate the IHG random variable to an index
of positive evaluation (IVP), defined as the rdative frequency of
respondents which agree with the service to be rated. This measure has
been recently adopted by officid inditutions (as the Itdian Minigry of
Education, University and Research, for ingtance).

Then, when the scde israted on m points:

1vP=Pr(R< [%D
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Some current studies set m = 4 which implies
IVP=Pr(R<2).

Thus, if we adopt the IHG random variable as a coherent probabiligtic tool
for modeling the ranks, it isimmediate to derive the following formulas:

Jyp 16 -20)
246

9:%{(5—[&/13) - \/(5—IVP)2 —16IVP |.

This shows the one-to-one relationship between the 7'V P messure and
the preference parameter 6 of the IHG random variable.

3. Maximum likelihood estimation of the preference parameter

In this section, we discuss the ML edimation of the preference
parameter of the IHG random varigble and derive the formulas for the
asymptotic variance of its estimator.

Let p-(0) =Pr(R=r|0#), and condder the random sample of
observed ranks (ry,rs,...,m,). The later conveys an amount of
information about the parameter 6 equivadent to that of the sample
collection . = (n1,na,...,mm,)  of the absolute frequencies of the ranks

(R=1), (R=2),.., (R =m), respectively.
Thus, the log-likelihood function can be written as:

[(0:m) = nrlog(pr(0)).
r=1
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D'Elia (2001b) showed that the ML estimator 7;, of 6 is dways well
defined since it is the unique solution of an (m — 1)-degree polynomid
equation in 6, beng 0 € Q(f) = {6:0<0 <1}. This solution can be
found anditicaly for m < 5, dthough it has a Smple form only for m = 3
(Piccolo, 2000).

Exploiting standard results on the ML esimation (Serfling, 1980), the
asymptotic variance of T}, can be derived by the Cramér theorem :

m g/ 2\
Var(i) = (Z e )

r=1

Because of the congstency of the ML estimator and the continuity of p;- (),
we can use Var(T;,) for asymptotic inference about 6.

The previous formula can be evaued efficiently by recurson. Given m, it
is possble to compute jointly the probabilities p,(6), their derivatives

2
pl.(0) with respect to 0, and the addends v, () = %. Some smple
but lengthy agebrayidds the fallowing recursion:
9gr+1 :ATgT y ' = 1727"'7m_1;

wherefor r=1,2,...,m—1:
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m-—-r

ar(9)=(1—9>m_r_1+re;

—(m—r)(l—i—r—r@).

arl?) = (m—r— 1+r0)2

We observe that the asymptotic variance V ar(15,), for m > 2, indudes
the factor 6(1 — #)/n. Thus, it is convenient to remove it before studying
an gpproximeation.

The Teable 2 shows the quantities g¢,,(0) = ﬁV&r(Tn) for
m=2,3,...,5. These expressons have been obtained by a procedure
written in the Maple V language (reported in Appendix).

Table 2. Factorsin the asymptotic variance of the ML estimator

m | gm(0) = ﬁV(IT(Tn)
1

2
3 02 +20+1

6243
4 460*+200° +336% +200+4
5

404 +263 +3362 +200+22
965 +-7860° +24760* +35660° +2476° +780+9
900 +126°+14560%+22463 437962 +1800+75

4. A simple approximation for the asymptotic variance

Although recursive expressons can be derived for any m, they are
rather cumbersome to be used in the inferential procedures (common
Stuations range up to m =14, for ingtance). Thus, our next objective isto
derive a smple and effective expression for the asymptotic variance of the
ML edimator for m>4. In fact, we exclude from the andysis the cases
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m =2 and m = 3, dnce the expressons for the asymptotic variance is
very smple and, of coursg, it is best than any approximation.

Some algebraic consderations support the following statements:

i) the quantities g,,(0) are the ratio of two homogenous polynomias of
degrees 2(m — 2);

i) the leading coefficients of these polynomids are the same;

iii) the polynomid in the numerator is dways symmetric snce it is the
product of the square of Smple expressions,

iv) gm(1) =1,VYm=2,3,...;

V) gm(0)> ¢ > 0,for m—o0;

vi) dthough the numericd vaue of the coefficients increases with the
degree of the polynomids, the numeraior and the denominaior of the

quantities g,,(0) are bounded since they are linear combinations of the
varigble 6 which belongsto (0,1];

vii) the functions g,,,(0) are well approximated by linear reaionships
over the whole range of 2(#), with coefficients depending by m, asthe
Figure 1 showsfor m=4,5,...,15.

0.0 4l 62 43 04 05 66 47 0B 49 1.6

Figure 1. Plots of the function g,,,(#), for m=4, 5, ...,15.
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Then, the last consderation suggests to regress, for m=4,5,...,15
(say), the exact g, (0) on the approximation g,,(0) = Am + Bmb, over
some discrete range (0 =0.001,...,0,999). Of course, since we need
gm(1) = 1, the coefficients are constrained by A, + By, = 1.

The results are quite encouraging and briefly summarized by the
following points:

i) the smplest and best result we obtained is the following:

G (0) =1 = B (1 —0);

By, =0.992958—0.087813m 1 —2.673147m 2.
i) for any m=4,5,... the goodness of fit of this gpproximation
increases quickly starting from R? =0.996 whenm = 4;

iii) in theworgt case (m = 4), we obtained:
lgm (0) — G,,(0)]<0.00489

which confirms that our gpproximation is uniformly accurete;

iv) agragphica evidence of the fitting quality of our proposd is displayed
in the previous Figure 2, where the asymptotic variances and ther
approximations g,,,(0)0(1 — 6), form=4,5,...,15, are plotted.

Finaly, we observe that we have excluded the size n from the previous
condderation. Thus, snce the sample sze is generdly moderate, the
absolute value of the error implied by our gpproximation is substantialy
gmdlerin red case dudies.
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Figure 2. A comparison among asymptotic variances and their linear

approximations, for m=4,5,...,15.

5. Concluding remarks

In this paper, we proposed an agpproximate formulation for the
asymptotic variance of the ML esimator of the parameter of the IHG
random variable. Specificaly, we suggested to operate following a mixed

srategy:

i) if m=2,3, itis convenient to goply the explicit expressons for the

ERES

asymptotic variance of T;,, asthey are shown inthe Table 1;

ii) if m > 4, it is convenient to approximeate the asymptotic variance by a

linear function with varying coefficients.
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The fitting we obtained is very good. Of coursg, it could be improved by
studying the difference g, (6) — 9,,,(0), which is clearly autocorrelated as
it often happens when one fits mathematical functions. However, we believe
that the increase in the goodness of the approximations will not be balanced
by the cost of more complex expressions.
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Appendix

Maple V procedure for computing the asymptotic variance of the maximum
likelihood estimator of the preference parameter in the Hypergeometric random
variable, for m fixed.

> varexact:=proc(m)

> local prob, adderiv, r, varianza, vvv, uuu, wWww;

> global th;

> prob[1]:=th;

> adderiv:=1/th;

> for r from 1 to m-1 do

> prob[r+1]:=prob[r]x (1-th)x (m-r)/(m-r-1+rxth);
> adderiv:=adderiv+normal(((diff(prob[r+1],th))"2)/(prob[r+1]));
> od;

> varianza:=1/adderiv;

> vwv:=simplify(varianza)/((-th)« (-1+th));

> uuu:=sort(normal(vvv,"expanded"));

> www:=thx (1-th)xuuu; print(www);

> end:
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