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Summary: Maximum pseudolikelihood estimates for Gibbs point pro-
cesses (observed in a planar regionA) are typically derived from a con-
venient approximation of the pseudolikelihood accomplished through nu-
merical integration. Efficient estimates for Gibbs processes with loglinear
conditional intensities can then be obtained by fitting a Poisson loglinear
model as iteratively-reweighted least-squares estimates. We here study
the local linear smoothing of all numerical contributions (from the ob-
served regionA) to maximum pseudolikelihood estimates as a way of
further improving their statistical performance in terms of bias and vari-
ance (mean square error).
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1. Introduction

Computational methods for maximum pseudolikelihood estimates in
Gibbs (Markov) point processes (Besag, 1977) are crucial in applications
(cf. Diggle and Gratton, 1984, Diggleet al., 1994, Goulardet al., 1996,
Huang and Ogata, 1999, 2002, and Mateu and Montes, 2001). These
methods are typically based on numerical quadrature rules (cf. Davis and
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Rabinowitz, 1984, chapters 1, 2, 5) over a planar (bounded) region, where
the point configuration is observed.

The Berman-Turner device requires a preliminary random genera-
tion of artificial points, and then produce, together with the observed
configuration of points of the process, maximum pseudolikelihood es-
timates as iteratively-reweighted least-squares estimates of a Poisson log-
linear model (McCullagh and Nelder, 1989, chapter 6, and Chambers and
Hastie, 1992, chapter 6). The original method is proposed in Berman and
Turner (1992) for line and Poisson processes. Recently, extensions of the
Berman-Turner device to general Gibbs (Markov) point processes have
been proposed by Baddeley and Turner (2000a,b).

An interesting feature of the Berman-Turner device is the fact that
maximum pseudolikelihood estimates can be calculated with well-known
model-fitting statistical software (cf. Chambers and Hastie, 1992). Re-
lated work may include Diggleet al. (1994), Lindsey (1995), Assunção
and Guttorp (1999) and Mateu and Montes (2001).

By applying the results presented in Preston (1976), chapter 6, we
aim to identify asymptotics for these maximum pseudolikelihood esti-
mates. In particular, we view the observed point configuration as a finite
Gibbs lattice field. Following Green (1984), asymptotic variances can
thus be derived as described by Jensen (1993), by considering an increas-
ing domain asymptotics, which is theoretically valid under the Dobrushin
uniqueness condition for Gibbs measure.

Here we wish to obtain an asymptotically more efficient version of the
Berman-Turner device by smoothing all contributions to maximum pseu-
dolikelihood estimates (from regionA) with nonparametric techniques
for local polynomial regression (cf. Fan and Gijbels, 1996, chapter 3, and
Ruppert and Wand, 1994), and then integrating them formally.

2. Pseudolikelihood function

Let xA = {x1, . . . , xn} be a point configuration in a bounded region
A ⊂ R2 , wheren = n(xA) ≥ 0 is a random variable. We suppose thatxA

is a restriction toA of a stationary (translation invariant) Gibbs (Markov)
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point processX .
RegionA may be viewed as a bounded set inR2. RegionA works

as a sampling window within a larger region andxA consists of a finite
number of pointsx (with componentsx(p), p = 1, 2 ), generated by the
point processX , which lay inA . We denote bya the area of regionA.

We assume that the probability ofX is

f(xA) = f(xA; θ) , (1)

with respect to the distribution of the Poisson process with intensity1
on A , whereθ ∈ Θ ⊂ Rq . We also assume thatf(xA; θ) > 0 implies
thatf(x′A; θ) > 0 , for all point configurationsx′A ⊂ xA . A broad class of
Gibbs point processes (with unique Gibbs measureµ and finite interaction
r) may be defined under such conditions; see Preston (1976), chapter 6,
Baddeley and Møller (1989) and Baddeley and van Lieshout (1995).

The Papangelou intensityλθ(u; xA) of the Gibbs point processX at
a pointu ∈ A defines the pseudolikelihood functionPL(θ; xA) (Besag,
1977). From (1), the intensityλθ(u; xA) can be obtained as

λθ(u; xA) = f(xA ∪ {u}) / f(xA) ,

u /∈ xA , or
λθ(xi; xA) = f(xA) / f(xA\{xi}) ,

xi ∈ xA , and is the conditional probability that processX has a point at
u or xi given the rest ofX in xA .

In particular, for a subsetB ⊆ A ,

PL(θ; xA) =

{ ∏
xi∈B

λθ(xi; xA)

}
exp

(
−

∫

B

λθ(u; xA) du

)
. (2)

See also Jensen (1993) and Barndorff-Nielsenet al. (1999), chapter 3.
To further the work by Berman and Turner (2000a), we focus on Gibbs

point processes with loglinear conditional intensity (cf. Baddelley and
Møller, 1989, and Baddeley and van Lieshout, 1995). That is,

λθ(u; xA) = exp(θT S(u; xA)) , (3)
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whereS(u; xA) is a vector ofq spatial covariates defined at each pointu
in A . We assume that

‖ S(u; xA) ‖ exp(θT S(u; xA))

is uniformly bounded inu ∈ A andθ ∈ Θ , for each fixedxA .
For simplicity, we take a square regionA andB = A in the above

definitions of conditional intensity.
Normal equations

∂ log(PL(θ; xA)) / ∂θ = 0 ,

then become
∑
xi∈A

S(xi; xA) =

∫

A

S(u; xA) exp(θT S(u; xA)) du , (4)

with both sides equal under expectation.
The loglinear form of the conditional intensity makeslog(PL(θ; xA))

concave (cf. Pratt, 1981). If the parameter setΘ is convex, it also follows
that maximum pseudolikelihood estimates exist at an interior point ofΘ
or on the convex boundary∂Θ of Θ .

Solution to normal equations (4) requires numerical integration.

Example (Strauss process). This point process is a pairwise interaction
process (cf. Baddeley and Møller, 1989). The Strauss process is a good
model for ordered point configurations and defines the Poisson process as
a specific case. Letr be the interaction radius. Letnr(xA) be the number
of pairs of distinct points in the regionA, which lie within a distancer of
one another. The conditional intensity is defined as

λβ,γ(u; xA) = β γτr(u;xA) , (5)

whereβ > 0 and0 ≤ γ ≤ 1 , τr(u; xA) is the number of distinct points
xi in A , such that

0 < ‖ xi − u ‖≤ r .

The pseudolikelihood is loglinear,

log(PL(β, γ; xA)) = n(xA) log(β) + 2nr(xA) log(γ)
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− β

( ∫

A

γτr(u;xA) du

)
, (6)

where vectorsθ = (log(β), log(γ))T , andS(u; xA) = (1, τr(u; xA))T .
Normal equations are of the form (4).

3. Estimates by quadrature rules

Extending the Berman-Turner device (Berman and Turner, 1992), Bad-
deley and Turner (2000a,b) suggests the preliminary random generation
of a configuration of artificial points in the observed regionA , to form
(with the observed point configurationxA of sizen ) a configuration of
quadrature points

uA = {u1, . . . , um} ,

where the point configurationxA ⊂ uA andn < m . See Figure 1.
For simplicity, we suppose thatuA\xA is a restriction toA of a homo-

geneous Poisson point processU , independent ofX . Sizem of uA is the
value of the random variablem = m(uA) , which depends on the inten-
sity of the point processU in A . In this sense, we may say that extensions
in Baddeley and Turner (2000a,b) require an appropriate superposition of
point processesX andU .

The Berman-Turner device defines the integral in (2) as the finite Rie-
mann sum ∫

A

λθ(u; xA) du ≈
m∑

j=1

λθ(uj; xA) ŵj , (7)

whereŵj > 0 are the areas of the tiles partitioning the regionA and
containing one pointuj each, taken as quadrature weights summing to
the areaa of A (cf. Davis and Rabinowitz (1984), chapter 5).

Rectangular tiles (cf. Figure 1) may be used for speeding up the cal-
culation of the Riemann sum in the right hand side of (7). In this case, the
weight ŵj may be obtained as the ratio of the area of the tile containing
uj to the number of quadrature points in the same tile,j = 1, . . . , m .

The log-pseudolikelihoodlog(PL(θ; xA)), wherePL(θ; xA) is de-
fined in (2), is then approximated by
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Figure 1. Simulated points (•) from moderately clustered point processes
of Strauss type (with interaction radiusr = 0.5) in a region A of size
10 × 10 ; number of pointsn = 24 in (a), n = 52 in (b), n = 24 in (c)
andn = 52 in (d). Random artificial points (◦) for integration rules, from
a homogeneous Poisson process, with a setW (l) of l = 100 quadrature
tiles of size1×1 in the same region A ; number of artificial pointsm−n =
[1.1 n] in (a) and (b), andm−n = [1.4 n] in (c) and (d), where[u] denotes
the integer not greater than realu .
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log(PL(θ; uA)) ≈
n∑

i=1

log(λθ(xi; xA))

−
m∑

j=1

λθ(uj; xA) ŵj ,

which is equivalent to

log(PL(θ; uA)) =
m∑

j=1

ŵj {yj log(λj)− λj} , (8)

where
λj = λθ(uj; xA) , (9)

yj = ŵ−1
j zj , (10)

andzj = 1 , if uj ∈ xA , zj = 0 , if uj ∈ uA\xA .
Baddeley and Turner (2000a) point out that (8) is equivalent to the log-

likelihood of independent Poisson variablesYj with meansλj , taken with
weightsŵj (cf. McCullagh and Nelder, 1989, chapter 6, and Chambers
and Hastie, 1992, chapter 6).

Maximum pseudolikelihood estimatesθ̂ of θ in (2), and in (3), can be
obtained by fitting the Poisson loglinear model

log(λj) = θT vj , (11)

whereλj are defined in (9), to responsesyj (given by (10)) and covariate
valuesvj = S(uj; xA) , with weightsŵj defined in (7).

Example (Strauss process). Maximum pseudolikelihood estimatesθ̂ can
be obtained by fitting the model

log(λj) = θ1 + θ2 vj ,

to yj and vj = τr(uj; xA) , whereλj is defined in (5),θ1 = log(β) ,
θ2 = log(γ) . Whereasγ > 1 , concavity of the log-pseudolikelihood (6)
implies thatθ̂2 ≡ 0 .



8 A. Pallini

Loglinear form (11) may also characterize soft core point process,
point processes with step function interaction, Ord’s point processes, area-
interaction point processes and inhomogeneous models with spatial co-
variates (cf. Baddeley and van Lieshout, 1995, and Baddeley and Turner,
2000a).

Extensions in Baddeley and Turner (2000a) to the Berman-Turner de-
vice include maximum pseudolikelihood estimatesθ̂ for multi-type and
marked point processes (cf. Baddeley and Møller, 1989).

4. Refining estimates by local smoothing

Our refined Berman-Turner device approximates to the integral in (2)
by formally integrating a nonparametric regression estimator fitted locally
to λθ(uj; xA) and quadrature pointsuj .

Let us consider a bivariate locally weighted regression (Scott, 1992,
chapter 8, Ruppert and Wand, 1994, Wand and Jones, 1995, chapter 5,
Fan and Gijbels, 1996, chapter 3, Hjort and Jones, 1996, and Loader,
1996), where the explanatory variables are observed as the components
u

(1)
j andu

(2)
j of quadrature pointsuj in the setuA , which contains the

configuration of pointsxA .

Let H be a2× 2 symmetric positive definite matrix depending onm .
We denote by

KH(t) = |H |−1/2 K(H−1/2 t)

a bivariate kernel function,t ∈ R2 .

For the kernelK and the sequence of bandwidth matrices|H |1/2 , we
assume the regularity conditions (A1), (A2), (A3) and (A4) in Ruppert
and Wand (1994). With (A3), in particular, we assume thatm−1 |H | and
each entry ofH tends to zero asm → ∞ , with H remaining symmetric
and positive definite.

A consistent nonparametric regression estimator (cf. Wand and Jones,
1995, chapter 5) is the weighted linear combination of theλθ(uj; xA)
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defined as

ĝ(t) = m−1 {KH(0)}−1

m∑
j=1

λθ(uj; xA) KH(t− uj) . (12)

Nonparametric fits of (12) can be improved by analogous locally linear
and locally quadratic regression estimators (cf. Ruppert and Wand, 1994).

A refined log-pseudolikelihoodlog(PL(θ; xA)) can be defined as

log(PLref (θ; uA)) ≈ n−1

n∑
i=1

log(λθ(xi; xA))

− ω̂

m∑
j=1

λθ(uj; xA) , (13)

which is

log(PLref (θ; uA)) = ω̂

m∑
j=1

{yj log(λj)− λj} , (14)

where
λj = λθ(uj; xA) , (15)

ω̂ = m−1 {KH(0)}−1

∫

A

KH(t− uj) dt , (16)

H = a1/2

(
h2

11 h2
12

h2
21 h2

22

)
n−1/5 , (17)

wherea is the area of regionA ,

yj = ω̂−1 n−1 zj , (18)

wherezj = 1 , if uj ∈ xA , zj = 0 , if uj ∈ uA\xA .
Refined maximum pseudolikelihood estimatesθ̂ref of θ in (2) can be

calculated by fitting the Poisson loglinear model

log(λj) = θT vj , (19)
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whereλj are defined in (15), to responsesyj (given by (18)) and covariate
valuesvj = S(uj; xA) , with weightsω̂ defined in (16).

Bandwidth selectors for multivariate locally weighted regression es-
timators are studied in Ruppertet al. (1995) and might be modified (cf.
Hjort and Jones, 1996) to improve the statistical efficiency of the first
term in log-pseudolikelihood (13).

Refined maximum pseudolikelihood estimatesθ̂ref for multi-type and
marked point processes can be introduced and studied as well, starting
from Baddeley and Turner (2000a) and (14).

5. Asymptotics

Preston (1976), chapter 6, shows that a point process given by the
density (1) can be viewed as a Gibbs random field, and vice versa.

Let {Xv , v ∈ Z2} be a Gibbs random field. Without loss of general-
ity, let e be a real value, product of two componentse(1) ande(2), where
e = e(1)e(2) , e(1) = e(2) , ande(1) ≥ r . For everyz ∈ Z2, define

Av = { t ∈ R2 : e(p)(2 z(p) − 1)/2 ≤ t(p) < e(p)(2 z(p) + 1)/2 } , (20)

wherep = 1, 2 . Square tiles{Av} partitionR2, while e determines their
common area.

We can transform a Gibbs point process into the Gibbs field{Xv }, by
taking the point configurationxAv in the tileAv as thev-site variable,

Xv = xAv . (21)

More precisely, the tileAv in (21) is given by (20), and sitev of Xv is the
2-dimensional vector of the barycentric coordinatesv(1) andv(2) of Av ,
for everyv ∈ Z2 .

Here we study asymptotics of iteratively-reweighted least-squares es-
timates (cf. Green, 1984), without pursuing the topic of numerical effi-
ciency of Riemann sums in log-pseudolikelihoods (8) and (14). Math-
ematical theory for numerical errors and their bounds may be found in
Davis and Rabinowitz (1984), chapters 2 and 5.
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Let W (l) ⊂ Z2 be the set of sites of cardinalityl , such that the square
regionA may be written as

A =
⋃

v ∈W (l)

Av . (22)

See Figure 1 , for a setW (l) with l = 100 tiles. Log-pseudolikelihoods
(8) and (14), being based on Riemann sums, have the linear form

log(PL(θ; uA)) =
∑

v ∈W (l)

mv∑
j=1

log(PL(θ; uj)) , (23)

wheremv = m(Av) denotes the random number of quadrature pointsuj

in the tileAv . In particular, we denote bŷwvj , yvj andzvj , andλvj the
weights, responses and predictors in the tileAv , for everyv ∈ W (l) ⊂
Z2 . Recall that in (8) weightŝwj are positive and vary with tiles,j =
1, . . . , m . Let ŵ = max 1≤ j≤m (ŵj) . From (23), it follows that

mv∑
j=1

log(PL(θ; uj)) =
mv∑
j=1

ŵvj {ŵ−1
vj zvj log(λvj)− λvj}

≥ ŵ

mv∑
j=1

{yvj log(λvj)− λvj} , (24)

whereyvj = ŵ−1zvj in log-pseudolikelihood (8), and

mv∑
j=1

log(PL(θ; uj)) = ω̂

mv∑
j=1

{yvj log(λvj)− λvj} , (25)

whereyvj = ω̂−1 n−1zvj in log-pseudolikelihood (14). From (24) and
(25), it is easy to see that the first and second derivatives of log-pseudolike-
lihoods (8) and (14) can be written as sums overW (l) .

We assume thatW (l) expands toZ2 in all directions, as does the disc
D of radiuse(1)l/2 contained in the regionA , whereD ⊂ W (l) , as
l → ∞ . Recall definition (22) forA . We usel ⇒ ∞ , to indicate this
increasing domain asymptotics. In log-pseudolikelihoods (8) and (14),
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stationarity of points and artificial points inuA , in the superposition of
point processesX andU , implies thatn →∞ , m →∞ , andm− n →
∞ , asl ⇒∞ .

We assume the Dobrushin uniqueness condition for Gibbs measureµ .
It follows a mixing decay of spatial correlations for the Gibbs field{Xv}
(cf. Jensen, 1993, and Pallini, 2000), asl ⇒∞ .

We denote bySvrj the r-th component of the vectorS(uj; xAv) of
spatial covariates defined atuj in the tile Av . From (3) and (24), we
define

γvrs = − ŵ (∂2 / ∂θr∂θs)
[ mv∑

j=1

{ŵ−1zvj log(λvj)− λvj}
]
,

= ŵ

mv∑
j=1

{∂2λvj/∂ log(λvj)
2}Svrj Svsj , (26)

wherer, s = 1, . . . , q , and

Γ̂ =
∑

v ∈W (l)




E(γv11) · · · E(γv1q)
...

...
E(γvq1) · · · E(γvqq)


 , (27)

where expectation is taken with respect to the density (1). From (3) and
(25), we define

γvrs = ω̂

mv∑
j=1

{∂2λvj/∂ log(λvj)
2}Svrj Svsj ,

wherer, s = 1, . . . , q , and

Γ̂ref =
∑

v ∈W (l)




E(γv11) · · · E(γv1q)
...

...
E(γvq1) · · · E(γvqq)


 . (28)

In (27) and (28), we assume that

ŵ
p→ w ,
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ω̂
p→ ω ,

asl ⇒∞ , respectively, wherew > 0 andω > 0 are scalars. The asymp-
totic covariance matrixΓ−1 , is obtained from (27) and (28) by conver-
gence in probability,

l−1 Γ̂−1 p→ w−1 Γ−1 ,

l−1 Γ̂−1
ref

p→ ω−1 Γ−1 ,

asl ⇒ ∞ . The asymptotic covariance matrices of responsesYj in log-
pseudolikelihoods (8) and (14) areV ar(Y ) = w−1 Λ and V ar(Y ) =
ω−1 Λ , asl ⇒ ∞ , respectively, andΛ is a specified matrix. According
to the Central Limit Theorem 4.1 in Jensen (1993), under the Dobrushin
uniqueness condition for Gibbs measureµ , it is seen that

l−1/2 (θ̂ − θ)
d→ Nq(0 , w−1 Γ−1) , (29)

l−1/2 (θ̂ref − θ)
d→ Nq(0 , ω−1 Γ−1) , (30)

asl ⇒∞ .
Refined maximum pseudolikelihood estimatesθ̂ref from the observed

regionA may be preferred to corresponding maximum pseudolikelihood
estimateŝθ , if

ω−1 ≤ w−1 , (31)

asl ⇒∞ . Asymptotic result (31) is also valid with appropriate values for
sizesm andn in the configuration of quadrature pointsuA in the region
A , and a sufficiently large numberl of tiles{Av} given by (20) inA .

Linear form (23) is determined by the linearity of the Riemann sums,
which are calculated in (8) and (14), for approximating the integral in
pseudolikelihood (2). Considering stationarity of point processesX and
U , observe that the numerical accuracy of Riemann sums in (8) and (14)
may improve (cf. Davis and Rabinowitz, 1984, chapters 2 and 5), if the
intensity ofU increases, asW (l) expands toZ2 .

Results (29) and (30) basically originate from asymptotics for iterati-
vely-reweighted least-squares estimates with independent and identically
distributed observations. See Green (1984). A more general formulation
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of (27) and (28) should be based on the shift operator over the space of
configurations of points inR2 , as described in Jensen (1993).

Comparison with other stationary point processesU for generating
the configurationuA of m − n artificial points in the observed regionA
of the point processX remains of interest.

The asymptotic behavior of maximum pseudolikelihood estimatesθ̂
and θ̂ref in multi-type and marked point processes (cf. Baddeley and
Turner, 2000a) requires other theoretical details.

6. Simulation study

In this section, we report on a simulation experiment conducted to
compare and analyze the performance of our refined maximum pseudo-
likelihood estimateŝθref .

We studied a product kernelKH(t) , t ∈ R2 , defined by

K(t) = k(t(1)) k(t(2)) , (32)

with univariate Gaussian kernelsk(t(p)) , wherep = 1, 2 , with the band-
width matrix H = diag( h2

1 , h2
2 ) , whereh1 = h2 = h . In particular,

condition (A3) in Ruppert and Wand (1994) becamem−1h4 → 0 and
h2 → 0 , asl ⇒∞ .

We considered moderately clustered Strauss-like processes withγ =
1.2 ( θ2 ≡ 0 , θ1 = n/a , wheren = n(xA) in a regionA of area
a = 10 × 10 ) and interaction radiusr = 0.5 , simulated (by the alter-
nating birth-death technique of Ripley, 1977) from the conditional inten-
sity λβ,γ(u; xA) , which determines (6). We studied configurationsxA of
n points, withn = 16, 20, 24, 28, 32, 36, 40, 44, 48 and52 , with simu-
lations of artificial points of sizem − n = [1.1 n] , m − n = [1.2 n] ,
m − n = [1.3 n] andm − n = [1.4 n] , where[u] denotes the integer not
greater than realu .

Monte Carlo bias and variance of maximum pseudolikelihood esti-
matesθ̂ and Monte Carlo bias and variance of refined maximum pseudo-
likelihood estimateŝθref were obtained from500 independent repetitions
of the same simulation trial.
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Figure 2. Comparison of maximum pseudolikelihood estimatesθ̂ref and
θ̂ for θ in point processes of Strauss type, for10 values ofn (horizontal
axes);Bias(θ̂ref 1)/Bias(θ̂1) in (a), andV ar(θ̂ref 1)/V ar(θ̂1) in (b), and
Bias(θ̂ref 2)/Bias(θ̂2) in (c), andV ar(θ̂ref 2)/V ar(θ̂2) in (d), wheren =
16, 20, 24, 28, 32, 36, 40, 44, 48, 52 in m − n = [1.1 n] (solid), m − n =
[1.2 n] (· · · ), m−n = [1.3 n] (−·−) andm−n = [1.4 n] (−−−), where
[u] denotes the integer not greater than realu .
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Maximum pseudolikelihood estimatesθ̂ were calculated by partition-
ing the square regionA into l = 100 quadrature tiles{Av} of common
areae = a/l , wherea = 10 × 10 , with quadrature weightŝwj =
e/m(Av) , j = 1, . . . ,m , where the tileAv contains thej th quadrature
pointuj . See Figure 1.

Observe that in the refined log-pseudolikelihood (14) the integral is
invariant with respect to the bandwidth matrixH = diag(h2, h2) , which
defines the product kernel (32). Refined log-pseudolikelihood (14) was
always implemented with the value

|H |−1/2 = a−1/2 (2101.53)−1 n1/5 ,

where areaa = 10× 10 .
For calculating iteratively-reweighted least-squares estimatesθ̂ and

θ̂ref , we applied the S-PLUS command

glm ( y ∼ v , family = poisson , link = log , weights = t )

(cf. Chambers and Hastie, 1992, chapter 6) with

t = (ŵ1, . . . , ŵm)T ,

t = (ω̂, . . . , ω̂)T ,

respectively, where
y = (y1, . . . , ym)T ,

v = (τr(u1; uA), . . . , τr(um; uA))T .

Edge corrections (cf. Barndorff-Nielsenet al., 1999, chapter 3) for
the square regionA were never implemented.

Figure 2 shows that̂θref outperformsθ̂ in estimatingθ , for all sizes
m from m − n = [1.1 n] to m − n = [1.4 n] ; this conclusion might be
expected from the asymptotic comparison (31) of covariance matrices.

Form− n < [0.95 n] , θ̂ seems to be numerically hard for good com-
puter facilities (HP Pentium III, 700 Mhz); with the present simulation
experiment, in particular, the Monte Carlo variance ofθ̂1 may be mean-
ingless (cf. Deng and Paul, 2000). Estimateθ̂ref 2 gains efficiency with
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respect toθ̂2 , with a simultaneous increase in the variability of refined
estimateŝθref 1 for θ1 ; this effect may be explained in part by the or-
thogonality between the variance of responsesYj and the estimates of
componentsθ1 andθ2 in θ . The bias of componentŝθref 1 and θ̂ref 2 in
θ̂ref behaves similarly.

Different results for iteratively-reweighted least-squares estimatesθ̂
and θ̂ref may be obtained, by defining weightŝwj and ω̂j in terms of
Dirichlet, Johnson-Mehl, Voronoi or centroidal Voronoi tessellations (cf.
Barndorff-Nielsenet al., 1999, chapter 2, Duet al., 1999, Okabeet al.,
2000, and Baddeley and Turner, 2000a) in regionA . In this way, we have
only one quadrature point in each tessellation, and we may produce better
numerical approximations of Riemann integrals.
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