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Summary: Maximum pseudolikelihood estimates for Gibbs point pro-
cesses (observed in a planar reginare typically derived from a con-
venient approximation of the pseudolikelihood accomplished through nu-
merical integration. Efficient estimates for Gibbs processes with loglinear
conditional intensities can then be obtained by fitting a Poisson loglinear
model as iteratively-reweighted least-squares estimates. We here study
the local linear smoothing of all numerical contributions (from the ob-
served regiond) to maximum pseudolikelihood estimates as a way of
further improving their statistical performance in terms of bias and vari-
ance (mean square error).
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1. Introduction

Computational methods for maximum pseudolikelihood estimates in
Gibbs (Markov) point processes (Besag, 1977) are crucial in applications
(cf. Diggle and Gratton, 1984, Digglket al,, 1994, Goularcet al,, 1996,
Huang and Ogata, 1999, 2002, and Mateu and Montes, 2001). These
methods are typically based on numerical quadrature rules (cf. Davis and
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Rabinowitz, 1984, chapters 1, 2, 5) over a planar (bounded) region, where
the point configuration is observed.

The Berman-Turner device requires a preliminary random genera-
tion of artificial points, and then produce, together with the observed
configuration of points of the process, maximum pseudolikelihood es-
timates as iteratively-reweighted least-squares estimates of a Poisson log-
linear model (McCullagh and Nelder, 1989, chapter 6, and Chambers and
Hastie, 1992, chapter 6). The original method is proposed in Berman and
Turner (1992) for line and Poisson processes. Recently, extensions of the
Berman-Turner device to general Gibbs (Markov) point processes have
been proposed by Baddeley and Turner (2000a,b).

An interesting feature of the Berman-Turner device is the fact that
maximum pseudolikelihood estimates can be calculated with well-known
model-fitting statistical software (cf. Chambers and Hastie, 1992). Re-
lated work may include Digglet al. (1994), Lindsey (1995), Assuag
and Guttorp (1999) and Mateu and Montes (2001).

By applying the results presented in Preston (1976), chapter 6, we
aim to identify asymptotics for these maximum pseudolikelihood esti-
mates. In particular, we view the observed point configuration as a finite
Gibbs lattice field. Following Green (1984), asymptotic variances can
thus be derived as described by Jensen (1993), by considering an increas-
ing domain asymptotics, which is theoretically valid under the Dobrushin
uniqgueness condition for Gibbs measure.

Here we wish to obtain an asymptotically more efficient version of the
Berman-Turner device by smoothing all contributions to maximum pseu-
dolikelihood estimates (from regioA) with nonparametric techniques
for local polynomial regression (cf. Fan and Gijbels, 1996, chapter 3, and
Ruppert and Wand, 1994), and then integrating them formally.

2. Pseudolikelihood function

Letxy = {x1,...,2,} be a point configuration in a bounded region
A C R?,wheren = n(x4) > 0is arandom variable. We suppose that
Is a restriction toA of a stationary (translation invariant) Gibbs (Markov)
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point processX .

Region A may be viewed as a bounded seffif. RegionA works
as a sampling window within a larger region ang consists of a finite
number of points: (with components:®), p = 1,2), generated by the
point processX , which lay in A . We denote by: the area of region.

We assume that the probability &f is

f(wa) = fza;0), (1)

with respect to the distribution of the Poisson process with interisity
on A, wheref € © C R?. We also assume thgi(z4;6) > 0 implies
that f(24;0) > 0, for all point configurations’, C x4 . A broad class of
Gibbs point processes (with unique Gibbs meagiard finite interaction
r) may be defined under such conditions; see Preston (1976), chapter 6,
Baddeley and Mgller (1989) and Baddeley and van Lieshout (1995).

The Papangelou intensity,(u; x 4) of the Gibbs point proces¥ at
a pointu € A defines the pseudolikelihood functidhL(6; x 4) (Besag,
1977). From (1), the intensity, (u; 1) can be obtained as

M(u;za) = fraU{u})/ f(za),

u e xy,0r
No(ziiwa) = f(a) ) f(ma\{2i})
x; € 4, and is the conditional probability that proceSshas a point at

u or z; given the rest ofX in x4 .
In particular, for a subse® C A,

PL(0;24) = { 11 )xg(xi;xA)} exp( - /BA(;(U;J:A) du) @

r,€EB

See also Jensen (1993) and Barndorff-Niekseal. (1999), chapter 3.

To further the work by Berman and Turner (2000a), we focus on Gibbs
point processes with loglinear conditional intensity (cf. Baddelley and
Mgller, 1989, and Baddeley and van Lieshout, 1995). That is,

No(w;24) = exp(07S(u;24)), 3)
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whereS(u; x4) is a vector ofy spatial covariates defined at each paint
in A. We assume that

I S(uswa) || exp(6"S(u;z.4))

is uniformly bounded int € A andd € ©, for each fixedr 4 .

For simplicity, we take a square regiohand B = A in the above
definitions of conditional intensity.

Normal equations

O0log(PL(0;x4)) /00 =0,

then become

Z S(zi;xa) = /AS(U;J,’A) exp(07S(u;x4)) du, (4)

;€A

with both sides equal under expectation.

The loglinear form of the conditional intensity makeg(PL(0;x 4))
concave (cf. Pratt, 1981). If the parameter@as$ convex, it also follows
that maximum pseudolikelihood estimates exist at an interior poift of
or on the convex boundag© of ©.

Solution to normal equations (4) requires numerical integration.

Example (Strauss processJhis point process is a pairwise interaction
process (cf. Baddeley and Mgller, 1989). The Strauss process is a good
model for ordered point configurations and defines the Poisson process as
a specific case. Letbe the interaction radius. Let(z4) be the number

of pairs of distinct points in the regiad, which lie within a distance of

one another. The conditional intensity is defined as

Aoy (u;4) = Bry7rluwa) (5)

wheres > 0 and0 < v < 1, 7,.(u; x4) is the number of distinct points
z; in A, such that
O<||xi—ul|<r.

The pseudolikelihood is loglinear,

log(PL(B,v;wa)) = n(za)log(f) + 2n,(za)log(7)
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——ﬁ(AyMWMM), (6)

where vector®y = (log(3),log(v))", andS(u;z4) = (1,7 (u;24))T .
Normal equations are of the form (4).

3. Estimates by quadrature rules

Extending the Berman-Turner device (Berman and Turner, 1992), Bad-
deley and Turner (2000a,b) suggests the preliminary random generation
of a configuration of artificial points in the observed regiénto form
(with the observed point configuratian, of sizen) a configuration of
quadrature points

ug = {ug, ..., un},

where the point configurationy, C u, andn < m. See Figure 1.

For simplicity, we suppose that, \ z 4 is a restriction toA of a homo-
geneous Poisson point procéssindependent oX . Sizem of u 4 is the
value of the random variable = m(u4), which depends on the inten-
sity of the point procesE in A. In this sense, we may say that extensions
in Baddeley and Turner (2000a,b) require an appropriate superposition of
point processeX andU .

The Berman-Turner device defines the integral in (2) as the finite Rie-
mann sum

LMW@M%ZMWMWM )
j=1
wherew,; > 0 are the areas of the tiles partitioning the regidrand
containing one point;; each, taken as quadrature weights summing to
the areau of A (cf. Davis and Rabinowitz (1984), chapter 5).

Rectangular tiles (cf. Figure 1) may be used for speeding up the cal-
culation of the Riemann sum in the right hand side of (7). In this case, the
weightw,; may be obtained as the ratio of the area of the tile containing
u; to the number of quadrature points in the same jile,1,... ,m.

The log-pseudolikelihoodog(PL(6;x4)), where PL(0;x4) is de-
fined in (2), is then approximated by
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Figure 1. Simulated points] from moderately clustered point processes
of Strauss type (with interaction radius= 0.5) in a region A of size
10 x 10; number of points: = 24 in (a), n = 52 in (b), n = 24 in (c)
andn = 52in (d). Random artificial pointsd for integration rules, from

a homogeneous Poisson process, with alBét) of i = 100 quadrature
tiles of sizel x 1 in the same region A ; number of artificial poinis—n =
[1.1n]in(a)and (b), andn—n = [1.4n]in (c) and (d), whereu| denotes
the integer not greater than real.
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log(PL(6;uas)) =~ Zlog(/\g(xi;xA))
i=1

— D Nolugwa) by,
j=1

which is equivalent to

log(PL(6;ua)) = > {y;log(A;) — A}, (8)
=1
where
Aj = Ao(ug;24) 9)
yj = UA);l Zj s (10)

andz; =1,ifuj€xy,2;,=0,if u; € us\za.

Baddeley and Turner (2000a) point out that (8) is equivalent to the log-
likelihood of independent Poisson variablgsvith means); , taken with
weightsw; (cf. McCullagh and Nelder, 1989, chapter 6, and Chambers
and Hastie, 1992, chapter 6).

Maximum pseudolikelihood estimatéof 6 in (2), and in (3), can be
obtained by fitting the Poisson loglinear model

log(\;) = OTUJ- , (11)

where)\; are defined in (9), to responsgs(given by (10)) and covariate
valuesv; = S(u;; x4) , with weightsw; defined in (7).

Example (Strauss procesdylaximum pseudolikelihood estimatésan
be obtained by fitting the model
10g(/\]) = 91 + 92 vj,

to y; andv; = 7,.(u;;x4), Where); is defined in (5),0; = log(5),
05 = log(7y) . Whereasy > 1, concavity of the log-pseudolikelihood (6)
implies thatt, = 0.
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Loglinear form (11) may also characterize soft core point process,
point processes with step function interaction, Ord’s point processes, area-
interaction point processes and inhomogeneous models with spatial co-
variates (cf. Baddeley and van Lieshout, 1995, and Baddeley and Turner,
2000a).

Extensions in Baddeley and Turner (2000a) to the Berman-Turner de-
vice include maximum pseudolikelihood estimatder multi-type and
marked point processes (cf. Baddeley and Mgller, 1989).

4. Refining estimates by local smoothing

Our refined Berman-Turner device approximates to the integral in (2)
by formally integrating a nonparametric regression estimator fitted locally
to \g(u;; z4) and quadrature points; .

Let us consider a bivariate locally weighted regression (Scott, 1992,
chapter 8, Ruppert and Wand, 1994, Wand and Jones, 1995, chapter 5,
Fan and Gijbels, 1996, chapter 3, Hjort and Jones, 1996, and Loader,
1996), where the explanatory variables are observed as the components
ugl) and u§2) of quadrature points; in the setu, , which contains the
configuration of points: 4 .

Let H be a2 x 2 symmetric positive definite matrix dependingan
We denote by

Kp(t) =|H| " K(H'?1)

a bivariate kernel functiort,c R?.

For the kernelK and the sequence of bandwidth matrig&g*/? , we
assume the regularity conditions (Al), (A2), (A3) and (A4) in Ruppert
and Wand (1994). With (A3), in particular, we assume that | # | and
each entry offf tends to zero as: — oo, with H remaining symmetric
and positive definite.

A consistent nonparametric regression estimator (cf. Wand and Jones,
1995, chapter 5) is the weighted linear combination of Xp@.;;z4)
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defined as
gty =m " {Kg(0)} Z Ao(uj;wa) K (t — uy) . (12)

Nonparametric fits of (12) can be improved by analogous locally linear
and locally quadratic regression estimators (cf. Ruppert and Wand, 1994).
A refined log-pseudolikelihoolbg(PL(0; x4)) can be defined as

log(PLyes(0;ua)) ~ n! Z log(Ag(xi;24))

=1
- w Z Ao(uj;wa), (13)
j=1
which is
log(PLres(6;ua)) = & ) {y;108(A;) = A}, (14)
j=1
where
Aj = Ao(uj;7a), (15)
Oo=m {Ky0)} " | Ky(t—u;)dt, (16)
A
h2, h?
_ 172 11 12 -1/5
o (i g ) )
whereq is the area of region ,
y = 'nl 5, (18)

wherez; =1,ifu; € x4, 2, =0, u; € us\za.
Refined maximum pseudolikelihood estimaéee? of 6 in (2) can be
calculated by fitting the Poisson loglinear model

log(\;) = 0"v; (19)
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where); are defined in (15), to responsgggiven by (18)) and covariate
valuesv; = S(u;;4), with weightsw defined in (16).

Bandwidth selectors for multivariate locally weighted regression es-
timators are studied in Ruppeat al. (1995) and might be modified (cf.
Hjort and Jones, 1996) to improve the statistical efficiency of the first
term in log-pseudolikelihood (13).

Refined maximum pseudolikelihood estimaéees, for multi-type and
marked point processes can be introduced and studied as well, starting
from Baddeley and Turner (2000a) and (14).

5. Asymptotics

Preston (1976), chapter 6, shows that a point process given by the
density (1) can be viewed as a Gibbs random field, and vice versa.

Let {X,, v € Z?} be a Gibbs random field. Without loss of general-
ity, let e be a real value, product of two componedits ande®, where
e=eWMe® M) =@ ande > r. Forevery: € 7?2, define

A, ={teR?: P20 —1)/2 < t® < P (2P 4 1)/21, (20)

wherep = 1,2. Square tile A, } partitionR?, while ¢ determines their
common area.

We can transform a Gibbs point process into the Gibbs fi&ld}, by
taking the point configuratiom 4, in the tile A, as thev-site variable,

Xv = T4, - (21)

More precisely, the tiled, in (21) is given by (20), and siteof X, is the
2-dimensional vector of the barycentric coordinat€s andv® of A,
for everyv € Z2.

Here we study asymptotics of iteratively-reweighted least-squares es-
timates (cf. Green, 1984), without pursuing the topic of numerical effi-
ciency of Riemann sums in log-pseudolikelihoods (8) and (14). Math-
ematical theory for numerical errors and their bounds may be found in
Davis and Rabinowitz (1984), chapters 2 and 5.
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Let W (I) C Z* be the set of sites of cardinality such that the square
region A may be written as

= J A (22)

veW(l)

See Figure 1, for a sét/ (1) with [ = 100 tiles. Log-pseudolikelihoods
(8) and (14), being based on Riemann sums, have the linear form

log(PL(6;ua)) = ) Z log(PL(0;u;)) (23)

veW(l) Jj

wherem,, = m(A,) denotes the random number of quadrature paints
in the tile A, . In particular, we denote by,;, y,; andz,;, and\,; the
weights, responses and predictors in the Ailg for everyv € W (l) C
Z? . Recall that in (8) weightsy; are positive and vary with tileg, =
L,...,m. Letw = mazi<j<m (w;). From (23), it follows that

ilog(PL(e;uj)) = wa {1, 25 10g(Aj) — Ao}

J=1

> b Z {yuj log(Aj) — Ao}, (24)
j=1
wherey,; = w™'z,; in log-pseudolikelihood (8), and
> log(PL(6; 1)) = & Y {ylog(Ay) — Auj} (25)
j=1 i=1

wherey,; = @~ 'n"'z,; in log-pseudolikelihood (14). From (24) and
(25), itis easy to see that the first and second derivatives of log-pseudolike-
lihoods (8) and (14) can be written as sums avé&(i) .

We assume thd#/ (1) expands t&? in all directions, as does the disc
D of radiuse™"[/2 contained in the regioml, whereD ¢ W(l), as
[ — oo. Recall definition (22) forA. We usel = oo, to indicate this
increasing domain asymptotics. In log-pseudolikelihoods (8) and (14),
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stationarity of points and artificial points i, , in the superposition of
point processeX andU , implies thath — oo, m — oo, andm — n —
00, asl = oo.

We assume the Dobrushin uniqueness condition for Gibbs measure
It follows a mixing decay of spatial correlations for the Gibbs figkd, }
(cf. Jensen, 1993, and Pallini, 2000),/as co.

We denote bysS,,; the r-th component of the vecto$(u;;x4,) of
spatial covariates defined af in the tile A,. From (3) and (24), we
define

Yors = — w (82 /081”898) [Z {w_lzvj log()\vj> - )\Uj}] )
=1
= Y {0A;/0108(Aj)*} Surj Suss (26)
j=1
wherer,s=1,...,q, and
R E(’YvH) e E(q/vlq)
r= > : : : (27)
vew() E(%ql) T E(%qq)

where expectation is taken with respect to the density (1). From (3) and
(25), we define

VYors = w Z {82)\1,3'/8 log()\vj)Z} Svrj Svsj ’

j=1
wherer,s=1,...,q, and

R E(rva) e E(%m)
Trep= > : : (28)

vew( E(vwg) -+ E(Yugq)
In (27) and (28), we assume that

~ P
w = w,
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N
w = w,

asl = oo, respectively, where > 0 andw > 0 are scalars. The asymp-
totic covariance matrixX'~!, is obtained from (27) and (28) by conver-
gence in probability,

l_l f—l N U)_l F_l ’

as! = oo. The asymptotic covariance matrices of resporises log-
pseudolikelihoods (8) and (14) akéur(Y) = w A andVar(Y) =
w™tA, asl = oo, respectively, and\ is a specified matrix. According

to the Central Limit Theorem 4.1 in Jensen (1993), under the Dobrushin
uniqueness condition for Gibbs measprgt is seen that

726 - 6) 5 N0, w ' T, (29)

7Y% (B0p — 0) -5 N0, w ' T7Y), (30)

asl = oo.

Refined maximum pseudolikelihood estimaigs from the observed
region A may be preferred to corresponding maximum pseudolikelihood
estimated , if

w < wt, (31)

asl = oo . Asymptotic result (31) is also valid with appropriate values for
sizesm andn in the configuration of quadrature pointg in the region
A, and a sufficiently large numbénof tiles { A, } given by (20) inA .

Linear form (23) is determined by the linearity of the Riemann sums,
which are calculated in (8) and (14), for approximating the integral in
pseudolikelihood (2). Considering stationarity of point processesd
U , observe that the numerical accuracy of Riemann sums in (8) and (14)
may improve (cf. Davis and Rabinowitz, 1984, chapters 2 and 5), if the
intensity ofU increases, ad/ (1) expands td..

Results (29) and (30) basically originate from asymptotics for iterati-
vely-reweighted least-squares estimates with independent and identically
distributed observations. See Green (1984). A more general formulation
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of (27) and (28) should be based on the shift operator over the space of
configurations of points iiR?, as described in Jensen (1993).

Comparison with other stationary point procesée$or generating
the configuration:, of m — n artificial points in the observed regiof
of the point procesX remains of interest.

The asymptotic behavior of maximum pseudolikelihood estimates
and éref in multi-type and marked point processes (cf. Baddeley and
Turner, 2000a) requires other theoretical details.

6. Simulation study

In this section, we report on a simulation experiment conducted to
compare and analyze the performance of our refined maximum pseudo-
likelihood estimate$,.; .

We studied a product kernél; (t) , t € R? , defined by

K(t) = k(W) k() (32)

with univariate Gaussian kerneltét(?)) , wherep = 1,2, with the band-
width matrix H = diag( h?, h3), whereh; = hy = h. In particular,
condition (A3) in Ruppert and Wand (1994) became'h* — 0 and
h? —0,asl = oo.

We considered moderately clustered Strauss-like processes with
1.2 (0, = 0, 0, = n/a, wheren = n(x,4) in a region A of area
a = 10 x 10) and interaction radius = 0.5, simulated (by the alter-
nating birth-death technique of Ripley, 1977) from the conditional inten-
Sity Ag(u; x4) , which determines (6). We studied configurationsof
n points, withn = 16, 20, 24, 28, 32, 36, 40, 44,48 and 52, with simu-
lations of artificial points of sizen —n = [1.1n], m —n = [1.2n],

m —n = [1.3n] andm — n = [1.4n|, where[u] denotes the integer not
greater than real .

Monte Carlo bias and variance of maximum pseudolikelihood esti-
matesd and Monte Carlo bias and variance of refined maximum pseudo-
likelihood estimateé,,ef were obtained from00 independent repetitions
of the same simulation trial.
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Figure 2. Comparison of maximum pseudolikelihood estimﬁ@sand
0 for 6 in point processes of Strauss type, forvalues ofn (horizontal
axes);Bias(f,es1)/Bias(6y) in (a), andVar(f,.r1)/Var(6;) in (b), and
Bias(0yc52)/ Bias(6s) in (c), andV ar(f,er2)/Var(fy) in (d), wheren =
16,20, 24, 28, 32, 36,40, 44,48,52 in m — n = [1.1n] (solid), m — n =
1.2n)(--),m—n=[13n](—-—)andm—n = [1.4n] (— — —), where
[u] denotes the integer not greater than real
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Maximum pseudolikelihood estimatésvere calculated by partition-
ing the square regiod into [ = 100 quadrature tile§ A, } of common
areae = a/l, wherea = 10 x 10, with quadrature weights); =
e/m(A,),j = 1,...,m, where the tile4d, contains thej th quadrature
pointw,; . See Figure 1.

Observe that in the refined log-pseudolikelihood (14) the integral is
invariant with respect to the bandwidth matfik = diag(h?, h*), which
defines the product kernel (32). Refined log-pseudolikelihood (14) was
always implemented with the value

|H|7Y2= Y2 (2101.53) " n'/?

where area = 10 x 10. R
~ For calculating iteratively-reweighted least-squares estintasd
0,5, we applied the S-PLUS command

glm (y ~ v, family = poisson , link = log , weights = 1)
(cf. Chambers and Hastie, 1992, chapter 6) with

t:(’uA)l,...,’UA]m)T,

respectively, where
Y= (yly"'aym)Tv

v=(1(ur;ua), ..., To(Unm; uA))T

Edge corrections (cf. Barndorff-Nielseat al., 1999, chapter 3) for
the square regiod were never implemented.

Figure 2 shows tha‘i,.ef outperforms§ in estimatingd, for all sizes
m fromm —n = [1.1n] tom — n = [1.4n]; this conclusion might be
expected from the asymptotic comparison (31) of covariance matrices.

Form —n < [0.95n], 0 seems to be numerically hard for good com-
puter facilities (HP Pentium Ill, 700 Mhz); with the present simulation
experiment, in particular, the Monte Carlo varianceépfnay be mean-
ingless (cf. Deng and Paul, 2000). Estimé,tgz gains efficiency with
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respect tod, , with a simultaneous increase in the variability of refined
estimatesérefl for 60, ; this effect may be explained in part by the or-
thogonality between the variance of respon¥esind the estimates of
component®); and#, in 6. The bias of componen%ef1 andé%ﬁ in

~

0,y behaves similarly.

Different results for iteratively-reweighted least-squares estimates
and é,.ef may be obtained, by defining weights andw; in terms of
Dirichlet, Johnson-Mehl, Voronoi or centroidal Voronoi tessellations (cf.
Barndorff-Nielsenet al.,, 1999, chapter 2, Dat al,, 1999, Okabeet al.,

2000, and Baddeley and Turner, 2000a) in regdarin this way, we have
only one quadrature point in each tessellation, and we may produce better
numerical approximations of Riemann integrals.
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