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Summary: The financial time series are often characterized by similar volatility struc-
tures. The selection of series having a similar behavior could be important for the anal-
ysis of the transmission mechanisms of volatility and to forecast the time series, using
the series with more similar structure. In this paper a metrics is developed in order
to measure the distance between two GARCH models, extending well known results
developed for the ARMA models. The statistic used to calculate it follows known dis-
tributions, so that it can be adopted as a test procedure. This tool can be used to develop
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1. Introduction

The financial time series are generally subject to co-movements and
similar volatility structures, due to the strong influence among financial
markets (see, for example, Bollerslev et al., 1994). Generally, “trouble”
and “quiet” periods are transmitted from a market to another, but some
markets absorb more these effects. The classification of financial time
series in homogeneous clusters for similar volatility structures could be
an important purpose for the financial analysts, also because movements
in a given time series could help to forecast the movements of a similar
time series.
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In this paper we extend the distance measure proposed in the seminal
paper of Piccolo (1984) and then by Piccolo (1989,1990) for AR models
to the case of the GARCH (Generalized AutoRegressive Conditional Het-
eroskedasticity) family. As stressed by Otranto and Triacca (2002), this
distance compares the stochastic properties of a couple of series, or, in
other words, the differences between the two data generating processes.
In practice, the basic idea is that the estimation of GARCH models pro-
vides the statistical structure of the financial time series, so that the com-
parison of the models underlying the data generating processes is equiv-
alent to compare the volatility structures of each series. The extension of
this distance to the GARCH models is easy, considering the correspon-
dence between GARCH and ARMA processes; in practice we express
the residuals of a GARCH model in ARMA form and then we use, as
in Otranto and Triacca (2002), the representation of ARMA models in
AR terms (see, for example, Brockwell and Davis, 1996) to apply the
distance measure. This representation provides a formulation of the dis-
tance measure as a function of the GARCH parameters. In addition, the
statistic calculated to measure the distance follows a known asymptotic
distribution, so that it is possible to use it as a test procedure. If we se-
lect the series having distance not significantly different from zero, it is
possible to cluster the homogeneous series. In particular, we develop an
agglomerative algorithm, based on the distance measure proposed and on
the results of the statistical test. The methodology is applied to classify
the series of the returns of the main financial markets. In the next section
we will illustrate the instruments adopted to explicit the distance measure,
studying the behavior of the distance proposed; we will pay a particular
attention to the GARCH(1,1) model, which is the most popular model
adopted for financial time series. Section 3 is devoted to the explana-
tion of the use of this distance in classifying the volatility of markets; we
illustrate the agglomerative algorithm and show an application of the pro-
cedure to nine stock exchange indices. Final remarks follow. In the final
appendix, there is a report of some details on the AR metrics proposed by
Piccolo (1984, 1989, 1990).
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2. Distance between GARCH models

The GARCH family is very popular in time series analysis and it is
composed of a large set of models, which can represent different possible
characteristics of financial time series; for a review of these models and
their applications see Bollerslev et al. (1992) and Bollerslev et al. (1994).

For our purpose, we consider two time series following the models
(t = 1, ..., T ):

y1,t = µ1 + ε1,t, (1)

y2,t = µ2 + ε2,t;

where ε1,t and ε2,t are mean zero heteroskedastic independent distur-
bances. In other terms, the two series have a constant mean, whereas the
variances are time-varying. We suppose that the conditional variancesh1,t

andh2,t follow two different and independent GARCH(1,1) structures:

V ar(y1,t|I1,t−1) = h1,t = γ1 + α1ε
2
1,t−1 + β1h1,t−1 (2)

V ar(y2,t|I2,t−1) = h2,t = γ2 + α2ε
2
2,t−1 + β2h2,t−1

whereI1,t andI2,t represent the information available at timet andγi > 0,
0 < αi < 1, 0 < βi < 1, (αi + βi) < 1 (i = 1, 2). This is a typical
representation for financial time series.

Equation (2) implies that the squared residuals follow ARMA(1,1)
processes:

ε2
i,t = γi + (αi + βi) ε2

i,t−1 − βi

(
ε2

i,t−1 − hi,t−1

)
+

(
ε2

i,t − hi,t

)
, i = 1, 2

(3)
whereε2

i,t−hi,t are mean zero errors, uncorrelated with past information.
Substituting in (3) the errors with their ARMA(1,1) expression, we obtain
the AR(∞)representation:

ε2
i,t =

γi

1− βi

+ αi

∞∑

j=1

βj−1
i ε2

i,t−j +
(
ε2

i,t − hi,t

)
. (4)

In this form, the two GARCH(1,1) models can be compared in terms of
the distance measure proposed by Piccolo (1984, 1989, 1990), explained
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in the final appendix. In particular, recalling that the general form of this
metrics is: 


∞∑

j=1

(π1j − π2j)
2




1/2

(5)

whereπ1j andπ2j are the autoregressive coefficients of two AR processes,
using (4), we can express the distance between two GARCH(1,1) models
as:

d =



∞∑

j=0

(
α1β

j
1 − α2β

j
2

)2




1/2

Developing the expression in square brackets:

d =


α2

1

∞∑

j=0

β2j
1 + α2

2

∞∑

j=0

β2j
2 − 2α1α2

∞∑

j=0

(β1β2)
j




1/2

= (6)

=

[
α2

1

1− β2
1

+
α2

2

1− β2
2

− 2α1α2

1− β1β2

]1/2

Note that in the previous developments the constantγi/(1 − βi) was not
considered; in effect, it does not affect the dynamics of the volatility of
the two series, expressed by the autoregressive terms.

It is very simple to extend that to more general cases; in fact, the
GARCH(p,q) model (Bollerslev, 1986):

ht = γ + α1ε
2
t−1... + αpε

2
t−p + β1ht−1 + ... + βqht−q

corresponds to the ARMA(p∗,q) model, with p∗ = max(p, q):

ε2
t = γ + (α1 + β1)ε

2
t−1... + (αp∗ + βp∗)ε

2
t−p∗ − β1(ε

2
t−1 − ht−1)− ...−

−βq(ε
2
t−q − ht−q) + (ε2

t − ht).

Of course, ifp > q, we putβq+1 = ... = βp = 0; if q > p, then
αp+1 = ... = αq = 0.

The ARCH(p) model (Engle, 1982):

ht = γ + α1ε
2
t−1... + αpε

2
t−p
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corresponds to the AR(p) model:

ε2
t = γ + α1ε

2
t−1... + αpε

2
t−p + (ε2

t − ht);

the IGARCH(1,1) model (Engle and Bollerslev, 1986):

ht = γ + (1− β1)ε
2
t−1 + β1ht−1

corresponds to the IMA(1,1) model:

(ε2
t − ε2

t−1) = γ − β1(ε
2
t−1 − ht−1) + (ε2

t − ht);

and so on.
In general, indicating withφk the generic AR coefficient andθj the

generic MA coefficient of an ARMA model, we have:

φk = (αk + βk), (7)

θj = −βj.

To apply (5) we need the AR representation of the ARMA model;
following Brockwell and Davis (1996), the iterative formula:

πk +
q∑

j=1

θjπk−j = −φk, k = 0, 1, ...

with φ0 = 1, can be applied. For the GARCH case, the previous relation-
ship is equivalent to:

πk = − (αk + βk) +
q∑

j=1

βjπk−j = −αk +
q−1∑

j=1

βjπk−j. (8)

Using (8) it is possible, applying (5), to compare every couple of GARCH
models, not necessarily of the same order. In the remain of the work we
will refer to GARCH(1,1) models, which are the most popular models for
financial time series and for which the simple form (6) can be applied.
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Figure 1. Simulated time series with the same GARCH(1,1) structure for
the variance; picture (a): the level follows an AR(1) model; picture (b):
the level follows an AR(0) model.

Note that, for the sake of simplicity, it was supposed in (1) that the
levels of the series do not follow ARIMA structures. This assumption is
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often made in the study of returns, but we can suppose particular dynam-
ics for y1,t andy2,t. It is interesting to underline that series apparently
different in their dynamics can have the same volatility structure; for ex-
ample, in Figure 1 two simulated series of length 13521 with disturbances
following the same GARCH(1,1) model are showed; but the level of the
first one follows an AR(1) model (with AR coefficient equal 0.7) with-
out intercept and the second a model like (1) without intercept. In this
case the series are different in their general dynamics (and this is denoted
by a distance, measured on the AR structure, equal 0.7), but equal in
their GARCH structure (the distance measured on the GARCH structure
is 0). In other terms, the same metrics is used for different purposes and
provides different information; applying it on the structure ofyi,t we de-
rive information about the differences in the dynamics of two time series;
applying it on the structure ofε2

i,t, we obtain information about the differ-
ences in the dynamics of the heteroskedastic variances of two time series.

2.1. An investigation about the GARCH(1,1) distance

In this subsection we study more in detail the behavior of the distance
(6), for various combination of the coefficientsαi andβi. The behavior of
the distance is clear when we poseβi = 0 for i = 1, 2, which is the case of
two ARCH(1) models. In this case, the distance is the difference between
the twoαi coefficients. When two GARCH(1,1) models are considered,
the behavior is well different; in fact, for the contemporaneous presence
of αi andβi, similar processes can seem different. In Figure 2 the behav-
ior of the distance between each of three particular GARCH(1,1) models
and each of the 81 GARCH(1,1) models obtained varying both the coef-
ficients in [0.1,0.9] with steps of 0.1 are shown; in the case of the models
with coefficients (α = 0.1, β = 0.1) (picture a) and (α = 0.5, β = 0.5)
(picture b), the distance has a similar behavior for the various values of
α, varyingβ; we can note that it increases rapidly withα. In addition in

1In the simulations the same number of observations of the real time series used in
section 3 is adopted.
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Figure 2 (a) there are many initial values of the distance approximately
equal zero.
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Figure 2. Distances between a fixed GARCH(1,1) model with
parameters (α = 0.1, β = 0.1) (picture a), (α = 0.5, β = 0.5) (picture
b), (α = 0.9, β = 0.9) (picture c) and each of 81 different GARCH(1,1)
models with parameters (α, β) indicated on the x axis.
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Table 1. Intervals ofβ2 values corresponding to 81 combinations ofα1

andβ1 for which the GARCH distance is not significantly different from
zero.

β1

α1 = α2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.6
0.1 - - - - - - - - 0.9

0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8
0.1 0.1 0.1 0.1 0.2 0.4 0.6

0.2 - - - - - - - 0.8 0.9
0.4 0.5 0.5 0.6 0.6 0.7 0.7
0.1 0.1 0.1 0.2 0.4 0.5

0.3 - - - - - - 0.7 0.8 0.9
0.3 0.4 0.5 0.5 0.6 0.6
0.1 0.1 0.2 0.3 0.4

0.4 - - - - - 0.6 0.7 0.8 0.9
0.3 0.3 0.4 0.5 0.5
0.1 0.1 0.2 0.3

0.5 - - - - 0.5 0.6 0.7 0.8 0.9
0.2 0.3 0.4 0.5
0.1 0.1 0.2

0.6 - - - 0.4 0.5 0.6 0.7 0.8 0.9
0.2 0.3 0.4
0.1 0.1 0.2

0.7 - - - 0.4 0.5 0.6 0.7 0.8 0.9
0.2 0.3 0.3
0.1 0.1

0.8 - - 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2 0.2
0.1 0.1

0.9 - - 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2 0.2

In the case of the model with coefficients (α = 0.9, β = 0.9) (picture
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c) the distance shows a more persistent behavior. In all the cases, the
equality ofα1 andα2 or β1 andβ2 cuts down the distance considerably.

Considering all the combination of coefficients we have the confirma-
tion that the value of the coefficientα has a fundamental role in the calcu-
lus of the distance respect to the coefficientβ. In fact, the distance is not
significantly different from zero whenα1 andα2 are different, whereas
there are intervals of theβ coefficient, forα1 = α2, for which the dis-
tance is not significantly different from zero.2 This result is consistent
with Corduas (1996), where the behavior of the distance for the ARMA
case is studied. In Table 1 these intervals are shown in correspondence
of all the possible combinations ofα1 andβ1, for which are calculated
the critical values of thed2 statistic (see Corduas, 1996, and the final Ap-
pendix). We can note that there are large intervals ofβ2 providing distance
equal 0, corresponding to small values ofα1, whereas these intervals are
progressively reduced whenα1 increases. For example, the cell corre-
sponding toα1 = α2 = 0.3 andβ1 = 0.4 shows that all the model with
α2 = 0.3 and0.2 ≤ β2 ≤ 0.5 have a distance not significantly different
from zero respect to the model (α1 = 0.3, β1 = 0.4). Whenα1 = 0.3 and
β1 = 0.7 the only case with distance 0 is the trivial caseα2 = 0.3 and
β2 = 0.7.

3. Clustering the returns: an agglomerative algorithm

How could the distance developed in the previous section be used in
practical cases? The most obvious application is to create homogeneous
groups having a similar volatility structure. For this purpose an usual
agglomerative algorithm for cluster analyses could be used; it can be de-
veloped in the following steps:

1. choose an initial benchmark series;

2. insert in the group of the benchmark series all the series with a
distance from it not significantly different from zero;

2The test used depends on the coefficients of the GARCH models and the number of
observations (we useT = 1352); it is described in the final appendix.



Classifying the Markets Volatility with ARMA Distance Measures 11

3. select the series with the minimum distance from the benchmark
significantly different from zero; this series will be the new bench-
mark;

4. insert in the second group all the remaining series with a distance
from the new benchmark not significantly different from zero;

5. repeat steps 3 and 4 until no series remain.

Table 2. GARCH(1,1) estimation (standard errors in parentheses).

γ α β
cac 0.0003 0.0540 0.9335

(0.0001) (0.0081) (0.0094)
nik 0.0009 0.0637 0.9191

(0.0003) (0.0094) (0.0124)
dax 0.0005 0.0965 0.8876

(0.0001) (0.0129) (0.0139)
smi 0.0006 0.0891 0.8775

(0.0001) (0.0147) (0.0198)
fts 0.0001 0.0443 0.9492

(3.86E-5) (0.0076) (0.0078)
ibe 0.0006 0.0838 0.8920

(0.0001) (0.0109) (0.0128)
dj 0.0005 0.0829 0.8873

(0.0001) (0.0089) (0.0135)
bel 0.0003 0.0989 0.8863

(8.91E-5) (0.0130) (0.0138)
mib 0.0010 0.1159 0.8384

(0.0002) (0.0179) (0.0226)

Note that, differently from the common cluster algorithms, in this case
the number of groups is not fixed a priori or chosen after the clustering,
but it derives automatically from the algorithm.

Clearly, to classify the series we need a starting point, in the sense that
the result will be different, changing the series adopted as initial bench-
mark. Alternatively, in applications with a small number of series, we can
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use each series as initial benchmark in different classifications and then
verify if there are “strongest” structures.

In order to explain this algorithm, we consider the series of the returns
of nine stock exchange indices from December 1, 1995 to February 5,
2001 (daily data,T = 1352); they refer to the following indices: CAC40
(cac, France), NIKKEI300 (nik, Japan), DAX30 (dax, Germany), SMI
(smi, Switzerland), FTSE100 (fts, England), IBEX35I (ibe, Spain), DOW
JONES (dj, U.S.A.), BEL20 (bel, Belgium), MIB30 (mib, Italy). First,
a GARCH(1,1) model is estimated for each series, then the matrix of
distances for each couple of series is calculated and finally the statistical
test to verify the null of zero distance is applied.

The estimations of coefficients are shown in Table 2, whereas the sym-
metric matrix of distances in Table 3.

Table 3. Matrix of thed distances.

cac nik dax smi fts ibe dj bel mib
cac 0.00
nik 0.02 0.00
dax 0.08 0.06 0.00
smi 0.06 0.05 0.03 0.00
fts 0.02 0.04 0.10 0.08 0.00
ibe 0.05 0.04 0.02 0.01 0.07 0.00
dj 0.05 0.04 0.03 0.01 0.08 0.01 0.00
bel 0.08 0.06 0.01 0.03 0.10 0.03 0.03 0.00
mib 0.10 0.08 0.04 0.04 0.12 0.05 0.05 0.04 0.00

In Table 4 the results of the diagnostic test for each couple of indices
are shown (A indicates the case of acceptation of the null of distance 0,
whereas R indicates the case of rejection).

In our example, using each series as initial benchmark, the 9 clas-
sifications provide three possible alternative consisting of two distinct
groups. For example, in Figure 3 the classification obtained using the
dj index as benchmark is shown. In this case, six indices belong to the
group ofdj; cacis the index with minimum distance fromdj, significantly
different from zero andfts has a non significant distance fromcac.
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Table 4. Test results.

cac nik dax smi fts ibe dj bel mib
cac
nik A
dax R R
smi R A A
fts A A R R
ibe R A A A R
dj R A A A R A
bel R R A A R A A
mib R R A A R A A A

CAC

NIKKEI
DAX

SMI

FTSE

IBEX

DJ

BEL

MIB

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

Figure 3. Tree obtained using dj as benchmark. The distances are
indicated on they axis
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Using as initial benchmarkcac, dax, fts, belandmib, the 2 groups ob-
tained are formed by (cac, nik, fts) and (dax, smi, ibe, dj, bel, mib); using
as initial benchmarksmi, ibeanddj, the 2 groups are formed by (cac, fts)
and (nik, dax, smi, ibe, dj, bel, mib); usingnik as initial benchmark we
separate (dax, bel, mib) from (cac, nik, smi, fts, ibe, dj). Combining the
results we deduce that there are 2 strong groups, constituted bycacand
fts on a hand anddj, dax, smi and ibe on the other hand. Thenik stays
in the middle, whereasbel andmib are very similar to thedj group, but
distant fromnik.

These results are consistent with recent studies about the interdepen-
dence among financial markets (see, for example, Forbes and Rigobon,
2002), which show that the volatility of the Japanese market is quite au-
tonomous respect to the other markets; for example there is not empir-
ical evidence that the East Asian crises of October 1997 was absorbed
from this market, whereas it was quickly transmitted to many European
markets. The fact that the Dow Jones index is an attractor for the other
markets, in terms of volatility structures, is a well known idea, having
the U.S.A. economy a leading role in the global economy, and it is con-
firmed in these results. Concerning the European markets, it arises that
the French and the English indices follow an autonomous dynamics re-
spect to the Dow Jones.

4. Concluding remarks

In this paper an extension of the distance measure used to compare
couples of ARMA models, developed by Piccolo (1984, 1989, 1990), is
extended to the GARCH case. This extension provides the possibility
to group the financial series having a similar volatility structure and an
agglomerative algorithm was developed to obtain homogeneous clusters.

It is interesting to note that the AR metrics, born to compare the fore-
casting profiles of two series, seems to be particularly convenient to com-
pare the volatility structures. This is due to the fact that the GARCH
models represent the structure of the volatility, so that this metrics can
capture the similarities or dissimilarities in their behavior. This fact con-
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firms the flexibility of the AR metrics, used also for other purposes; for
example, Corduas and Piccolo (1995) have used this tool to study de-
mographic phenomena; Otranto and Triacca (2002) to develop a decision
rule in the choice between direct and indirect method in seasonal adjust-
ment. Anyway, for the GARCH case, this metrics provides a different
kind of information respect to the classical AR metrics, being possible
that series with different ARMA structures for the levels could have sim-
ilar GARCH structures for the variances and vice versa.

The final results of the algorithm depend on the series adopted as
benchmark; anyway, this is not necessarily a weak point, because gen-
erally the behavior of the markets are evaluated respect to a “dominant”
market (for example, the U.S. stock exchange market, which influences
the other markets or shares); on the other side, the detection of various
clusters, obtained using as benchmark each market iteratively, will con-
duce probably to some “strong” form, or some interpretable behavior, as
in the application of the previous section.

Clearly, the case of clustering is just a possible application of this
instrument; another purpose could be to forecast assets, shares or stock
exchange indices of the financial markets. The volatility transmission
mechanisms is another field of application. In fact, the information de-
riving from a market can influence the behavior of another market; using
the distance measure, it is possible to detect the most similar volatility
structure for a certain series among a set of leading series, so that the
knowledge of the latter could be used to forecast the volatility structure
of the former.

Appendix: the AR metrics

In this appendix there is a brief description of the AR metrics intro-
duced by Piccolo (1990) and the considerations above its distribution de-
veloped in Corduas (1996) with extensions to the GARCH(1,1) case.

Let Vt be a zero-mean ARMA invertible process; then, it exists a se-
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quence{πj} such that
∞∑

j=1

|πj| < ∞

and

Vt =
∞∑

j=1

πjVt−j + εt, (9)

whereεt is a white noise process with varianceσ2.
Piccolo (1990) defines the distance between two ARMA invertible

and independent processesV1t andV2t as

d =



∞∑

j=1

(π1j − π2j)
2




1/2

. (10)

From (10) we have derived the GARCH(1,1) distance (6).
Piccolo (1989) shows that the asymptotic distribution ofd2, given the

independence hypothesis, is a linear combination of independent Chi-
Square variables. In order to deal with the distance measure as a test
procedure, Corduas (1996) proposes to approximate the distribution ofd2

with a single Chi-Square random variable. Under the null hypothesis:

H0 : π1j = π2j ∀ j = 1, 2, ..., (11)

this distribution can be approximated withaχ2
c + b, whereχ2

c is a chi-
squared random variable withc degree of freedom and, settingti =

trace
(
Σ̃i

)
:

a = t3/t2, b = t1 − t22/t3, c = t32/t
2
3. (12)

This approximation has a good performance, as showed in Corduas (1996).
In this caseΣ̃ = Σ̃1 + Σ̃2 and represents the covariance matrix of the
AR coefficients in (10) under the null hypothesis.̃Σ1 and Σ̃2 repre-
sent respectively the estimated covariance matrices of the coefficients
π̃1 = {π1j} andπ̃2 = {π2j}, obtained as functions of the maximum like-
lihood estimators of the parameters of the GARCH models, as showed
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in (8). For practical purposes, the vectorsπ̃1 andπ̃2 will contain only the
first k autoregressive coefficients of the representation (9), withk suitably
high (for examplek = 100).3 The covariances matrices̃Σ1 andΣ̃2 can
be obtained by:

Σ̃i = ΓiṼiΓ
′
i,

whereṼi is the covariance matrix of the estimated GARCH coefficients
andΓi is a matrix containing the derivatives of the functionsπij respect
to the GARCH coefficients. For example, for the case of GARCH(1,1)
model, the estimated parameters modelizing the volatility structure will

be
(
α̃i, β̃i

)′
, whereas̃πi =

(
α̃i, α̃iβ̃i, ..., α̃iβ̃

k−1
i

)
.

Note that, to map out Table 1, we have not performed estimation pro-
cedures, having used the theoretical covariance matrix of ARMA(1,1)
processes (Brockwell and Davis, 1996). For an ARMA(1,1) process with
AR coefficient equalφ and MA coefficient equalθ, the covariance matrix
is expressed by:

VARMA=
1 + φθ

T (φ + θ2)

[
(1− φ2) (1 + φθ) − (1− θ2) (1− φ2)
− (1− θ2) (1− φ2) (1− θ2) (1 + φθ)

]
=

= c

[
a11 a12

a12 a22

]
;

taking into account (7), we obtain that:

V ar (αi + βi) = V ar (αi) + V ar (βi) + 2Cov (αi, βi) = a11

V ar (βi) = a22

Cov (αi + βi,−βi) = −Cov (αi, βi)− V ar (βi) = a12

As a consequence:

VGARCH = c

[
(a11 + a22 + 2a12) − (a12 + a22)
− (a12 + a22) a22

]
.

3For the GARCH(1,1) model it is possible to apply (6).
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In this way we can apply the test considering hypothetical GARCH(1,1)
processes, without estimation step; the only sample information we need
is the length of the seriesT .

Acknowledgments. I thank Umberto Triacca for our useful discussions and an
anonymous referee for the precious suggestions. Financial support from MIUR
related to the Project on ”Metodi e modelli statistici per la previsione di serie
temporali non stazionarie e non lineari” is gratefully acknowledged.

References

Bollerslev T. (1986), Generalized autoregressive conditional heteroskedas-
ticity, Journal of Econometrics, 31, 307-321.

Bollerslev T., Chou R. Y., Kroner K. F. (1992), ARCH modeling in
finance: a review of the theory and empirical evidence,Journal of Econo-
metrics, 52, 5-59

Bollerslev T., Engle R. F., Nelson D. (1994), ARCH models, inHand-
book of Econometrics, Vol. IV(Engle R. F. and McFadden D. L. eds. ),
2959-3038.

Brockwell, P. J., Davis, R. A. (1996),Introduction to Time Series and
Forecasting, Springer-Verlag, New York.

Corduas, M. (1996), Uno studio sulla distribuzione asintotica della
metrica autoregressiva,Statistica, LVI, 321-332.

Corduas, M., Piccolo D. (1995), Mutamenti strutturali della natalità
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