
1

Quaderni di Statistica
Vol. 5, 2003

Kernel smoothing for the analysis
of climatic data

Marcella Niglio
Di.S.E.S., Universit̀a di Salerno

E-mail: mniglio@unisa.it

Cira Perna
Di.S.E.S., Universit̀a di Salerno

E-mail: perna@unisa.it

Summary: Climatic temperature time series show in their behaviour a strong and regu-
lar seasonality which can be differently analysed. When the series are examined using
kernel regression, the classical approaches for the bandwidth selection fail involving
undersmooth or oversmooth of data. The aim of the paper is to describe and discuss dif-
ferent methodologies for the bandwidth selection which take into account the correlation
structure of the errors. The approaches, based on corrected versions of the Generalized
Cross Validation criterion, have been used to analyze two climatic data collected on the
South of Italy from January 1960 to December 2000.
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1. Introduction

The analysis of climatic temperature data has a relevant role in the
study of environmental fenomena. The interest of meteorologists often
relies on the estimation of missing values which frequently affect temper-
ature and on the generation of predictions usually based on quite compli-
cated models.
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These two aspects imply a preliminary study of data and a careful
research of their behaviour.

In this paper we refer to climatic time series decomposed using a sig-
nal plus noise model:

Yt = m(t) + εt t = 1, 2, . . . , n (1)

wherem(t) is the regular component andεt are zero-mean errors often
coming from a stationary correlated process.

We focus on the estimation of the smooth deterministicm(t) function
when the structure of data is not known a priori and nonparametric tech-
niques are used. In particular, we refer to kernel estimators which imply
the selection of a smoothing parameter calledbandwidth.

The classical approach for the bandwidth selection, which is based on
the assumption of independent errors, fails involving an undersmooth or
oversmooth of data when a positive or a negative correlation is respec-
tively recognized and so reducing, in the former case, the estimation of
m(t) to an interpolation of observations (see Hart (1991), Herrmannet al.
(1992) among the others).

In order to limit this effect, different bandwidth selection procedures
have been proposed in the literature. Some of them are based on heavy
assumptions on the correlation structure of the errors (see Chiu (1989),
Hart (1991, 1994)) so limiting their use. Definitely model free approaches
(Altman (1990), Chou and Marron (1995), Hallet al. (1995)) appear
more suitable when no information is available on the errors structure.

The aim of the paper is to describe and discuss different methodolo-
gies for the bandwidth selection which are particularly useful in the con-
text of climatic data. The approaches, based on corrected versions of
the Generalized Cross Validation criterion, have the advantage to be very
general avoiding assumptions on the errors correlation structure.

The paper is organized as follows. In Section 2 the theoretic results
of the applied methodologies are presented focusing on the bandwidth se-
lection. In Section 3 the proposed different procedures are applied to the
analysis of climatic time series related to the mean and maximum tem-
perature recorded in Scafati (Salerno), from January 1960 to December
2000. Some concluding remarks are given in the final section.
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2. The methodology

Let m(t) = s(t/n), wheres(·) is a real smooth function defined on
[0, 1]. The estimation ofs(·) is carried out by using the Priestley and Chao
kernel (Priestley and Chao, 1972) defined as:

s(x) = (nh)−1
n∑

t=1

K

(
x− t/n

h

)
Yt (2)

whereh is the bandwidth parameter and the kernelK(·) is a symmetric
probability density function.

One of the main problem related to the estimation ofs(x) is the choice
of the bandwidth. When a cross validation (CV henceforth) criterion is
selected, the optimal bandwidth,h, is taken as the minimizer of the mean
square error:

CV (h) =
1

n

n∑

t=1

[Yt − ŝ−t(t/n)]2 (3)

whereŝ−t(t/n) is the kernel estimator ofYt, obtained by omitting thet-th
observation(t/n, Yt).

Unfortunately, this approach is not suitable when the errors are cor-
related. This is due to the fact that this bandwidth selection method as-
sociates all the structure of data to the mean function even incorporating
the error correlation. When no assumption is given on the structure of the
mean and of the error components, model (1) is unidentifiable and so the
estimate of the signal cannot be separated from the noise.

Hart (1991) demonstrates that, under well defined conditions on the
kernel function and on the stationarity of the errors, when data are posi-
tively correlated, the CV criterion in (3) will chooseh such that the kernel
estimate very nearly interpolates the data. To overcome this limit, he sug-
gests appropriate differencing of data and the use of the spectral density
of εi to estimate the covariancec(k) = cov(εi, εi+k), |k| = 1, 2, . . ., which
affects the bandwidth selection.

This procedure is not completely free from parametric assumptions on
the error process which are instead absent in the procedure proposed in
Chou and Marron (1991). It is based on the estimate ofh, an adjustment
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of the CV criterion called modified cross validation (MCV) which is a
leave−(2`+1)−out version of the criterion in (3). In particular, in order
to remove the short range dependence among data, the MCV is based on
the minimization of (3) such that̂s−t(t/n) is a leave − (2` + 1) − out
estimator ofYt obtained removing the observations(t/n, Yt),−` ≤ t ≤ `.

Asymptotic results on the behavior ofhMCV are also shown under
well defined assumptions and the convergence rate is highlighted to be of
the same order than the one obtained with independent observations.

The problem which clearly arises in this approach is the selection of`
which has to increase as the dependence among data becomes longer.

A further approach for the estimation ofh, which is going to be used
in the following, has been proposed in Altman (1990). It has a relevant
use when time series data show heavy regularities in their behaviour.

The procedure makes use of the kernel estimator (2) fors(·) and as-
sumes that the errorsεt come from a weak stationary process with covari-
ance function:

E[εt, εt+k] = σ2ρn(|k|) t = 1, . . . , n

with σ2 the error variance andρn(|k|) the correlation function such that:

lim
n→∞

n∑

k=1

|ρn(k)| < ∞ lim
n→∞

n∑

k=1

k|ρn(k)| = 0

where first condition ensures that sufficiently far observations are uncor-
related.

The generalized cross validation (GCV) criterion (Craven and Wahba,
1979), generally employed for the estimation ofh, can be affected from
the errors structure. In this case two different procedures can be used to
correct the selection criterion.

The first one, calleddirect, allows a correction of the GCV to reduce
the biasedness induced by the correlation.

In particular, given the square residuals in (3):

r2(t, h, n) = [Yt − ŝ−t(t/n)]2 t = 1, 2, . . . , n

the direct method corrects the GCV such that the loss function is con-
structed using the following square residuals:
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r2
GCV,D(t, h, n) =

r2(t, h, n)

1− n−1tr(WhRn)2
(4)

whereWh is the square matrix(n× n) of the kernel weights,tr(·) is the
matrix trace andRn is the correlation matrix.

The secondindirect procedure transforms the residuals to limit their
linear relation. In this caser(t, h, n) becomes:

R−1/2
n · r(·, h, n) = rρ−1(·, h, n)

and so the GCV criterion is defined as:

r2
GCV,I(t, h, n) =

r2
ρ−1(t, h, n)

[1− n−1tr(Wh)]2
(5)

To estimateRn in (4) and (5), it can be used an estimator based on
the method of moments whose consistency is shown, under some regular-
ity conditions on the errors, in Altman (1990). The procedure implies a
preliminary estimate ofm(·) in (1) and the use of its residuals to estimate
Rn.

The theoretic assumptions of this procedure can be recognized in the
generating process of climatic climatic data where the seasonal com-
ponent prevails on the other components of the observed data (Altman,
1991; Bowman and Azzalini, 1997).

3. The analysis of temperature data

We consider two climatic time series related to the mean and the max-
imum temperature recorded in Scafati (Salerno, Italy) from January 1960
to December 2000. The original data, collected by the‘Istituto Sperimen-
tale per il Tabacco‘are ten-days spaced for a total of 1476 observations.
In particular, themean temperature(M) is the average among the maxi-
mum and the minimum temperatures over ten-days whereas themaximum
series (MX) is the maximum temperature observed in each ten-days over
the period under study.
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In order to have monthly data, the ten-days observations related to
each month of a single series have been aggregated computing their mean
so obtaining two new series of length 492.

The time plot of the monthly series are shown in Figure 1 where the
main aspect which comes out is the strong seasonality whose behaviour
can be approximated using a deterministic sinusoidal function over the
period under analysis. In particular, when model (1) is used, it is fitted by
them(·) function whereas the analysis ofεt need further investigation.

A simple differencing of data which allows to easily remove the sea-
sonal component,Yt,12 = Yt − Yt−12, outlines that the transformed data
Yt,12 (for t = 13, . . . , 492) show an autocorrelation structure which is
significant at low order autocorrelation lags as presented in Figure 2.
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Figure 1: Mean and maximum monthly climatic temperature data col-
lected in Scafati (Italy) from 01.1960 to 12.2000

The plots ofYt,12 for the two series (Figure 3) graphically show the
stationarity in mean of the differenced data and so further highlighting
that the data under analysis satisfy the theoretical conditions of the pro-
cedure discussed in the previous section.

The use of a non-parametric approach to study the data in Figure 1
implies the selection of a bandwidth parameter. In this context a GCV
criterion based on the assumption of independent data clearly fails carry-
ing out the undersmooth of data.
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Figure 2:Correlograms of the monthly Mean and Maximum temperature
data
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Figure 3:Plots of the Mean and Maximum differenced time series

Different results are instead obtained by using the procedure in Sec-
tion 2. It is based on three main steps:

1. estimate the preliminarym(·) choosingh such that the data are
overmoothed;

2. estimate the correlation matrixRn using the residuals obtained in
Step 1.

3. selecth such that the criterion in (3) is minimized using the square



8 M. Niglio, C. Perna

loss functions (4) or (5) when thedirect or indirect method is re-
spectively preferred.

The two temperature time series have been studied following the pre-
vious steps and fixing, for the preliminary estimate ofm(·), h = 3.

The search for the selection ofh through thedirectandindirectmethod,
has been carried out, over a grid of 100 points, on the interval[0.5, 3]
whereas a wider interval has been considered for the GCV criterion based
on the hypothesis of independence.

In Table 1 we report the selected bandwidths obtained using the clas-
sical GCV criterion and its direct and indirect versions. In Figure 4 the
values of the two GCV criteria over the grid search are shown for series
M (the results of series MX, not reported here, replicate those of series
M).

Table 1. Bandwidths selected for the two series under analysis using three
GCV criteria

Mean series (M) Maximum series (MX)
GCV-INDEPENDENT 0.213 0.213
GCV-DIRECT 1.409 1.434
GCV-INDIRECT 2.394 2.071
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Figure 4:GCVD andGCVI plots of series M over the grid search

Table 1 and Figure 4 clearly show that the bandwidths selected taking
into account the dependent structure of data allow to estimate a mean
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function which is smoother than that obtained when the correlation is
neglected.

This is further shown in Figure 5 and in Figure 6 where the observed
time series M and MX are respectively compared to that fitted using
model (1) whose bandwidthh is selected with the three method under
analysis.

In order to present more clear plots, the representations are focused
on the time interval 1970-1980.
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Figure 5: Time plot of the Mean temperature data from 01.1970 to
12.1980 with the smoothing curves obtained using GCV-indipendent,
GCV-direct and GCV-indirect.

Both figures show the interpolation carried out from model (1) when
h is chosen assuming the independence of the observations whereas more
smoother curves are obtained using the other two bandwidth selection
procedures.

In particular the direct and the indirect methods show more similar
results with the MX series (Figure 6) whereas in Figure 5 the estimation
of h with the GCV-indirect method implies a higher smoothing of data
with respect to the direct one.

This difference can be due to the nature of data. In fact, M is obtained
as average of the minimum and the maximum temperatures and so this
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Figure 6: Time plot of the Maximum temperature data from 01.1970
to 12.1980 with the smoothing curves obtained using GCV-indipendent,
GCV-direct and GCV-indirect.

preliminary treatment of data should modify the dependence structure of
data which instead has been left unchanged in the MX time series.

4. Concluding remarks

The bandwidth selection in kernel regression with dependent errors is
tackled when climatic temperature data are under analysis. In particular it
is shown that, when the dependence of data is neglected, the GCV band-
width selection procedure implies an undersmooth of data which leads to
the interpolation of the observations.

In this context different approaches have been proposed in literature.
Among them the Altman (1990) procedure has been selected for the anal-
ysis of two climatic temperature time series.

The results obtained show that when the selection criterion is suitably
corrected for the dependence among data, a smoother curve which fits the
data is obtained. This allows to reduce the variability with respect to the
case when the dependence is neglected.
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