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Full Information Least Orthogonal Distance 

Estimator of structural parameters in 
simultaneous equation models 

 
 

Alessia Naccarato 
Dipartimento di Economia, Università Roma Tre 

E-mail: a.naccarato@uniroma3.it 
 

Summary: An extension of Limited Information Least Orthogonal Distance Estimator 
(LI LODE) for structural parameters of simultaneous equations models, to a Full 
Information context, is presented. The proposed extension is based on characteristic 
roots and vectors of a matrix deriving from the so called over-identifying restrictions. 
 
Keywords: Simultaneous equations models, Orthogonal distance, Principal com-
ponents. 
 
 
 
1. Introduction 
 

This paper is aimed at presenting an extension of Least Orthogonal 
Distance Estimator (LODE) of structural form parameters in 
simultaneous equation models. The LODE procedure was originally 
developed by Pieraccini (1988) in a Limited Information (LI) context 
and was based on characteristic roots and vectors of a particular 
variance-covariance matrix. In this article, LODE procedure is 
generalized to the case of full information (FI) in order to obtain 
simultaneous estimators for structural parameters of the complete 
system. 

After reviewing the notation, stressing some basic ideas about the 
estimation problems and the identification conditions, limited 
information LODE is presented together with its extension to the full 
information context. Since the FI procedure needs the variance-
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covariance matrix of disturbances, a way to obtain a consistent 
estimator of it is presented. Finally, the consistency of the proposed 
estimator is shown and some concluding remarks are discussed.  

 
 

2. Simultaneous equations models 
 
Making use of standard notations, the structural form of a 

simultaneous equations model can be defined as follows: 
 

 
mnmnmkknmmmn

UXY
,,,,,,
0=+Β+Γ  (1) 

 
where Y  is the mn ×  matrix of endogenous variables and Γ  is the 
corresponding mm×  matrix of structural parameters, X  is the kn×  
matrix of exogenous variables and  Β  is the mk ×  matrix of their 
structural parameters. Finally U  is the mn ×  matrix of disturbances for 
which standard hypotheses are supposed to hold: 
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is the variance-covariance matrix of the structural form disturbances U, 
which is supposed to be constant for all observations. 

Furthermore it is assumed that: 
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Under non singularity condition for Γ  the reduced form of the 

equations is derived as: 
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where: 
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Γ−=

ΓΒ−=Π
 (5) 

 
The last equation in (5) represents the matrix of disturbances of 

reduced form, for which it is possible to write: 
 

 
( )
( ) ( ) .

0
11 −− ΓΩΓ=

=
TT nVVE

VE
 (6) 

 
Post-multiplying by  Γ  the first equation in (5) we obtain: 
 
 

mkmmmk ,,,
Β−=ΓΠ  (7) 

 
which represents the relation between reduced and structural form 
parameters. 

Since (7) is a system of k  equations with ( )kmm +×  unknowns, 
exclusion constrains are introduced in order to find the solution with 
respect to Γ  and Β  in terms of Π .  
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If � as it usually happens � each equation does not include all the 
endogenous and exogenous variables, it is possible to consider the 
following partition of the overall matrix of endogenous variables with 
respect to i-th structural form equation: 
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where the first i1m  columns refer to the endogenous variables included 
in i-th equation and the last i2m  columns refer to those excluded. In the 
same way the vectors of Γ �s in i-th equation can be reordered as: 
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where the first im1  elements of iΓ  refer to endogenous variables 
included in the i-th equation. Notice that defining the vector iΓ  no 
normalization rule has yet been introduced. 

Similarly, let us consider the partition: 
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where iX 1  and iX 2  are the sub-matrices corresponding to the 
exogenous variables, included in and excluded from, the i-th equation. 
Accordingly let us define 
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where the first i1k  parameters are related to the exogenous variables 
included in the i-th equation. 

Therefore the i-th structural equation can be expressed as: 
 

01111 =+Β+Γ iiiii UXY . 
 

According to each equation of the system a different ordering of 
variables has to be performed. 
 
 
3. Condition for identification 

 
Usually rank conditions for identification of a simultaneous equation 

system, as well as order conditions, are obtained after applying the 
normalization rule: in our case, this doesn�t happen so that we have to 
redefine the identifiability condition. 

With respect to the i-th structural equation  of the system, relation (7) 
can be written as: 
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where i

11Π  refers to the i-th equation RF parameters of endogenous and 
exogenous variables included, while i

12Π  refers to the endogenous 
included and exogenous excluded ones. 
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Defining the matrix i
*Π  in the following way: 
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the rank condition for solving the system (8a) takes the following form. 
 
Condition 1 � System (8a) admits a unique solution � up to a 
proportionality constant � if the rank: 
 

 ( ) 111* −+=Π ii
i kmr  (9) 

 
the proof follows directly from the Rouchè-Capelli theorem. 
 
Condition 2 � ( ) 111* −+=Π ii

i kmr  if and only if 
 

 ( ) 1112 −=Π i
i mr . (10) 

 
Proof � Let us consider the four blocks partitioned matrix i

*Π : 
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Remembering that: 
 

( ) ( ) ( )0,, 1211* 1
i

k
ii rIrr i Π+Π≤Π , 

 
and noticing that the first block including the identity matrix has always 
full rank: 
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then condition (9) holds if and only if 
 

( ) 1112 −=Π i
i mr . 

 
If equation (10) holds the system (8a) admits a unique non trivial 

solution up to a proportionality constant. In this case the structural 
parameters are said to be identified. 

If 
 

 ( ) 111* −+<Π ii
i kmr , (11) 

 
the structural parameters are said to be under-identified and system (8a) 
admits no solution. 

When the reduced form parameters Π  are substituted with their  
OLS estimates Π� , the system (8a) becomes: 
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so that in both equations an error component occurs because of the use 
of the estimates Π�  instead of the true Π  values: then rank conditions 
cannot be verified. The rank of i

12
�Π  cannot therefore be used as an 

identification criterion and we need to define the so-called �order 
conditions� which are related to the number of the equations and  
unknowns in the system (8a) and are a direct consequence of rank 
conditions.  

 
Condition 3 � If rank condition (9) is satisfied, the matrix ì

*
�Π  has to 

be of order greater or equal to 111 −+ ii km , that is: 
 

111 −+≥ ii mkk  
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i.e.: 
 

112 −≥ ii mk  
 

and the number of excluded exogenous variables has to be greater than 
or equal to the number of included endogenous variables minus one, 
which is the formulation generally used for order conditions. 

Exact identification will occurs when: 
 

111 −= ii mk , 
 

while under identification occurs when: 
 

111 −< ii mk . 
 

In the first case there is a unique solution while in the second one 
there is no solution. 

 
 

4. Limited information and full information LODE 
 
LODE estimator is � in its original formulation � a limited 

information method, i.e. an estimator of structural parameters, equation 
by equation (Pieraccini, 1988). Since it is well known  that FI estimators 
are asymptotically more efficient than LI (Goldberger, 1964, pp. 346-
356, Judge et al., 1985), it is worthwhile to generalize LODE method to 
a full information context. 

Let�s now first consider the case of LI LODE. 
Defining: 
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equation (12) can be written as: 
 

 ii
i εδ =Π *

�  (13) 
 
where it can be shown that: 
 

 ( ) i
TT

k
i UXXX 1

1,

−=ε .   (14) 

 
To have uncorrelated residuals it is possible to make a transformation 

which leads to the following expression of the variance of i-th equation 
disturbances: 

 ( ) i
iTTiT

i XX δδ **
�� ΠΠ   (15) 

 
Limited information LODE is given by the vector iδ  which 

minimizes the quadratic form (15) and it is then given by the 
eigenvector associated to the smallest eigenvalue of the matrix 

( ) iTTi XX **
�� ΠΠ . 

If we make the following position: 
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it can be easily shown that (15) reduces to: 
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where the meaning of the symbol iiA  will become clear in few lines. 

Then (15) becomes: 
 
 iii

T
i A δδ  (16) 

 
so that LODE estimator iδ�  is defined in terms of the eigenvalues and 
eigenvectors of matrix iiA . 

Let us now consider the extension of LODE method to FI context. 
Relations between reduced and structural form parameters for the 

whole system of equation are given by:  
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or in a more compact form, using a self evident notation: 
 

 
1,1,,
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mkssmk
εδ =Π   (17a) 

where the number s  of colums of matrix *�Π   is defined as  
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From equation (14) applied to the vector ε , the variance-covariance 

matrix of the error component is:  
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As in the case of LI to obtain uncorrelated errors it is possible to 
make a transformation leading to the following expression: 

 

( )( ) ( )( ) δδδδ *
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which represents the trace of  Ω  matrix. 

Full Information LODE is obtained by minimizing the quadratic 
form (19) i. e. by considering the eigenvector associated with the 
smallest eigenvalue of the matrix:  
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To find the vector δ  which minimizes (19) is then equivalent to 

minimize the trace of  Ω  matrix. 
The explicit form of A  matrix is: 
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where ijσ  are the element of the matrix 1−Ω . 

The block-diagonal elements of 
S,S

A  are of the form (15a) � now it is 

clear the reason for using the proposed notation � whereas the extra-
diagonal block elements are: 
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Taking into account the definition of i
*

�Π  and j
*

�Π  the extra-diagonal 
block elements of 

S,S
A  can be written as in (15a): 
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The eigenvector associated with the smallest eigenvalue of matrix 

S,S
A  will then minimize  the quadratic form (19), i.e. the trace of the 

variance-covariance matrix of structural form disturbances. 
 
Full Information LODE is obtained multiplying the eigenvector 

associated to the smallest eigenvalue of matrix A  through m  constants 
defined as the reciprocal of the elements corresponding to the 
endogenous variables at right hand sides in each SF equation. 

If a  is the smallest eigenvalue of 
S,S

A  and aP  is the associated 

eigenvector, then: 
 

                                                  aPC=δ�  (23) 
 

where C  is the block diagonal matrix defined as follows: 
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with ip0  being the eigenvector�s element corresponding to the 
endogenous variable oiy  at left hand side in i-th structural form 
equation. 

It has to be noticed that FI LODE could have computational 
advantages with respect to FIML which, in non standard problems, 
converges slowly to solutions or may achieve a local maximum instead 
of the absolute one. 
 
 
5. Estimation of variance-covariance matrix Ω  

 
Equation (19), which defines explicitly the quadratic form to be 

minimized, is a function of disturbances variance-covariance matrix Ω  
which is unknown. Then it is necessary to estimate it. 

As usual it is possible to go through a two stage procedure: in the 
first stage to estimate the SF parameters through LI LODE and use them 
to compute U�  i. e. the matrix of disturbances of SF: 

 
Γ−= ��� VU  

 
where V�  is the matrix of residuals of OLS estimators of RF equations. 

 
Then an estimate of the variance-covariance matrix is obtained as: 
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where: 
 

ii
i kmn

g
11

1
−−

= . 

 
In the second stage structural parameters estimates are obtained 

introducing Ω�  in equation (19). Then Full Information LODE is 
proportional to the eigenvector associated to the smallest eigenvalue of : 

 
( )( ) *

1
*

���� Π⊗ΩΠ= − XXA TT  
 

from which they can be obtained as in (23). 
 
 
6. Consistency of Full Information LODE 

 
In this section we show that FI LODE consistently estimates 

structural form parameters. This results generalizes a previous result 
derived for LI LODE by Perna (1988). 

To this end, let us assume conditions (2) and (3) and � in addition � 
that the exogenous variables matrix 

k,n
X  is non random and has full rank: 

 ( ) kXr
kn
=

,
. 

 
Under these conditions the following Lemma is true. 
 
Lemma: The eigenvector associated to the smallest eigenvalue of the 

matrix ( )( ) ∗
−

∗ Π⊗ΩΠ XX T1T  is proportional to δ  according to m  
constants of proportionality. 

 
Proof: If the Π  matrix is known then, it is  
 

( )( ) 01 =Π⊗ΩΠ ∗
−

∗ δXX TT  
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If α  is the smallest eigenvalue of matrix ( )( ) ∗
−

∗ Π⊗ΩΠ XX T1T  then it 
has to be 0=α .  

If αΨ  is the associated eigenvector, it is possible to write 
 

 ( )( ) 01 =ΨΠ⊗ΩΠΨ ∗
−

∗ αα XX TTT  (26) 
 

and setting: 
 

z=ΨΠ∗ α  
 

(26) becomes: 
 

 ( )( ) 0zXXz T1T =⊗Ω−  (27) 
 

where the matrix ( )( )XX T1 ⊗Ω−  is positive definite, since Ω  is the 
variance-covariance matrix of disturbances, and the matrix X  is 
supposed to have full rank. Then condition (27) is true if and only if  

0z = , i. e. if and only if: 
 

 0=ΨΠ∗ α . (28) 
 
It follows that αΨ  has to be proportional to δ  - since δ  is the vector 

of parameters for which (26) is true. Then the following relation has to 
be verified: 

 

1,,

1

1, SSSS
δα

−Ξ=Ψ  

 
that is: 

 

1,,1, SSSS αδ ΨΞ=  

 
where the matrix Ξ  is: 
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⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Ξ

+

+

+

11

11

11111

mm

i

kmm

ikmi

km

I

I

I

ξ

ξ

ξ

O

O

 

 
The vector δ  will then be: 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
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⎢
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⎢
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Ψ

Ψ
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⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

+

+

+

+

+

+

1,

1,

1,
1

11

1,

11

11

1111

11

11

111

mm

ii

mm

i

km
m

km
i

km
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km
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I

I

I
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α

α
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ξ

ξ
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M

M

O
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where 
i

i
0

1
ψ

ξ =  , and i0ψ  is the element corresponding to the 

endogenous variable at left hand side of the structural equation with 
respect to which the normalization rule has to be performed and iαΨ  be 
the vector of αΨ  corresponding to i-th equation. 
 

 
Theorem: Full Information LODE consistently estimates structural 

form parameters. 
 
Proof: It is well known that OLS estimator of RF parameters Π�  are 

consistent, so that: 
 

              ( ) ( ) ∗
−

∗∗
−

∗
∞→

Π⊗ΩΠ=Π⊗ΩΠ XXXXp TTTT

n

11 ��lim . (29) 
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Furthermore, since the eigenvalues of a matrix are differentiable 
functions of its elements (Kato, 1982) it follows that: 

 
 0lim ==

∞→
α

n
ap  

 
and 

 
                                               αΨ=

∞→n
aPp lim  (30) 

 
Because of the previous Lemma the vector of SF parameters δ  is 

proportional to the eigenvector αΨ , so that it will be 
 
 δδ =

∞→n
p �lim  (31) 

 
which proves the Theorem. 

Because of this Theorem it follows that also the proposed estimation 
of Ω  will give raise to consistent estimators. 
 
 
7. Conclusions 
 

In current literature there are two approaches to the study of 
estimator�s statistical properties. The first one is aimed at finding small 
sample exact distribution of estimators while the other one is to 
compare estimator�s through simulation experiments. 

Several contributions belongs to the first research line (Basmann, 
1961; Sargan, 1976; Kunitomo et al., 1983; Morimune, 1983, 2001). 
However, general results have not yet been achieved, because of the 
very specific models that have been considered. As it is well known the 
main problem is the non linear relationship among structural and 
reduced form parameters.  

In the second case, it is known that the results of an experiment are 
influenced by the simulation hypoteses. Modifying these assumptions 
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and considering a large number of experiments it is possible to drow 
some general conclusion. 

For LI LODE, simulation experiments have shown that the method 
has good performance with respect to other LI estimators (Perna, 1989; 
Cau, 1990; Sbrana, 2001; Zurlo, 2006). A complete report of this 
Montecarlo study will be the object of a next contribution together with 
the results of a simulation experiment on FI LODE.  
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