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1. Introduction

This paper follows another one submitted to SIS 2000 by Giordano
and Vitale. The problem, to be investigated, is to improve the
approximation of the variance for Conditional Least Squares (CLS)
estimators and evaluate the degree of convergence. The model is a
particular bilinear one, that is:

tttt XbX εε += −− 21 (1)

where

tε ~ ),0( 2σN ∀t Cov( st εε , )=0 t≠s
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b and 2σ are the unknown parameters to estimate.

This model belongs to the “type I” of Grahn (1995). The new
method (CLS) to estimate the parameters, introduced by Grahn, is
appealing for the fast computation respect to the classical Maximum
Likelihood by Subba Rao (1981). The CLS estimators, under mild
conditions, have good properties for the strong consistency and
limiting distribution. The main problem is to make inference for the
unknown parameters, given that it is particularly difficult to get an
explicit formulation for the variance of these estimators.

In this paper the objective is to analyse the model (1) for the
variance of the CLS estimator for the parameter b.

The paragraph 2 gives the theoretical background to build the
asymptotic variance; the third paragraph shows, by a simulation, the
performance of this variance using asymptotic bands for the unknown
parameter b; finally the conclusions and remarks are in paragraph 4.

2. Main results

Following Grahn (1995) the CLS estimator for b is:
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where the estimator 2σ̂  is the intercept in the solution of this linear
regression problem:
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with N the number of observations and 12β  another parameter to
estimate.

Grahn (1995) shows that )ˆ( bbN −  converges to a Normal

distribution if ∞<)( 8
tXE .

If ∞<)( 4
tXE  then b̂  converges, with probability one, to b with

the law of Iterated Logarithm.
Given the model (1) it can be shown:

122 <σb ⇒ Xt is Stationary, Ergodic and Causal;
1)1( 22 <+σb ⇒ Xt is invertible;

3/144 <σb ⇒ ∞<)( 4
tXE  (Strong Consistency);

105/188 <σb ⇒ ∞<)( 8
tXE  (Normality).

The moments of Xt have the following values:

• E(Xt) = 0 X
2µ ≡Var(Xt) = 

22

2

1 σ
σ
b−

∀t;

• Cov(Xt, Xs)=0 ∀t≠s;
• E(Xt,Xt-1,Xt-2)= bσ2 X

2µ ∀t.

Let b
~

be another estimator for b, given by
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The estimator b
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 is equal to b̂  if σ2 and X
2µ are known.

It is easy to show that  b
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Lemma 1.
If Xt is as in model (1) and <44σb 1/3 then
b
~ → 1wp b and  b

~
-b= O(LN)

where 
2/1

loglog

−






=
N

N
LN

with N>exp(1) (law of Iterated Logarithm).

Proof.
The condition above 3/144 <σb  implies 122 <σb  then Xt is

stationary, ergodic and causal. Now the empirical mixed moment
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is such that

)(Eˆlim 2133 −−∞→
≡= tttN

XXXMM = bσ2 X
2µ  by ergodicity.

Then b
~ → 1wp b.

To prove the convergence for the order of Iterated Logarithm, it is
sufficient to use Theorem 3.1 in Grahn (1995). ♦

Another auxiliary result is necessary. This is stated in:

Lemma 2.
If Xt is as in model (1) and <44σb 1/3  then
 b

~
- b̂  → 1wp 0 and b

~
- b̂ = O(LN) at most.

Proof.
From Grahn, 1995 follows that  b̂ -b → 1wp 0 with O(LN) and

from lemma 1  above   b
~

-b → 1wp 0 with O(LN).
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Then  b
~

- b̂ ≤b
~

-b+ b̂ -b.
But, in this case, the wp1 convergence is equivalent to L2

convergence as in Liu and Brockwell, 1988 and Grahn, 1995 looking
at the random variables (mixed moments) in C[0,1] space that is the
space of continuous functions defined on the interval [0,1].

Hence it is sufficient to prove that ( )∫ →−+− 0)(
~ˆ 2

XdPbbbb

when n→∞.
Here P(X) is the distribution function of X.

As ( )∫ →− 0)(ˆ 2
XdPbb  and ( )∫ →− 0)(

~ 2
XdPbb when n→∞ and

applying the Schwarz inequality for ∫ −− )(
~

 ˆ XdPbbbb  then the

result holds.
For the order of the convergence, the result is immediate from the
arguments above with the theorem 3.1 of Grahn, 1995. ♦

Now it is possible to state the following theorem:

Theorem.
If Xt is as in model (1) and <88σb 1/105 then

( ) ),0(ˆ VNbbN D→−

where

( ) )(69221 22
2

24222

2

2

σµσσ
µ
σ

bobbbV X

X
+−++=

Proof.
From lemma 1 and lemma 2 it follows that )ˆ( bbN −  has the

same asymptotic distribution as )~( bbN − . Then, under the above
hypothesis,

)ˆ( bbN − →D N(0,V1) and )~( bbN − →D N(0,V2).
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It implies that V1=V2≡V.
Let Yt= XtXt-1Xt-2.

To get the formula above for V, it is necessary to make a direct
computation of
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After some algebraic manipulations, the variance above is:
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 = Var(Yt)+2Cov(Yt+1,Yt)+2Cov(Yt+2, Yt)+

+2Cov(Yt+3, Yt)+2Cov(Yt+4, Yt)+o(b2σ2)

given that Cov(Yt+s, Yt)= o(b2σ2) for s>4

Finally, expanding the above operators, the result holds. ♦

The result for the asymptotic variance of b̂  is exact unless the
terms with a power greater than b2σ2 at least for b. In this way there is
an improvement with respect to the approximation for the variance of
b̂  in Giordano and Vitale, 2000, where a sixth mixed moment is
approximated with a univariate moment of order six.

3. Numerical results

To give an idea of the performance of this variance of b̂ , an
experiment of simulation is to be done. The aim is to analyse the
actual coverage of the bands against the nominal one. Besides, the
average length of the bands is returned. All that is made in order to
evaluate the different performances of the variance V in the theorem
above, and of the approximation given in the paper of Giordano and
Vitale, 2000.
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The structure of the simulation is organised with σ2 fixed to 1 and
the number of iterations equals to 1000. For each iteration there is a
generation of a series with length (N) of 200 observations with b
fixed. Then the CLS method is used to obtain the estimators b̂  and

2σ̂ . Finally the bands are built as

)ˆ(*96.1ˆ bVarb + and )ˆ(*96.1ˆ bVarb − .

The nominal coverage is fixed to 95%. Let V(2) be the variance of
b̂  above and V(1) be the variance of b̂  in Giordano and Vitale, 2000.
Recall that
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The table below shows the results.

b Actual
number

Actual
coverage
V(1)  %

Average
Length V(1)

Actual
coverage
V(2) %

Average
Length

V(2)

0.1 1000 98.10 0.3088 97.70 0.3221
-0.1 1000 97.70 0.3067 97.30 0.3189
0.2 997 96.29 0.3661 96.09 0.3858

-0.2 998 95.79 0.3608 95.49 0.3820
0.4 910 93.52 0.5337 95.15 0.4737

-0.4 920 91.74 0.5416 94.78 0.4806
0.6 624 81.89 0.4676 84.30 0.3641

-0.6 612 81.37 0.4648 83.01 0.3568
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The first column contains the different values of the parameter b in
model (1). The second shows the actual number of iterations which
respects the condition of normality. The other columns are referred to
the actual coverage and the average length of the bands for the
variance V(1) and V(2), respectively.

The most important behaviour is to be discovered in the “Actual
coverage” for V(1) respect to the same for V(2). In fact it is clear that
small values of b bear to an overestimate of the variance. However,
the overall performance is better for V(2). rather than for V(1). Instead
for great values of b there is an underestimate of the variance. As in
the previous case, V(2) still performs better than V(1).

Another limitation for V(1) is the missing in computation of the
effect due to covariances. This explains the behaviour observed in the
table above from the “Actual coverage” and “Average length”.

4. Conclusions and remarks

The simple model in (1) is appealing because it looks like a White
Noise if we consider only the first and second moments as seen above.
So this model can be fitted to the residuals of other linear or non linear
models for time series in order to capture, for example, the skewness
or kurtosis.

This paper can be considered as a step to understand the techniques
underlying the bilinear model. Projects for future research include the
overcoming of the problems related to the estimate of the variance for
the CLS estimators in a more general model.
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