
Quaderni di Statistica
Vol. 12, 2010

1. Introduction

There are many situations in which a set of judges rates a set of items,
as happens, for instance, in athletic competitions or in product evalua-
tions. In general, in several contexts it is worth to study the issue of
the choice and the preference between two or more items: the consu-
mers tastes in Marketing, the voters preferences in Politics, the agreement
toward different ideas or actions in Psychology, the customers satisfac-
tion in Quality Management, the graduation among different diagnoses in
Medicine, etc.

Quite obviously, the variety of fields of interest and of possible appli-
cations has yielded heterogeneous statistical tools aimed at analyzing the
data (often, rank data) expressing the choice made by the raters, as con-
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Summary: In this paper, we develop a parametric model for multivariate rank data, ex-
pressing individual preferences. Our aim is to propose a procedure for the ranking pro-
cess of m items, based on a criterion of sequential comparisons among the objects. We
discuss, then, some issues related to the probability distribution implied by the ordered
choices process, and a numerical example is shown in order to conÞrm the consistency
of the approach. Finally, some inferential aspects are highlighted, especially with regard
to the relationship between the univariate and the multivariate analysis of ranks.

Keywords: Choice Criteria, Order Vector, Permutations, Preferences, Rank Vector.



58 A. D�Elia

sumers, voters, etc. (for an extensive review, see: Fligner and Verducci,
1993; Marden, 1995; Taplin, 1997).

Generally speaking, we can assume that the choice between two or
more items is, mainly, based on two alternative procedures:

• paired comparisons criterion, when the items are few, so that each
of them can be compared with each other;

• sequential comparisons criterion, when the rater elicits his/her pre-
ferred object, then the second best among the remaining ones, and
so on, up to the least preferred one. This model seems more suita-
ble than the former for situations in which there are several items
to be ranked (more than 5/6 items, say).

These two approaches, introduced by Kendall and Babington-Smith
(1940) and Plackett (1975), respectively, have been extended in several
ways and from many points of view, focussing on the measure of agree-
ment among the raters (Daniels, 1950; Agresti, 1984; Tanner and Young,
1985; Sadooghi-Alvandi, 1992), or, more specifically, on the preferences
modelling (Bradley and Terry, 1952; Davidson and Bradley, 1969; Mc-
Cullagh, 1980; Fligner and Verducci, 1988; Henery, 1991; Agresti, 1992).
However, in spite of the wideness of developments and applications, the-
re is a lack of proposals concerning specific distribution models for the
rankings.

Recently, both the choice criteria have been considered in order to de-
velop statistical models for rankings, based on the Shifted Binomial and
on the Inverse Hypergeometric random variables, respectively (D’Elia,
1999; 2000a). Both the approaches performed well in terms of explana-
tory capabilities, and resulted to be also consistent tools for the univariate
analysis of the preferences in a generalized linear models framework. In
fact, the sequential choices model turned out to have a better goodness of
fit to several data sets and, of course, it seems to be conceptually more
convincing (D’Elia, 2000b; 2000c).

More specifically, these approaches were devoted to a univariate ana-
lysis of the ranks, separately for each item. In this work, instead, we want
to consider the complete ranking of all the items, taking into account that
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the allotment of ranks to m items is a choice process intrinsically multiva-
riate. Thus, our aim is to highlight a procedure on which the ranking pro-
cess of m different items could be based, and to propose a new statistical
model for studying multivariate rank data.

We will assume that the choice among more items happens on the
basis of a sequential comparisons criterion. With respect to this point,
it is important to notice that the ranks are just the result of an ordered
choices process: thus, in order to properly analyze rankings, the order
data, expressing the choices sequence, will be considered too.

Finally, we will assume that ties are not permitted inside the ranking;
indeed, it has been noticed that the possibility of tied ranks encourages
lazy behaviours of the judges in rating the items: for this reason, most of
ranking/classifying experiments does not allow ties (Quandt, 1998).

The structure of the paper is the following. In section 2, the notation
and some basic ideas are introduced with regard to the distinction between
rank data and order data. Then, our proposal of a multivariate model is
shown in section 3, and subsequently developed in detail for the case of
three items, in section 4. In section 5 some estimation and computational
issues are addressed, and the relation with the univariate approach is also
discussed. Section 6 is devoted to further developments concerning the
proposed model and to final remarks.

2. Rank and order vectors

Let us consider the problem of ranking m items. For a statistical ana-
lysis, it is irrelevant to state the nature of the items, because the problem
of the choice can arise in several situations and, then, the items could be
almost everything (food or car brands, political parties, football teams,
singers, actors, places where to live, colours, actions, ideas, jobs, etc.).

Let (R1, R2, ..., Rm) be the rank random variables assigned by the
choice process to the ordered m items (O1,O2, ...,Om) of a fixed list.
Let us assume that, Rj = 1 means best and Rj = m means worst, ∀j =
1, 2, ...,m.

Of course, the observed ranks (r1, r2, ..., rm) are just permutations of
the first m integers: (1, 2, ...,m). Each permutation belongs, thus, to the
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class of permutations Pm, whose cardinality is: card(Pm) = m!. Usually
(e.g. Marden, 1995), the probability distribution functions used to descri-
be rankings are defined with respect to Pm, so that, for instance, in the
case of indifference, each element of the class has a constant probability
mass equal to 1/m!.

This approach has three main drawbacks:

• there is no criterion for ordering the elements of Pm;

• the enumeration of all the m! permutations becomes, rapidly, cum-
bersome as m increases;

• the observed ranks can give some insight about the probability di-
stribution function only when then number of raters n is extreme-
ly large with respect to the number of items m (as noticed, for
example, by Sadooghi-Alvandi, 1992).

For these reasons, we think that a more useful approach should be
based on the definition of a parametric model for the ranks.

With regard to the distribution of the ranks of a single and fixed item
Oj (j = 1, 2, ...,m), we proposed (D’Elia, 1999) that the observed rank
rj can be thought of as a realization of an Inverse Hypergeometric random
variable, Rj ∼ IHG(m,Bj), whose probability mass function (pmf), for
r = 1, 2, ...,m, is:

Pr(Rj = r) =

(
Bj+m−1−r

m−r
)(

Bj+m−1
m−1

) =
(
Bj−1
m−r + 1) (

Bj−1
m−r−1 + 1) . . . (

Bj−1
1

+ 1)

(
Bj

m−1 + 1) (
Bj

m−2 + 1) . . . (
Bj

1
+ 1)

.

The IHG random variable used in our proposal describes a drawing wi-
thout replacement from an urn, with Bj white balls and m − 1 not white
balls, until the first white ball is drawn (Guenther, 1975); thus, this sche-
me is consistent with the values assumed by the ranks assigned to a given
object Oj .

A different, and often more useful, parametrization can be obtained
by letting:

θj =
Bj

Bj +m− 1
;
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thus, after some algebra, the Rj ∼ IHG(m, θj) random variable has the
following pmf:

Pr(Rj=r)=

{
θj, r = 1,

cr θj(1− θj)
r−1∏r−1

s=1(m−s−1+ sθj)
−1, r = 2, . . . ,m,

where cr =
∏r−1

s=1(m − s) = (m − 1)!/(m − r)!, r = 2, . . . ,m, and the
parameter θj represents a liking/agreement measure for the j-th item.

More specifically, we have

Pr(Rj = 1) = θj,

P r(Rj = 2) = θj(1− θj)
m− 1

m− 2 + θj
,

P r(Rj = 3) = θj(1− θj)
2 (m− 1)(m− 2)

(m− 2 + θj)(m− 3 + 2θj)
,

.............. .... .............................................

These probabilities can be computed in an effective manner by noting that
Pr(Rj = 1) = θj and the recursive formula, for r = 1, 2, ...,m− 1:

Pr(Rj = r + 1) = Pr(Rj = r)(1− θj)
m− r

m− 1− r + rθj
.

Let us consider, now, a ranking as a multivariate random variable. In
previous works, we have analyzed its components, separately, especially
focussing on the relation between the raters’ features and ranks assigned
to a prespecified item j (D’Elia, 2000b). A problem with this kind of
univariate analysis is that each single component of a ranking is conside-
red independently from the others, while the multivariate random variable
(R1, R2, ..., Rm) lies in a (m− 1)-dimensional space, with:

R1 +R2 + ...+Rm =
m(m+ 1)

2
.

Thus, we need to develop a multivariate structure that takes into ac-
count both the relation between the ranks of the items and the nature of
each single ranking element itself.



62 A. D�Elia

More difficulties come out when we consider the whole ranking by a
multivariate point of view.

The main problem is that we cannot state a unique order among the
components of a ranking, since the natural order (R1, R2, ..., Rm) not
necessarily corresponds to the order of choice performed by each rater.

In particular, two issues must be considered.

• If no ties are allowed in the ranking of m items, the value observed
for Rj cannot be observed for Rh, ∀h �= j: this means, for example,
that if R1 = 3, no other rank random variable Rh (h �= 1) can assu-
me the value 3. This leads to conditional distributions that are not
always consistent with the temporal sequence of choices. Indeed,
if we use a multivariate distribution where R2 cannot take the value
observed for R1, R3 cannot take the values assumed by R1 and R2,
and so on. Then, the admissible values domain for each element
would be restricted following only the natural order (1, 2, . . . ,m),
while it should logically follow the sequential order of choice.

Moreover, for example, if we have (O1,O2,O3,O4) and we obser-
ve the ranking (3,1,4,2), it is not temporal consistent to ask for the
probability of (R2 = 1) given that (R1 = 3), since, on the basis of
the sequential comparison criterion, this question would imply a
conditioning of a past event (the choice of the most preferred item)
on future events (the choice of the third preferred item).

• On the other hand, if we use a multivariate distribution which follo-
ws the order of choice, the sequence of its components will vary wi-
th the raters: for instance, if in correspondence of (O1,O2,O3,O4)
we observe the rankings (3,2,1,4) and (2,4,3,1), the ordered sequen-
ces of the components for the two raters will be (R3, R2, R1, R4)
and (R4, R1, R3, R2), respectively. Thus, it turns out that each ra-
ter will have its own pmf, making impossible any likelihood based
inference.

For these reasons, we are proposing to transform the multivariate rank
random variable (R1, R2, ..., Rm) in a new set of index random variable
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(W1,W2, ...,Wm), by means of the following relation:

(Rj = k)⇔ (Wk = j), ∀(k, j) ∈ {1, 2, ...,m} × {1, 2, ...,m}.

In this way, the index1 random variable (W1, W2, ...,Wm) represent, in
their natural order, where is located the item most preferred, where is the
second best, and so on, with respect to the fixed and prespecified order of
the submitted list (O1,O2, ...,Om).

For example, if there are m = 4 items (O1,O2,O3,O4), and the
preference order of a rater is (O2,O3,O1,O4) – that is, O2 is the mo-
st preferred item, and O4 is the least preferred item – the observed rank
vector is (3, 1, 2, 4)′, while the observed order vector (or index vector) is
(w1 = 2, w2 = 3, w3 = 1, w4 = 4)′. It represents the places in the list
where are located the most preferred item, the second best, and so on.

Thus, the value assumed by the random variable W1, that is w1 =
2, can be interpreted as the answer to the question: “Where is, in the
ordered list, the most preferred item ? It is immediate, in this example,
to notice the correspondence between the rank random variable and the
index random variable:

(R1 = 3)⇔ (W3 = 1); (R2 = 1)⇔ (W1 = 2);

(R3 = 2)⇔ (W2 = 3); (R4 = 4)⇔ (W4 = 4).

These relations show, for example, that since the first item of the list
(O1) has rank R1=3, the random variable W3 must take value 1, and so
on.

The previous example emphasizes that, even if the rank and the order
vectors are both permutations of the same set e = (1, 2, . . . ,m)′, they are
conceptually quite different. Indeed,

• the rank vector represents the position in a preference list of the
items listed in a given order;

1 Sometimes different notations and motivations are introduced in the literature for this tran-
sformation: for instance, Marden (1995) speaks of order vector, while Sadooghi-Alvandi (1992)
calls this a preference vector. In the following, we call (W1, W2, ...,Wm), indifferently, order
vector or index vector.
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• the order vector represents the position in the fixed list of the items
in a preference order.

Thus, Rj is the preference position of the j-th item in the list, while
Wk is the list position of the k-th preferred item.

Let ri=(ri1, ri2, ..., rim)′ be the observed rank vector for a given
i-th rater, and wi=(wi1, wi2, ..., wim)

′ be the corresponding order vector.
Then, the following relations result:

ri = Pe; wi = Pri = P2e = Qe;

where P is an orthogonal permutation matrix (m×m), whose elements
are defined as:

pj,k =

{
1, if rij = k;

0, otherwise;

and Q is an orthogonal permutation matrix (m×m) too, whose elements
are:

qk,j =

{
1, ifwik = j;

0, otherwise.

A typical P (or Q) is a null matrix, except for single units values in
any row and in any column, as the following one:

P =

⎡⎢⎢⎢⎢⎣
0 1 ... 0
1 0 ... 0
0 0 ... 1
... ... ... ...
0 0 1 0

⎤⎥⎥⎥⎥⎦
Usually, the empirical analysis of rankings is focused on the matrix of

the observed ranks R:

R =

⎡⎢⎢⎣
r1,1 r1,2 ... r1,m
r2,1 r2,2 ... r2,m
... ... ... ...
rn,1 rn,2 ... rn,m

⎤⎥⎥⎦
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where:
ri,j = {rank assigned by rater i to itemOj },

for i = 1, 2, ...n; j = 1, 2, ...,m.
Using the previously introduced relation, we can transform each row

of R in a row of index random variable, obtaining the matrix of observed
indexes:

W =

⎡⎢⎢⎣
w1,1 w1,2 ... w1,m

w2,1 w2,2 ... w2,m

... ... ... ...
wn,1 wn,2 ... wn,m

⎤⎥⎥⎦
where:

wi,k = {location in the list of the k−th preferred item by rater i },

for i = 1, 2, ...n; k = 1, 2, ...,m.

For example, let us consider 3 items (O1,O2,O3) and the ranking (2, 3, 1)′

expressed by a rater. Then, using the previous definitions, we have:

P =

⎡⎣0 1 0
0 0 1
1 0 0

⎤⎦ ;
Q = P 2 =

⎡⎣0 0 1
1 0 0
0 1 0

⎤⎦ .
Thus, wi = Qe = (3, 1, 2)′ and it represents the places in the list whe-
re are located the most preferred item, the second best, and the least
preferred item, respectively.

3. A multivariate model for the choice process

In order to develop a multivariate model for the rankings of m items
as expressed by n raters, we can think of the choice process as a four
stages procedure, based on the sequential comparison criterion.

'

'
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1. Every rater acts by assigning a rank to each of the m items. If we
consider this action separately for a given item Oj , the rater’s be-
haviour can be assimilated to a drawing without replacement from
an urn, and modeled by an IHG random variable Thus, if we let Sj

be the rank random variable assigned by the raters to the item Oj ,
we can assume that: Sj ∼ IHG(m, θj), j = 1, 2, ...,m.

2. During the process of ranking the m items, every rater starts from
the most preferred one, then selects the second best, and so on, up
to the worst. Thus, we have to model the index random variable
(W1,W2, ...,Wm), that represent the positions of the items in the
list, from the most preferred to the worst. Since each single com-
ponent has a conditioned (restricted) domain of definition, on the
basis of the values taken by the previous components, a consistent
multivariate pmf could be:

Pr (W1 = w1,W2 = w2, ...,Wm = wm) =

= Pr(S1 = w1)
Pr(S2 = w2)

1− Pr(S2 = w1)
...

P r(Sm−1 = wm−1)

1−
∑m−2

j=1 Pr(Sm−1 = wj)
.

In this way:

• we obtain a multivariate (m − 1)-dimensional distribution,
since

Pr(Wm = wm | past (m− 1) choices ) = 1;

• the Wk random variable cannot take the values observed for
the previous index random variable;

• the univariate distribution of the preferred item is IHG, since
its elicitation is not conditioned by the other choices.

3. Exploiting the relation (Rj = k) ⇔ (Wk = j), we have a one-
to-one correspondence between the multivariate (W1,W2, ...,Wm)
and (R1, R2, ..., Rm) random variable. Indeed:

Pr (W1 =w1,W2 =w2, ...,Wm =wm)=
=Pr (Rw1 =1, Rw2 =2, ..., Rwm =m) ;
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or, alike:
Pr (R1 =r1, R2 =r2, ..., Rm =rm)=

=Pr (Wr1 =1,Wr2 =2, ...,Wrm =m) .

4. The multivariate distribution of (R1, R2, ..., Rm) and that of the
univariate Rj, j = 1, 2, ...,m, are strictly implied by the previous
steps. Moreover, only W1 ∼ IHG(m, θ1) , while the pmf of each
other component must be computed as a marginal distribution of
the multivariate random variable

The previous scheme is developed in some detail in the next section
for the case of m=3 items.

4. The choice among m = 3 items

Let us consider m = 3 items, which we call for simplicity {ABC},
whose indexes in the ordered list are {123}.

On the basis of the previous assumptions, the allotment of the ranks
to A, B, or C, separately, is modeled as:

S1 ∼ IHG(3, θ1); S2 ∼ IHG(3, θ2); S3 ∼ IHG(3, θ3);

where the preference for each item is measured by θ1, θ2, θ3, respectively.
As a matter of fact:

θ1 = Pr(S1 = 1); θ2 = Pr(S2 = 1); θ3 = Pr(S3 = 1).

For a fixed item, the pmf of S turns out to be:

Pr (S = 1) = θ; Pr (S = 2) =
2θ(1− θ)

1 + θ
; Pr (S = 3) =

(1− θ)2

1 + θ
.

The linkage between the univariate choices and the multivariate pro-
cess is possible by means of the relation:

Pr (W1 = w1,W2 = w2,W3 = w3) = Pr(S1 = w1)
Pr(S2 = w2)

1− Pr(S2 = w1)
,
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which is defined for any triplet (w1, w2, w3) such that wj = 1, 2, 3, ∀j =
1, 2, 3; w1 + w2 + w3 = 6.

In fact, the rater selects, first of all, his/her most preferred item, who-
se pmf is S1 ∼ IHG(3, θ1); then he/she chooses between the (two) re-
maining items, so that the second selection is represented by a random
variable that can take all the values {1, 2, 3} except the one taken by the
first random variable This means that the second component of the mul-
tivariate distribution is conditioned by S1 in terms of a restriction of its
range, leading to a censored pmf.

Notice that both W1 and S1 are identical and belong to the IHG
random variable family; the random variable S2 is IHG, while W2 is
not.

It is also important to stress that, in our scheme, we are modelling
the indexes and not the ranks. This implies that the rater selects as most
preferred item the one located in the place w1 of the ordered list; then,
between the two remaining, he/she selects the one located in the place
w2; the last choice is determined by the relation: W3 = 6 −W1 −W2.
Thus the trivariate random variable (W1,W2,W3) is a degenerate random
variable and lies in a 2-dimensional space, since the third component is
univocally determined.

Formally, for m = 3, there are card(P3) = 3! = 6 permutations, with
the following probabilities:

{123} → Pr (W1 = 1,W2 = 2,W3 = 3) =

= Pr (S1 = 1) Pr(S2=2)
1−Pr(S2=1)

= 2 θ1θ2
1+θ2

;

{132} → Pr (W1 = 1,W2 = 3,W3 = 2) =

= Pr (S1 = 1) Pr(S2=3)
1−Pr(S2=1)

= θ1(1−θ2)
1+θ2

;

{213} → Pr (W1 = 2,W2 = 1,W3 = 3) =

= Pr (S1 = 2) Pr(S2=1)
1−Pr(S2=2)

= 2θ1θ2(1−θ1)(1+θ2)

(1+θ1)(1−θ2+2θ22)
;
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{231} → Pr (W1 = 2,W2 = 3,W3 = 1) =

= Pr (S1 = 2) Pr(S2=3)
1−Pr(S2=2)

= 2θ1(1−θ1)(1−θ2)2
(1+θ1)(1−θ2+2θ22)

;

{312} → Pr (W1 = 3,W2 = 1,W3 = 2) =

= Pr (S1 = 3) Pr(S2=1)
1−Pr(S2=3)

= (1−θ1)2(1+θ2)
(1+θ1)(3−θ2) ;

{321} → Pr (W1 = 3,W2 = 2,W3 = 1) =

= Pr (S1 = 3) Pr(S2=2)
1−Pr(S2=3)

= 2(1−θ1)2(1−θ2)
(1+θ1)(3−θ2) .

The previous results can be summarized by the probability distribution of
the (W1,W2) bivariate random variable, that -with the respective margi-
nals induced by (W1,W2,W3)- is shown in the following table.

W1↓ W2→ 1 2 3 Marginals

1 0 2θ1θ2
1+θ2

θ1(1−θ2)
1+θ2

θ1

2 2θ1θ2(1−θ1)(1+θ2)

(1+θ1)(1−θ2+2θ22)
0 2θ1(1−θ1)(1−θ2)2

(1+θ1)(1−θ2+2θ22)
2θ1(1−θ1)

1+θ1

3 (1−θ1)2(1+θ2)
(1+θ1)(3−θ2)

2(1−θ1)2(1−θ2)
(1+θ1)(3−θ2) 0 (1−θ1)2

1+θ1

Marginals p1(θ1, θ2) p2(θ1, θ2) p3(θ1, θ2) 1

Here, for simplicity, we let:

p1(θ1, θ2) =
(1− θ1) (1 + θ2) (7θ1θ2 − 4θ1θ

2
2 + 1− θ2 + 2θ22 − θ1)

(1 + θ1) (3− θ2) (1− θ2 + 2θ22)
;

p2(θ1, θ2) = 2
3θ1θ2 + θ1θ

2
2 + 3θ21θ2 − 2θ21θ

2
2 + 1− θ22 − 2 θ1 + θ21

(1 + θ1) (1 + θ2) (3− θ2)
;

p3(θ1, θ2) =
θ1 (1− θ2) (3− θ1 − θ2 − θ1θ2 + 4θ1θ

2
2)

(1 + θ1) (1 + θ2) (1− θ2 + 2θ22)
.

By a cumbersome algebra, we checked2 that:
∑3

j=1pj(θ1,θ2)=1.

2 In this work, all the algebric developments have been checked by the symbolic language
Maple V c© (Waterloo Maple Inc., 1998).
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The correspondence between (W1,W2,W3) and (R1, R2, R3) is based
on the relation above discussed and, in this case, it results:

(W1,W2,W3)→ {123} {132} {213} {231} {312} {321}
(R1, R2, R3)→ {123} {132} {213} {312} {231} {321}

Consequently, we can deduce a new table for the bivariate distribution of
(R1, R2).

R1 ↓ R2→ 1 2 3 Marginals
1 0

2θ1θ2

1 + θ2

θ1(1− θ2)

1 + θ2
θ1

2
2θ1θ2(1− θ1)(1 + θ2)

(1 + θ1)
(
1− θ2 + 2θ22

) 0
(1− θ1)2(1 + θ2)

(1 + θ1) (3− θ2)
t2(θ1, θ2)

3
2θ1 (1− θ1) (1− θ2)2

(1 + θ1)
(
1− θ2 + 2θ22

)
2(1− θ1)2(1− θ2)

(1 + θ1) (3− θ2)
0 t3(θ1, θ2)

Marginals q1(θ1, θ2) q2(θ1, θ2) q3(θ1, θ2) 1

Here, for simplicity, we let:

q1(θ1, θ2) = 2
θ1 (1− θ1)

(1 + θ1)

q2(θ1, θ2) = 2
3θ1θ2 + θ1θ

2
2 + 3θ21θ2 − 2θ21θ

2
2 + 1− θ22 − 2θ1 + θ21

(1 + θ1) (1 + θ2) (3− θ2)

q3(θ1, θ2) =
8θ1θ2 − θ1 − 4θ21 + 2θ21θ2 + θ1θ

2
2 − 2θ21θ

2
2 − 1− 2− 2θ22

(1 + θ1) (1 + θ2) (3− θ2)

t2(θ1, θ2) =
(1− θ1) (1 + θ2) (7θ1θ2 − 4θ1θ

2
2 + 1− θ2 + 2θ22 − θ1)

(1 + θ1) (3− θ2) (1− θ2 + 2θ22)
;

t3(θ1, θ2) = 2
(1− θ1) (1− θ2) (2θ1 − 3θ1θ2 − θ1θ

2
2 + 1− θ2 + 2θ22)

(1 + θ1) (3− θ2) (1− θ2 + 2θ22)
.

Again we checked that:
3∑

j=1

qj(θ1, θ2) = 1; θ1 + t2(θ1, θ2) + t3(θ1, θ2) = 1 .

Since from the previous tables p2(θ1, θ2) ≡ q2(θ1, θ2), it results:

Pr (W2 = 2) ≡ Pr(R2 = 2);
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and it is confirmed that:

Pr(W1=1)≡Pr(R1=1); Pr(W1=2)≡Pr(R2=1); Pr(W2=1)≡Pr(R1=2).

Of course, we can also express the bivariate distribution of (Wk,W3),
k = 1, 2, and of (Rj, R3), j = 1, 2; moreover, it is possible to obtain the
marginal distributions ofW3 and of R3, respectively. Indeed, we have:

Pr (W3 = 1) =

= Pr{[(W1 = 2) ∩ (W2 = 3)] ∪ [(W1 = 3) ∩ (W2 = 2)]}

= 2
(1−θ1)(1−θ2)(2θ1−3θ1θ2−θ1θ22+1−θ2+2θ22)

(1+θ1)(3−θ2)(1−θ2+2θ22)
;

and similarly:

Pr (W3 = 2) =
8θ1θ2 − θ1 − 4θ21 + 2θ21θ2 + θ1θ

2
2 − 2θ21θ

2
2 − 1− 2− 2θ22

(1 + θ1) (1 + θ2) (3− θ2)
;

Pr (W3 = 3) = 2θ1θ2
2 + θ2 + 3θ22 − 3θ1θ2 + θ1θ

2
2

(1 + θ1) (1 + θ2) (1− θ2 + 2θ22)
.

In the same way, we get the distribution of R3:

Pr (R3=1) = Pr{(R1=2) ∩ (R2=3)] ∪ [(R1=3) ∩ (R2=2)]}=

=
(1− θ1)

2

1 + θ1
;

Pr (R3 = 2) =
θ1 (1− θ2) (3− θ1 − θ2 − θ1θ2 + 4θ1θ

2
2)

(1 + θ1) (1 + θ2) (1− θ2 + 2θ22)
;

Pr (R3 = 3) = 2θ1θ2
2 + θ2 + 3θ22 − 3θ1θ2 + θ1θ

2
2

(1 + θ1) (1 + θ2) (1− θ2 + 2θ22)
.

Finally, in summary, we obtain the marginal distribution of the ran-
dom variable Rj , j = 1, 2, 3:

R1 R2 R3

1 θ1 2 θ1(1−θ1)
(1+θ1)

(1−θ1)2
1+θ1

2 t2(θ1, θ2) q2(θ1, θ2)
θ1(1−θ2)(3−θ1−θ2−θ1θ2+4θ1θ22)

(1+θ1)(1+θ2)(1−θ2+2θ22)

3 t3(θ1, θ2) q3(θ1, θ2) 2θ1θ2
2+θ2+3θ22−3θ1θ2+θ1θ22

(1+θ1)(1+θ2)(1−θ2+2θ22)
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The developments discussed above can be shown by the help of a nu-
merical example. For instance, let θ1 = 1/2; θ2 = 1/2; that is: S1 ∼
IHG(3, 1/2), S2 ∼ IHG(3, 1/2).

Then, the following bivariate distributions for (W1,W2) and (R1, R2)
result from te previous tables:

W1 ↓ W2 → 1 2 3 Marginals
1 0 1/3 1/6 1/2
2 1/4 0 1/12 1/3
3 1/10 1/15 0 1/6
Marginals 7/20 2/5 1/4 1

R1 ↓ R2 → 1 2 3 Marginals
1 0 1/3 1/6 1/2
2 1/4 0 1/10 7/20
3 1/12 1/15 0 3/20
Marginals 1/3 2/5 4/15 1

On this basis and exploiting the fact that:

W3 = 6−W1 −W2; R3 = 6−R1 −R2,

we can obtain the marginal distribution ofW3 and R3. More explicitly, it
results:

Pr (W3 = 1)=Pr{[(W1 = 2)∩(W2 = 3)]∪[(W1 = 3)∩(W2 = 2)]}= 3

20
;

Pr (W3 = 2) =
4

15
; Pr (W3 = 3) =

7

12
.

In the same way:

Pr (R3 = 1)=Pr{[(R1 = 2)∩ (R2 = 3)]∪ [(R1 = 3)∩ (R2 = 2)]}= 1

6
;
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Pr (R3 = 2) =
1

4
; Pr (R3 = 3) =

7

12
.

Moreover, the correspondence between ranks and indexes is confir-
med:

Pr (R3 = 1) = Pr (W1 = 3) =
1

6
;

Pr (R3 = 2) = Pr (W2 = 3) =
1

4
;

Pr (R3 = 3) = Pr (W3 = 3) =
7

12
.

In this way, the marginal distributions of the univariate rank random
variable are:

R1 R2 R3

1 1/3 1/2 1/6
2 2/5 7/20 1/4
3 4/15 3/20 7/12

5. Inferential and computational issues

Let (r1, r2, ..., rn) be the observed rankings expressed by a sample of
n raters, where ri = (ri1, ri2, ..., rij, ..., rim)

′, i = 1, 2, ..., n, represents
the ranks assigned to the m items by the i-th rater.

On the basis of the previous defined correspondence, we can consider,
alike, a sample of indexes vectors (w1,w2, ...,wn), where each vector,
wi = (wi1, wi2, ..., wij, ..., wim)

′, represents the observed order of choice
for the i-th rater.

Thus, the parameters θ = (θ1, θ2, ..., θm−1)′ of the multivariate distri-
bution can be estimated maximizing the log-likelihood function:

logL(θ;w) =
n∑

i=1

logLi(θ;wi),

where

logLi(θ;wi) =
m−1∑
j=1

lj,
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and

l1 = log[Pr(S1 = w1)],

lj �=1 = log[Pr(Sj = wj)]− log

[
1−

j−1∑
jj=1

Pr(Sj = wjj)

]
.

Then, in the case of m = 3 items, the i-th unit contribution to the log-
likelihood function reduces to:

logLi(θ;wi) = l1 + l2,

where
l2 = log[Pr(S2 = w2)]− log[1− Pr(S2 = w1)].

From a computational point of view, it is worth noticing that the
log-likelihood function, shown above, can be quite easily maximized by
means of numerical optimization algorithms (e.g. Newton-Raphson, etc.),
which are often available in most of the statistical software and/or pro-
gramming language (e.g. Gauss c©, by Aptech, 1995). Thus, the only task
is to compute the log-likelihood function. In our case, this can be easily
accomplished by means of the recursive formula:

Pr(Sj = s+ 1) = Pr(Sj = s)
(1− θj)(m− s)

m− 1− s+ sθj
, s = 1, 2, ...,m− 1,

with Pr(Sj = 1) = θj , which makes really fast the computation of the
probabilities involved in the likelihood function.

However, with regard to the speedy of convergence of the optimi-
zation algorithm, a proper choice of starting values for the parameters
plays an important role, too. Some preliminary experiences on real da-
ta sets showed us that the univariate estimates of θ1, ..., θm−1, might be
effectively used to initialize the maximization routine.

Finally, some care is needed as far as concerns the meaning of the
estimated parameters. The case of m=3 items, {ABC}, can be considered
in order to stress some aspects of the problem, although they are still valid
for m > 3.
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In fact, the estimate θ̂1 represents a liking/agreement measure for the
item A, since it is the estimated probability that the rank of A is 1, that
is Pr(R1 = 1). This is true both in a univariate and in a multivariate
approach, since the allotment of the rank to the most preferred item is not
conditioned on previous choices.

Instead, this is not the case for the estimate θ̂2. We could consider θ̂2
a liking measure for the item B from a univariate point of view, but we
cannot state the same in a multivariate approach. Indeed, as it is evident
from the table on page 22, the estimated Pr(R2 = 1) is not a function of
θ̂2, but only of θ̂1, and the same happens for the estimated Pr(R3 = 1).
For this reason, it does not matter that we cannot estimate θ̂3 (the third
component of the multivariate distribution is a degenerate r.v), since we
infer the liking measure for C directly from θ̂1.

On the other hand, θ̂1 and θ̂2 are both necessary to estimate the whole
bivariate distribution of (R1, R2) as well as the marginal random variables
R1, R2, R3. In this way we can obtain the expected frequencies of each
of the m! rankings. Of course, these frequencies can be compared to
the observed frequencies in the sample by means of a chi-square test, in
order to check if the proposed model adequately represents the generating
process of the rank data.

6. Final remarks and further developments

In this paper we have proposed a parametric multivariate model for
studying the whole ranking of m items. This framework is mainly ba-
sed on the distinction between rank and order data, which allows for
overcoming some difficulties of the multivariate approach.

Moreover, this structure stands on a choice criterion -the sequential
comparisons- which seems consistent with the real behaviour of the raters
in several situations. This makes the model a useful tool in analyzing
preferences, ratings, evaluations, and so on.

For sake of simplicity, we have just focused on the information inside
the rank matrix, while it would be interesting to study also the charac-
teristics of the raters in relation to the ranks they express. Of course,
this means to develop a multivariate generalized linear model for the ran-
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kings, extending some previous results on some regression models for
ranks (D’Elia, 2000b). With regard to this point, it would be also impor-
tant to introduce a suitable measure of goodness of fit of the model and to
develop some diagnostic tools.
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