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Summary: The exponential autoregressive (EXPAR) models attracted much interest be-
cause they are able to account for amplitude-dependent frequency, jump phenomena,
and limit cycles. In this paper we examine the estimation method proposed by Hag-
gan and Ozaki, Modelling nonlinear random vibrations using an amplitude-dependent
autoregressive time series model, Biometrika, 68, 1981, 189-196. We are trying to im-
prove their grid search procedure by using a genetic algorithm. Further, two entirely
different procedures are presented based on indirect inference. Thefirst oneimplements
the calibration step by using the Gauss-Newton algorithm, the second one by using a
genetic algorithm. The relative merits of the procedures are investigated by means of a
simulation study. This latter shows that implementing the Haggan-Ozaki’'s method by
means of the genetic algorithm performs better than all other procedures. Then, two
well-known real data sets are considered, the Canadian lynx data and the sunspot num-
bers. We attempt to formulate a generalization of the EXPAR model in order to both
achieve parsimony in model specification and allow for more flexibility. The estimation
procedure makes use of the genetic algorithm. Both parameter estimates and multi-step
out-of-sampleforecasts are performed for comparison purpose.



Key words. AIC criterion; Genetic agorithms; Heuristic methods; Indirect inference;
Least squares.

1. Introduction

The EXPAR models were introduced by Haggan and Ozaki (1981)
as an attempt to represent time series that behave as non-linear random
vibrations. An EXPAR(p) model may explicitly be written

v = {1 +7T16XP(—7%271)}%71 +...F {¢p+7rpexp(—7yt271)}yt,p—|—et,

(D)
with~ > 0.

It may be easily recognized that the EXPAR models belong to the
class of the state dependent models (Priestley, 1988). If the parame-
ters (my,...,m,) are al zero, then (1) reduces to a AR(p) model (Box,
Jenkins and Reinsel, 1994). Also, note that (1) may be thought of as a
smooth threshold model, in the sense that, if |y,_;| is large, then (1) is
similar to an autoregressive model with parameters approximately equal
to (41, - .-, ¢p), While, if |y, | is small, then the autoregressive parame-
ters switch to (¢, + 7y, ..., ¢, + 7).

In thisarticle, we examine some procedure for estimating the parame-
tersin Equation (1). The ability of the EXPAR to account for limit cycles
depends whether the following conditions on the parameters in Equation
(1) befulfilled (see Priestley, 1988, p. 88):

(I) All the roots of
=P — ¢, =0

lieinside the unit circle.
(1) Some of the roots of

2P — (¢ +m)2P e = (¢p+7p) =0

lie outside the unit circle.
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Condition (II) means that, for small y, ;, the system tends to " explode”
while, for large y;_1, condition (1) implies that the system ” damps down”
towards zero. Condition (l11) aimsat excluding the occurrence of unstable
singular points.

The paper is organized as follows. In the next Section the Haggan
and Ozaki’'s (1981) estimation procedure is described. In Section 3 al-
ternative methods for estimating model (1) are proposed and described
in some detail. In Section 4 a generalization of model (1) is proposed to
achieve parsimony as far as the number of parameters is concerned, and
to improve the model’ s flexibility. The goodness-of-fit and the multi-step
out-of-sample forecasts are compared for two well-known real time se-
ries, the Canadian lynx data and the sunspot numbers series. Conclusions
aredrawn in Section 5.

2. The Haggan and Ozaki’s estimating procedure

A brief description of the basic procedure proposed by Haggan and
Ozaki (1981) (H-O) for estimating (1) follows. It may be considered
as a natural benchmark for competitive alternatives because it is quite
straightforward and unlike to fail to yield a solution. It does not ensure,
however, that the limit cycles conditions be fulfilled.

The agorithm requires that an interval (a, b), a > 0, be pre-specified
for the v valuesin (1). Thisinterval is splitin M sub-interval, so that a
grid of candidate y valuesisbuilt. Let 6 = (b — a)/M and v = a. Then,
for M times, the following steps are performed:

(i) Sety=~v+4¢

(1) Estimate ¢; and 7; by ordinary least squares regression of y; on
(Ye—js Yo 5xXD(—1Yi=1),J = 1, ., D).

(i71) Compute the Akaike's AIC criterion and repeat step (ii) for p =



1,..., P,where P isapre-specified integer greater than 1.
Final estimated parameters are taken that minimize the AIC.

3. Alternative methods for estimating EXPAR models

As we consider the estimation of the parameters of model (1) a dif-
ficult task, we took into account two classes of procedures that were de-
vised to handle hard problems, that is the indirect inference and the meta-
heuristic (or general heuristic) methods.

3.1 Indirect inference

Theindirect inference (Gourieroux, Monfort, Renault, 1993) assumes
that some parameters set 6 = (6,,...,0,)" has to be estimated for the
model

Yo = fWi-1, Y2, - 6, 0), 2
where e; is a white noise whose probability density function is known.
Though model (2) issupposed easy to simulate, usual estimating methods
are either not applicable or are likely to fail. Then, an auxiliary model

Yt = g(ytflaytf% ooy Mt 5) (3)

is specified. The sequence {n,} is a zero-mean white noise. Equation
(3) may be preferably, though not necessarily, chosen somewhat close to
model (2). The parameters 5 = (4, - .., )’ in (3) have to be easy to
estimate. It must be either v < m (the over-identified case) or v = m (the
just-identified case).

The auxiliary model (3) may even be replaced by a sequence of statis-
tics that are related to the model (2). As 3 dtatistics, for instance, may
be assumed the correlations between y; and y;_.. Several choices of the
exponentsr and s and of the delay = may be tried. We experienced, how-
ever, that the autocorrelation function from the model (1) often emulates
that of an autoregressive model. Further improvementsin this direction
are possibly advisableif third order moments or other polyspectrarelated
statistics are considered.



Given n observations from a time series, our implementation of the
indirect inference method (I1-GN in the sequel) consists of the following
steps:

(i) The parameters 3 = (f3,, . .., 3,,)’ inmodel (3) are estimated.

(17) Generate, for some suitableinteger i, n x h random numbersé =
(é1,...,én)". Thisgenerated sequence will not be changed afterwards.

(4ii) Let () beaninitial valuefor the parameters vector, and simulate
n X h observationsy = (7, ..., ¥ns) from the model (2) and the white
noise é. _

(iv) By using the simulated time series 7, compute the estimates =
(B, .., Bm) inmodel (3).

(v) Update the parameters vector ) to (V) in order to decrease the
distance between 3 and 3.

(vi) Repeat the steps (ii4), (iv) and (v) by using V) in place of §(©)
until some convergence criterion is satisfied or a pre-specified maximum
number of iterations [V is attained.

The step (v) isoften called calibration, and the relationship 5 = 3(9)
is exploited. Note that there is no need for any explicit functional form,
provided that some mild conditions are satisfied. A typical calibration
deviceis, for instance, the well-known Gauss-Newton agorithm for min-
imizing o o

S(0) = (8- B(9))B - B(9)), (4)

where €2 is a suitable definite positive matrix.

3.2 The genetic algorithm

The meta-heuristic methods (see, for instance, Osman and Kelly, 1996)
may be used as well to cope with hard estimation problems. Their use
is advisable when the solution space is quite large, and estimation is to
be done by maximizing a complicated function that is likely to possess
severa local maxima. All algorithms in this class typically incorporate
some stochastic devices. Meta-heuristic methods may be considered, for
instance, the tabu search, the smulated annealing and the genetic algo-
rithms. These methods often yield very similar solutions, and we con-



fine our discussion only to genetic algorithms (see Mitchell, 1996, for an
introduction), mainly because they offer a natural way to display several
candidate solutions simultaneously and allow explicit interaction amongst
them.

A brief account of the genetic algorithm for parameters model es-
timation will be given along the guidelines provided by Chatterjee and
Laudato (1997). Note that any real parameter = will be approximated by
abinary string ¢ according to the formula

r=a+c—a)/2" 1), (5)

where = is assumed to belong to the interval (a,b) and ¢ is the pre-
specified length of the binary string ¢. So, v parameters are represented
by a sequence of v binary strings of length ¢ each. The steps of the genetic
algorithm may be summarized as follows:

(1) A positive integer s is chosen that represents the size of the pop-
ulation. Unlike the common statistical meaning, in the context of the
genetic algorithm the population is a subset of the generally huge set of
all the elements of the space of the solutions. The initial population is
randomly generated to include s candidate solutions. These solutions are
called chromosomes.

(17) For each chromosome the objective function is computed. The
aim of the procedure is to optimize the objective function. This latter is
called fitness function.

(#7i) The chromosomes are paired, and, in each couple, the one which
possessesthe larger fitness function is copied into the other with probabil-
ity ps. This probability is the selection pressure, with obvious meaning,
and has to be pre-specified. This method for producing the next genera-
tion is called tournament selection.

(iv) The chromosomes provided by step (iii) may exchange some
of their bits by means of the crossover operator. A probability p. is pre-
specified, sothat sp./2 pairsare randomly chosen. For each pair, acutting
point k, say, israndomly chosen in theinterval (1,¢ — 1). The bits from
k +1 to ¢ of thefirst chromosome in the couple replace the corresponding
ones in the second chromosome, and vice versa



(v) For each chromosome in the population inversion may take place
with pre-specified probability p; as follows. Two cutting points are ran-
domly chosenin (1, /), k, and ks, say, where k; < k,. The bits between
the two cutting points are taken in reverse orde.

(vi) The last operator is mutation, and may occur with pre-specified
probability p,, per bit. The bit changesfrom 1 to O or vice versa.

(vii) The stepsfrom (ii) through (vi) are repeated, independently for
each model parameter, until some pre-specified criterion is met or the
maximum number of generations NV is attained.

3.3 Implementing the indirect inference by a genetic algorithm

We embed the genetic algorithm into theindirect inference method, to
replace the Gauss-Newton algorithm in the calibration step. Let us denote
by 11-GA our implementation of this method. The procedure steps (i) and
(17) are left unchanged as explained in Section 3.1. On the other hand,
step (iii) hasto be modified because a genetic algorithm simultaneously
handles the s vectors that form the current population.

Note that the chromosomes encode the EXPAR model (1) parameters
only, which has the role of model (2). So, let (04, ...,0,)=(¢1,. .., ¢y,
T, ..., Tp,7) . Wehavev = 2p + 1. To produce the initial population, a
suitable interval has to be pre-specified for each scalar parameter. Then,
s vectors (0, ..., 09 are randomly generated by using the binary en-
coding (5). The auxiliary parameters in (3) are needed to compute the
fitness function, and do not appear explicitly in the procedure. Thefitness
function may be written, for the i-th chromosome in the j-th generation,

k=1
(6)

Maximizing the fitnessfunction (6) isequivalent to minimizing (4), where
we assume () = [, theidentity matrix.

The steps (iii) and (iv) in Section 3.1 specify how to compute the
estimates 3 in (6). Then, the steps from (i4) to (vii) in Section 3.2 follow.
Recall that, unlike the Gauss-Newton algorithm, the genetic algorithm
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evolves simultaneously s candidate solutions. Each one follows its own
path, and the best found through all N generationsis assumed as the one
which provides us with the model (1) parameter estimates.

3.4 Implementing the Haggan-Ozaki’s method by a genetic algorithm

We propose another estimation method that uses the genetic algorithm
to find a suitable y value to insert in the H-O procedure. Let HO-GA de-
note this procedure. In fact, once some v > 0 is stated, and for fixed
p, the estimates of the remaining parameters (¢4, ..., ¢, T, ..., )
in (1) are uniquely determined by ordinary least squares. So, we ar-
gue that a genetic algorithm may be designed which efficiently replaces
the grid search procedure. This means that a larger set of tentative so-
lutions may be explored in a relatively short time. If, for instance, we
took the interval (0,10) such that 0 < ~ < 10, then a 10000 points
grid would offer the values 0.001,0.002, ..., 10 as candidate solutions.
On the other hand, encoding v asin (5), with ¢ = 16, say, defines the
set 0.000153,0.000305, ..., 10 (numbers are approximated to 6 decimal
places). Unlike the grid search, not al candidate solutions are exam-
ined. Theorems on genetic algorithms, however, make us confident that
some optimal, or sub-optimal, solution will be discovered in areasonable
amount of time. The outcome from model (1) isheavily influenced by the
exponential functions, that are known likely amplify even slight incorrect
approximations.

The algorithm devel ops along the following steps:

(1) Choose a suitable large integer ¢ and an interval (a, b) where the
~ values have to be searched for. Let N denote the maximum number of
generations.

(77) Randomly generate s binary strings each ¢ bitslong. Thisisthe
initial population.

(17i) Decode each binary string according to (5). This provides a set
of s valuesfor ~.

(iv) For each given v, compute the fitness function. This requires
severa stepsto be performed.



(iv — 1) Regress v, on 41, ..., Yi—p, e Wity 1, ..., eﬂyt{lyt_p,
t=p+1,...,n, and retain the ordered estimated parameters ¢, . . . , ¢,,
TyeneyTp.

(iv — 2) Insert such parameters, along with -, in (1), and compute the
resdualsé;, t =p+1,...,n.

(iv — 3) Compute the residual variance 6=+ 31", é7.

(iv — 4) Set the fitness function equal to exp(—ad2).

(v) Perform steps from (7ii) to (vi) as described in Section 3.2. The
current population is obtained.

(vi) Thestepsfrom (7i7) through (v) above are repeated until the max-
imum number of generations V is attained. Alternatively, the procedure
may be stopped according whether some pre-specified criterion is ful-
filled.

3.5 A simulation experiment

A simulation experiment alowed the four estimation methods to be
compared. For 100 times a sequence of 5500 normally independently dis-
tributed random variates with zero mean and variance 0.001 were gener-
ated using the algorithms AS183 (Wichmann and Hill, 1982) and AS241
(Wichura, 1988). These variates were used to compute 5500 observations
from the model (1) with p = 2 and parameters ¢, = 1.95, ¢ = —0.96,
m = 0.23, my = —0.24, and v = 1. These values were taken from Hag-
gan and Ozaki (1981) and fulfill the conditions (1), (I1) and (I11). Initial
values were set to zero, and the first 2250 observations were discarded to
obtain 1000 valid observations. The remaining 2250 observations were
set gpart to compare the out-of -sampl e one-step-ahead forecasts. We held
p = 2 fixed.

For the H-O method, theinterval for the  parameter was (0, 2) and a
grid of 10000 points was used.

In the 11-GN method, we used / = 10. The auxiliary model was cho-
sen ajust-identified AR(5). Lower and upper bounds for the parameters
to vary through the procedure were assumed. The intervals were chosen
(—2,2), (—1,1), (-3,3), (—3,3),and (0, 2) respectively. The maximum



number of iterations was set equal to 1000, but relaxation of the step in
the direction of minusthe gradient was alowed 100 times at most, with a
factor 0.5. The algorithm stops anyway either if the sum of squares of the
differences between the auxiliary parameters estimates 3 — 3 or the sum
of the squared differences between two consecutive sets of parameters ¢/
falls below atolerance value e, say, set to 0.000001. Theiterations stop as
well either if the gradient norm becomes less than e or no improvement
of the residual sum of squaresis found greater than e. The initial values
to start the Gauss-Newton algorithm were chosen as follows. The initial
value of the v parameter was chosen uniformly randomly in the interval
(0,2). Theremaining initial parameters were computed by least squares.
If the conditions (1), (1) and (111) are not fulfilled, then a new random ~
is generated.

For the l1-GA method, we assumed again » = 10 and thejust-identified
AR(5) auxiliary model. Also, the same intervals for the parameters were
chosen. The genetic algorithm parameters were pre-specified s = 50,
ps = 1, p. = 0.6 and p,,, = 0.001. The selection pressure p, was chosen
egual to its maximum value to accelerate the convergence. We did not
use the inversion operator, that iswe set p; = 0. In fact, in the present
context the meaning of a chromosome is locus-dependent. We found that
the inversion operator caused the rate of convergence of the algorithm to
decrease considerably. A string of length ¢ = 16 bits was assumed as a
chromosome. The initial population was formed by randomly selecting
the - parameter and computing the remaining ones by least squares. The
chromosomesthat did not fulfill the conditions (1), (11) and (I11) were dis-
carded. The agorithm was alowed to complete 1000 generations. We
recorded, however, the iteration where the best solution was attained.

The same genetic algorithm parameters were chosen for the HO-GA
algorithm. Note that the search for the v parameter was done amongst
216 — 1 = 65535 numbers, because zero was excluded. We recall that for
the H-O algorithm a grid of 10000 numbers was used, and computations
were performed for each one. The genetic agorithm did not examine all
the 65535 candidate solutions, but explored the sol utions space efficiently
enough to yield the best v value with high precision. On the average
over 100 replications, the objective function was computed 1364 times.
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For comparison, note that the objective function was computed, on the
average over 100 replications, 77 times by the 11-GN, 5477 times by the
I1-GA and obviously 10000 times by the H-O algorithm.

For all of the four methods, computations were done on the mean-
deleted data. Moreover, no parameters set was accepted unless the condi-
tions (1), (11) and (111) in Section 2 were fulfilled. In Table 1 are reported
the average estimated parameters and their standard errors enclosed in
parentheses.

Table 1. Average estimates for 100 replications from an EXPAR(2), 1000

observations
parameter ¢ 05 s o 7
truevaue 195 —-0.96 0.23 —-024 1.0
algorithm d> 6% mse

H-O 183 —.84 40 —.41 141 7277 34 35
(27)  (27) (27) (.27) (43)

-GN 1.84 —.8 .33 —.37 .04 4560 43 43
(09)  (09) (14) (13) (.59)

II-GA 186 —.87 .36 —.42 120 29.77 50 50
(07)  (07) (11) (.19) (.36)

HO-GA 1.86 —.87 .37 —.38 145 4440 36 37
(07)  (07) (11) (11) (.39)

Further comparison indexes are (d?), that is the sum (multiplied by
100) of the squared differences between the true parameters (¢, 7) and
their respective estimates, the average estimated residual variance (62),
multiplied by 10000, and the average mean square errors of the one-step-
ahead forecasts (mse) on out-of-sample 2250 observations, multiplied by
10000 as well. The least d? isyielded by the II-GA algorithm, while the
least 62 and mse are obtained by using the H-O a gorithm. Nevertheless,
the 11-GA vyields the largest 52 and mse, and the H-O the largest stan-
dard errors of the estimates. So, from Table 1 we may see that the overall
performance of the algorithm HO-GA is better than the other procedures.
In fact, all figures concerned with the standard errors of the estimates,
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and the indexes d?, 62 and mse, are quite small. Also, the genetic algo-
rithm seems able to improve both the H-O and the 11-GA methods with
respect to the standard errors of the estimates and the d? index. Then,
we may note that the less both bias and variance of the estimated ~, the
better is the overall performance as far as the remaining parameters are
concerned. For instance, the average parameter estimates from the I1-GN
algorithm are closer to the true values than that yielded by the H-O ago-
rithm. Nonetheless, the variance of the v parameter 11-GN estimates is
large enough to make the statistics used for comparison to be worse than
that computed by the H-O algorithm. So, the accuracy of the estimates of
the parameters of the EXPAR model depends considerably on the quality
of the estimate of ~.

4. Application to real time series and EXPAR generalization

The EXPAR models were applied by many authors for modelling the
well-known Canadian lynx data set (see, for instance, Tong, 1990, Chap-
ter 7, p. 357-418). Haggan and Ozaki (1981) proposed an EXPAR(11)
model. Computations were performed on the mean-deleted log,, data
We used their estimated parameters for computing the multi-step fore-
casts from 1921 to 1934, that is the time origin was assumed the year
1920, and lead timeswere 1, 2, . . ., 14. Then the HO-GA procedure was
used to provide the parameter estimates and the multi-step forecasts were
computed with the same time origin and lead times as before. In the Fig-
ure 1, the forecasts for the years 1921-1934 are reported, obtained from
the Haggan and Ozaki’s parameters set and from the HO-GA procedure.
The forecasts are similar, but those obtained by using the latter method
are generally closer to the observed values. In fact, the mean square error
of the forecasts is 0.0597, while that computed for the former method is
0.0705.
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Figure 1. Forecasts of the Canadian lynx data (vertical axis) for the
years 1921-1934 (horizontal axis). The solid line represents the original
transformed data, the dotted line the forecasts computed by using the pa-
rameters given in the Haggan and Ozaki’ s paper, and the dashed line our
forecasts from the HO-GA procedure.

The use of genetic algorithmsallows also the estimation of more elab-
orated models, where many parameters have to be obtained by searching
methods. We suggest that model (1) may be generalized by allowing the
~ parameters to be different in each term. Such generalization may be
written

ye = {d1+mexp(=my; 1) ye-1 +-. -+{¢p+ﬁpexp(—7pyf1)}yt—p+(67t)-
In order to exhibit limit cycle behavior, the same conditions (I) and (I1)
concerned with model (1) have to hold true for the model (7). The condi-
tion (111), however, has been derived by assuming asingle v, so that it is
no longer applicable for our model (7). Nonetheless, a sufficient condi-
tion for model (7) to have no unstable singular point may be stated as
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)
1— zp:¢j > Zp: |7;| or < pmin(0, 7"),

j=1 j=1
where m*=min(r, ..., m,). The proof may be readily developed along
the same guidelines provided by Haggan and Ozaki (1981, p. 191). Only
we have to observe that the ssimplified formula (1.7) displayed therein
does not hold in our case, as we alow for multiple v's. So, in deriving
condition (111"), we have to consider the absolute value of the coefficients
m, inthe first inequality, and their least value in the second one.

We argue that, using model (7), some parsimony may be gained as
far as the number of parametersis concerned. Furthermore, model (7) is
likely to allow for more flexibility and adaptation to the data. Estimating
model (7) iseasily done by using the HO-GA method, whileagrid search,
in such multi-dimensional parameter context, would be much more heavy.

Only the first 100 observations were used for parameter estimation.
The residua variance, that is the mean square error of the within-sample
one-step-ahead forecasts, was computed. Also, we computed the AIC cri-
terion to take the number of parametersin each model into account. Note
that some caution is needed when considering the A1C in the present con-
text, because here the likelihood is only approximately proportional to
the residual variance. Further, the model is not linear in the parameters
v;, and they have a limited range of dependence on the data. Then, we
calculated the out-of-sample forecasts for lead timesat 1, 2, .. ., 14 steps
ahead. Such forecasts were compared with the observations from 1921
through 1934. The mean square error was computed on these 14 fore-
casts. We compared the models EXPAR(2), EXPAR(6) and EXPAR(11),
with asingle v and with 2, 6 and 11 ~’s respectively. By using the HO-
GA method, we obtained the results listed in Table 2. As expected, by
allowing for more +’s makes the residual variance to decrease. Accord-
ing to the AIC criterion, the best model is the EXPAR(11) with asingle
7, and the EXPAR(11) with more y’sisthe second best. The mean square
forecasts error, however, does not exhibit this behavior, and best forecasts
are yielded by the EXPAR(2) model with 2 +’s, though the EXPAR(2)
model with one v is only dlightly worse. This circumstance seems to
suggest that the adherence of the model to the sample data does not en-
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sure more accurate multi-step forecasts. Note that we considered out-
of-sample forecasts, so that the parameter estimates did not take into ac-
count the last 14 observations. These latter are better predicted by the
EXPAR(2) model, in spite of the fact that the least residual variance is
yielded by the EXPAR(11) model with 11 4’s. The former model fore-
casting ability is possibly dueto the fact that it describes well the overall
behavior of the time series.

Table 2. Comparison amongst some EXPAR(p) modelswith 1 and p 's
for the Canadian lynx data

residual AlC multi-step
model variance criterion forecasts mse
EXPAR(2) oney  0.0498 -289.97 0.0437
EXPAR(2) 2+'s  0.0479 -291.86 0.0419
EXPAR(6) oney  0.0440 -286.36 0.1085

EXPAR(6) 61's  0.0404 -28489  0.0911
EXPAR(11) oney 00296 -30600  0.0917
EXPAR(11) 114's 0.0267 -29631  0.0818

The sunspot numbers (see Tong, 1990, Chapter 7, p. 419-429) were
investigated as well by using several models and estimation methods. We
made out computations on the mean-deleted transformed data 2{(1 +
y)'/? — 1} as suggested in Tong (1990, p. 420). We considered the
AR(9) model reported by Tong (1990, p. 423), and the self-exciting
threshold autoregressive SETAR(2; 11, 3) model proposed by Ghaddar
and Tong (1981, p. 247). Then, we took into account the EXPAR(2),
the EXPAR(6) and the EXPAR(9) models with one v and with 2, 6 and
9 ~’srespectively. For estimating the parameters of each model we used
the observations from 1700 to 1979, while the observations from 1980 to
1995 were reserved for the multi-step forecasts. The results are displayed
in Table 3. Models are compared by means of the residual variance, the
AIC criterion and the mean square forecasts error. Timeorigins are 1979,
1984, 1987 and lead times 1,2 ..., 8. We consider as well a wider time
span withtime origin 1979 and lead times 1, 2. .., 13.
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Table 3. Multi-step forecasts mean square error for the sunspot
numbers: comparison amongst AR(9), SETAR(2; 11, 3) and some
EXPAR(p) modelswith Land p v's

residua AIC mse  mse mse  mse
model variance criterion 80-87 85-92 88-95 80-92
AR(9) 4.05 40964 360 165 901 16.19
SETAR
(2,11, 3) 3.73 40259 182 3351 1734 2227

EXPAR(2)

one 490 45499 7.08 6528 31.39 32.97
2+'s 483 45296 377 8533 2932 3846
EXPAR(6)

oney 447 44527 764 5474 1946 2111
67's 434 44700 11.85 4201 2062 21.89
EXPAR(9)

oney 366 40129 499 2043 821 13.02
94's 357 41032 262 1634 1065 10.27

As before, the highest order EXPAR model with a single v exhibits
the least AIC value. Such finding, however, is not in agreement with the
forecasting ability of the models. In fact, the best forecasts not always are
obtained by using models that have the least AIC. The SETAR(2; 11, 3)
model, for instance, provides the best multi-step forecasts for the years
1980-1987. The results change, however, if different time intervals are
considered. Thus, the least mean square forecasts error is observed for
the EXPAR(9) with 9 ’s in 1985-1992, for the EXPAR(9) with a sin-
gle v in 1988-1995. In the wider time span 1980-1992, the EXPAR(9)
with 9 7’sis able to produce the best multi-step forecasts. The cyclical
behavior of this time series is changing over time, and our models may
describe it better in certain years than others. It seemsthat the EXPAR(9)
model with 9 v’s amost aways yields the most accurate forecasting per-
formance.
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5. Conclusions

We investigated four methods for estimating an EXPAR model and
compared their performances on the basis of a simulation study. The
method proposed by Haggan and Ozaki (1981) was used as a benchmark
to evaluate our three proposal methods:

(1) An algorithm based on the indirect inference by using the Gauss-
Newton algorithm for calibration.

(2) Another indirect inference based algorithm where the calibration
is done by using a genetic algorithm.

(3) The Haggan and Ozaki’s procedure where the search for the
parameter was performed by a genetic algorithm.

The genetic algorithm was found able to improve both the indirect
inference method and the Haggan and Ozaki’s procedure. Implementing
thislatter with the genetic algorithm also provided the best overall perfor-
mance amongst all of the four methods, and reduced the computational
effort. Such improvement was observed as well as far as forecasting the
Canadian lynx data by an EXPAR(11) model is concerned.

Finally, we argued that using more than a single parameter ~ in the
EXPAR model specification could allow for improved forecasts. For esti-
mating the parameters of these models, it is straightforward to generalize
the HO-GA procedure. The applications to the Canadian lynx data and
to the sunspot numbers show that some decrease of the residual variance
may be gained. Further, the mean square forecasting errors were found
smaller for the EXPAR models with multiple +’s. The model order does
not need be chosen too large, because even low order EXPAR models
were often able to provide accurate multi-step forecasts.
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