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Summary: In survival analysis, it is very common to test whether two survival time dis-
tributions are equal. In the framework of random censorship model, two of the most fre-
quently used procedures in order to compare samples of right-censored survival data are
the asymptotic weighted log-rank test (WLR; Mantel, 1966) and the weighted Kaplan-
Meier test (WKM; Kaplan and Meier, 1958). In this work we present a novel permu-
tation combination-based testing approach for survival analysis. Within permutation
methodology, censored data problems can be thought within a missing data setting. In
this sense, it is possible to take into consideration a Multidimensional Permutation Test
based on the theory of permutation testing with missing data. A comparative Monte
Carlo simulation study has been performed, along with an application to a real case
study, in order to evaluate the behaviour of the permutation procedures, with respect to
some other asymptotic nonparametric methods proposed in the recent literature. The
aim of this work is to point out a possible flexible and robust procedure, in terms of
power, among the investigated methods. In general, the achieved results mainly suggest
the use of a multidimensional permutation methodology in case of equal censoring.
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1. Introduction and notation

This work is about permutation methodologies for hypothesis testing
problems within the context of survival analysis. The theme of survival
analysis embraces methods related to the analysis of data on events ob-
served over a certain period of time, and related to the investigation of
predictors associated with the occurrence rates of this endpoint. In this
framework, a failure (a death, for instance) is considered the event of in-
terest in the statistical analysis. Thus, the statistical comparison is focused
on failure time data which come up when statistical units are exposed to
the hazard of failure under different experimental conditions. In this work
we make the assumption that an individual can have an event at most once.

Now, let us assume that the experiment have is based on the com-
parison of independent samples of size n1 and n2, respectively, where
n = n1 + n2 ∈ N is the pooled sample size of the study. Thus, we
define (Ω(n),B(n), P (n)) as a given sequence of fixed probability spaces,
and
{
B(n)
t : 0 ≤ t <∞

}
as a family of right-continuous, non-decreasing

complete sub-σ-algebras , which correspond to the history of survival up
to and including time t.

Usually in the type II censoring model, Tmj , m = 1, . . . , nj , j =
1, 2, designates the true survival times under testing (i.e. the length of
time to event), and Cmj represents the censoring variable for the longest
time subject m can be observed. Given this notation, Fj indicates the
cumulative distribution function (c.d.f.) of Tmj (with survival function
Sj(t) = Pr (Tmj > t) = 1 − Fj(t)), and Kj represents the cumulative
distribution function of Cmj (with censoring survival function Gj(t) =
Pr (Cmj > t) = 1−Kj(t)). Notice that the cumulative distribution func-
tion F (t) = Pr(T ≤ t) of T is of primary interest, while the one related
to C, G(t) = Pr(C ≤ t), is supposed to be an unknown nuisance entity.

In this setting, a typical right-censored survival dataset comprises n
independent realizations of the random pair (X,Δ). Hence, the random
vector (Xmj,Δmj) belongs to subject m in the jth sample, for j = 1, 2
and m = 1, . . . , nj . Here, variable Xmj indicates the failure time of sub-
ject m in the jth group. Xmj is called uncensored if the event of interest
occurs before the end of the observation period; otherwise the observation
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is called censored. Thus, Bj(t) = Pr(Xmj ≤ t) is the cumulative distri-
bution function of Xmj . On the other hand, variable Δmj indicates the
censoring marker, so that it is equal to 1 if the observation is uncensored,
and is equal to 0 otherwise. Concisely,

Xmj = min(Tmj, Cmj) and Δm = I(Tmj ≤ Cmj) ,

where I(A) denotes the indicator function of event A.
In addition, let us denote with t1 < · · · < tn the distinct ordered

pooled times (where tm′s consist of either event or censoring times); and
with t1 < · · · < tD the distinct event times in the pooled sample (i.e. in
this case ti represents only the event times). Finally, let us define τ as the
largest of the observed event times.

The entire collection of observed data is captured by the pair of asso-
ciated matrices (X, δ):

(X, δ) = ((Xj, δj), j = 1, 2) = {(Xmj, δmj),m = 1, . . . , nj , j = 1, 2 }
= {(Xmji, δmji),m = 1, . . . , nj , j = 1, 2 , i = 1, . . . , D} .

Hence, let us make the assumption that the data from a random ar-
ray (X, δ) = {(X1, δ1)  (X2, δ2)} on n subjects are splitted into two
samples of n1 and n2 units, respectively, and related to two levels of
a treatment. Let us also make the assumption that the outcome vari-
ables in the two samples have unknown distributions P1 = P1Δ · P1X|Δ
and P2 = P2Δ · P2X|Δ , respectively, (with Pj ∈ P , where P is a,
potentially not specified, nonparametric family of non-degenerate dis-
tributions), both defined on the same probability space (Ω,B), where
Ω = (X ,Δ) is the sample space and B is a σ-algebra of events. Thus, let
us define Ω/(X,Δ) as the permutation sample space given (X,Δ). In this
terms, (X ,Δ)/(X,Δ) represents the orbit associated with the data (X,Δ),
as the set containing all permutations (X∗,Δ∗). of the observed data set
(X,Δ).

In the permutation context, let us indicate (Xj, δj) as the observed
data set of nj units corresponding to the jth group or sample, with j =
1, 2. On the other hand,

{
(X∗b

j , δ
∗b
j ), j = 1, 2 , b = 1, . . . , B

}
is a random

sample from the permutation sample space.
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2. Comparison of survival curves

In survival analysis, it is very common to test whether or not two
survival time distributions are equal. In this context, data are collected
in order to study the failure time of a group of sample size n, assuming
that observations are independent. For simplicity, and without loss of
generality, let us consider the case of two independent samples. In this
case, the hypotheses testing system is commonly focused on studying the
null hypothesis H0: F1(t) = F2(t), ∀ t ∈ R

+.
Explicitly, we are interested in the following hypotheses system:

H0 : {P1(t) = P2(t) = P (t), ∀t ≤ τ}
= {[S1(t) = S2(t)] and [K1(t) = K2(t)] , ∀t ≤ τ} ,

against:
H1 : {P1(t) < �=> P2(t) for some t ≤ τ} ,

in case of equal censoring, or:

H1 : {[S1(t) < �=> S2(t)] or [K1(t) �= K2(t)] for some t ≤ τ} ,

in case of unequal censoring, where with the symbol ”< �=>” we denote
the specific kind of the alternative, i.e. one between the one-sided stochas-
tic dominance (”<” or ”>”) or the two-sided stochastic difference (”�=”)
and where the censoring distributions Kj (with j = 1, 2) may vary be-
tween treatments.

A critical peculiarity of survival analysis is of course due to censored
observations when time to event data is collected. It is of particular in-
terest the case of right-censored data, a problem that happens when the
unknown and unobserved time to event is greater than the observed time
for which a subject was followed-up during the study. In a clinical trial
for example, drop-outs can occur because some patients choose to stop
the therapy or because the study ends before all of the subjects have ex-
perienced the event under study.

This work deal with complicated censoring patterns and, most impor-
tant, with the type of censoring. In the framework of right-censored sur-
vival data, it is frequently made the assumption that censored data come
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from an underlying random process, which might or might not be associ-
ated with treatment levels or with event occurrences. If we suppose that
the probability that an observation is censored is not affected by its un-
observed value, then we can ignore this process and therefore there is no
need to specify it.

In the literature related to right-censored survival data, most of the
statistical procedures make the assumption that censoring effects are, in
a very specific sense, noninformative in terms of distribution of survival
time, i.e. unaffected by treatment levels. In the event of equal censoring,
the censoring process is not affected by treatments, and observed data
can be thought as a random sub-sample of the complete data set. Hence,
in this case, the process that affects censored data can be disregarded,
without making any impact on the inferences on X. Thus, if the censoring
distributions are equal, the censoring data process is called ignorable, and
statistical tests might be performed conditionally on the actual observed
data.

On the other hand, in case of unequal censoring, the observation pairs
from the first sample do not have the same distribution of those from
the second sample, and that is valid even if the null hypothesis on sur-
vival times is true. If the censoring distributions are not equal, then the
censored data process must be properly specified, in order to make valid
inferences on X. As a result, dealing with unequal censoring data is much
more complicated than when we make the assumption that censoring dis-
tributions are equal, because inferences ought to be based on the whole
data set, and most important it is necessary to specify a suitable model for
the underlying censoring trend.

If we assume that, under the null hypothesis, both event and censoring
times are jointly exchangeable with respect to samples, then it is possible
to solve these multivariate testing problems by using the nonparametric
combination of dependent permutation tests. In order to do that, the over-
all hypotheses can be broken down into a set of sub-hypotheses, assuming
that the associated partial tests are significant for large values, marginally
unbiased, and consistent.

Based on this reasoning, two articles from Callegaro, Pesarin and
Salmaso (2003), and Bonnini, Salmaso and Solari (2005) presented sev-
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eral solutions for permutation analysis of survival data.
This paper introduces some procedures which are exact and one which

is approximated.

3. A novel permutation combination-based testing procedure for
survival analysis

In the framework of permutation methodologies, it is possible to think
about an approach of analysis performed in two stages: a first phase fo-
cused on the D observed distinct event times in the pooled sample, where
each of those tests can be considered partial aspect of the whole hypothe-
sis testing problem; and then a second phase focused on the combination
of these partial aspects into a global one.

Hence, in the right-censored survival data framework, one can thought
censored data as a missing data problem. In this case, it is possible to
take into consideration a multidimensional permutation test based on the
theory of permutation testing with missing data. In fact, if we make the
assumption that, after having fixed an observed time ti, i = 1, ..., D,
the data already censored might be considered as missing data, then it is
reasonable to extend the theory of permutation methods of missing values
proposed in Pesarin and Salmaso (2010) to the right-censored survival
analysis.

Therefore, the nonparametric combination procedure for dependent
tests can be thought as a two-phase (or multi-phase) testing method. In
the first stage, let us define Γi : (X (n),Δ(n)) −→ R

1, i = 1, . . . , D, as an
appropriate univariate partial test statistic for the ith sub-hypothesis H0i

against H1i as defined later. Now, we assume, without loss of generality,
that Γi is non-degenerate, marginally unbiased, consistent and that large
values of Γi are significant, i.e. large values are stochastically larger in
H1i than in H0i. Therefore, in the second stage, we define the global test
statistic Γ′′ = ψ(λ̂1, . . . , λ̂i, . . . , λ̂D), as the combination of the permuta-
tion p-values λ̂i = λ̂Γi

associated with the D partial tests, using a proper
combining function ψ. Thus, the second-level combined test is a function
of D dependent partial tests. Again, we assume, without loss of general-
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ity, that ψ : [0, 1]D → R
1 is a continuous, non-increasing, non-degenerate

univariate combining function, and that large values of ψ are significant.
In general, when we have to deal with a more complex data pat-

tern (for instance, in the framework of hypothesis testing with repeated
measures, and stratification variables, or multi-aspect testing, and closed-
testing), the nonparametric combination can be viewed as a multi-phase
methodology based on several intermediate combinations, where for in-
stance it is at first necessary to combine partial tests with respect to vari-
ables within each of the s strata, s = 1, . . . , S, and then to combine the
obtained second-order tests with respect to strata using a single third-
order combined test.

Here, we are interested in the overall (or global) null hypothesis which
states that the two samples have the same underlying distribution:

HG
0 :
{
(X1,Δ1)

d
= (X2,Δ2)

}
,

against a one-sided (stochastic dominance) or a two-sided (inequality in
distribution) global alternative hypothesis:

HG
1 :

{
(X1,Δ1)

d

< �=> (X2,Δ2)

}
.

Under the null hypothesis, let us make the assumption that the data
(X,Δ) are jointly exchangeable with respect to the two samples on both
X and Δ variables. It is crucial to emphasize that the whole set of ob-
served data (x, δ) under the null hypothesis, is a set of jointly sufficient
statistics for the underlying observed and censoring data pattern. Like-
wise, HG

0 entails the exchangeability of the vectors of observations with
respect to samples, i.e. the permutation multivariate testing principle can
be properly applied.

In a contest of such complexity, it is unlikely to come out with a single
overall test statistic. Thus, this hypothesis problem might be handled by
using the nonparametric combination of a set of dependent permutation
tests (Pesarin and Salmaso, 2010).

Therefore, this method includes a set of D partial tests and, subse-
quently their nonparametric combination. In this context, the overall null
hypothesis can be equivalently written as follow:
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HG
0 :

{
D⋂
i=1

[
(Xi1, Oi1)

d
= (Xi2, Oi2)

]}
=

{
D⋂
i=1

H0i

}
,

which is equivalent to

HG
0 :

{[
D⋂
i=1

(
O1i

d
= O2i

)]⋂[ D⋂
i=1

(
X1i

d
= X2i

)
|O
]}

= HO
0

⋂
H

X|O
0 .

These formulas serve to emphasize the opportunity of breaking down
the global null hypothesis HG

0 . The global alternative hypothesis can be
written as:

HG
1 :

{
D⋃
i=1

[(X1i, O1i)
d

< ˙�= > (X2i,O2i)]

}
=

{
D⋃
i=1

H1i

}

=

{[
D⋃
i=1

(
O1i

d
= O2i

)]⋃[ D⋃
i=1

(
X1i

d
= X2i

)
|O
]}

= HO
1

⋃
H

X|O
1 .

At this point, the overall hypotheses system, HG
0 against HG

1 , is bro-
ken down into D systems of sub-hypotheses, H0i against H1i, i = 1, ..., D,
in such a way that HG

0 is true if all the H0i are jointly true. HG
1 is stated

in order to reject H0 when at least one partial null hypothesis is false.
The testing problem HG

0 against HG
1 , is based on a D-dimensional

vector of real-valued test statistics Γ = {Γ1, . . . ,Γi . . . ,ΓD}, where Γi

is the univariate partial test for the ith sub-hypothesis H0i against H1i.
Without loss of generality, we make the assumption that partial tests Γi are
marginally unbiased, non-degenerate, consistent and significant for large
values. Thus, the second-level combined test is a function of D dependent
partial tests. It is important to highlight that, the combination need to
be nonparametric, especially with respect to the underlying dependence
relation pattern.
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4. The structure of the multidimensional permutation test

Let us denote t(1) < ... < t(D), i = 1, ..., D, as the ordered and distinct
observed time of the event of interest.

Thus, for each statistical unit m within the jth sample, m = 1, . . . , nj,
j = 1, 2, and each time toi we compute Vmji(ti) as

Vmji(ti) =

⎧⎨⎩
1 if Xmj > ti
0 if Xmj ≤ ti and Xmj = Tmj

C if Xmj ≤ ti and Xmj = Cmj;
,

and Omji(ti) as

Omji(ti) =

{
0 if Vmji(ti) = C
1 otherwise

.

Hence, let us consider uij(ti) =
∑nj

m=1 Omj(ti) the number of sub-
jects that have not already been censored at time ti in the jth sample, and
ui(ti) =

∑2
j=1 uj(ti) the number of subjects that have not already been

censored at time ti in the pooled sample.

4.1. Multidimensional permutation test in case of equal censoring ( i.e.
Δ1

d
= Δ2 )

The following procedure, proposed by Callegaro, Pesarin and Salmaso
(2003), assumes that censoring effect are non-informative with regard to
the distribution of survival time.

Under this assumption, the hypotheses system is focused on the com-
parison between the global null hypothesis:

HG
0 :

[
{S1(ti) = S2(ti) ∀ti , i = 1, . . . , D} and

{
Δ1

d
= Δ2

}]
=
[{

X1
d
= X2

}
and
{
Δ1

d
= Δ2

}]
,
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and the overall alternative hypothesis HG
1 :

HG
1 : {S1(ti) < �=> S2(ti) ∀ti, ∃ti : S1(ti) < �=> S2(ti)}

=

{
X1

d

< �=> X2

}
.

In the event of equal censoring, the analysis can be conducted con-
ditionally with regard to the observed censoring variable O and, most
importantly, it can ignore HO

0 , because in this setting it is stated that O
does not add any information about the effects of the variable under test-
ing. Therefore, HO

0 : {O1
d
= O2} may be ignored because we made the

assumption that the sub-hypotheses on O are true. On the other hand, the
global null and alternative hypotheses H

X|O
0 and H

X|O
1 are broken down

in D sub-hypotheses, one for each D observed times t(1) < ... < t(D).
In conclusion, the overall null hypothesis can be stated in the following
simpler fashion:

HG
0 = H

X|O
0 :

{
D⋂
i=1

[(
Xi1

d
= Xi2

)
|O
]}

=
{⋂

i
H

X|O
0i

}
,

against

HG
1 :
{⋃

i
H

X|O
1i

}
.

Now, each of the partial permutation test statistics for testing the sub-
hypothesis HX|O

0i against the sub-alternative H
X|O
1i is defined as:

Γ
∗X|O
i (ti) = S

∗
2(ti)

√
u∗i1(ti)
u∗i2(ti)

− S
∗
1(ti)

√
u∗i2(ti)
u∗i1(ti)

,

where S
∗
j(ti) =

∑nj

m=1 V
∗
mj(ti) · O∗mj(ti) is a suitable function of the uni-

variate sampling totals of valid data, and u∗ij(ti) =
∑

m O∗mj(ti) is the
number of non-censored data permutations at the observed time ti.
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It is important to emphasize that, each test statistic Γ
X|O
i (ti) is per-

mutationally invariant, in mean value and variance, with regard to the
permutation actual sample size u∗j =

∑nj

m=1 O
∗
mj , which changes based

on the random assignment of observations to the two samples, because
in this case all the observations play a part in the permutation process,
even those observations with censoring data. In addition, when u∗j = nj ,
j = 1, 2, i.e. when no censoring values are observed, the procedure is
permutationally equivalent to the standard two-sample permutation test
in case of comparison between locations.

Given that the test statistic Γ∗ is approximately exact, then it is also
approximately unbiased. Another important property of Γ∗ is that the test
statistic is consistent.

This solution is properly defined, if we make the assumption that u∗1
and u∗2 are jointly positive. In general, this entails that it is necessary to
discard from the analysis all those points of the permutation sample space
(X ,O)/(X,O) where even a single component of the permutation sample
u∗, of actual sample sizes of valid data, is zero. This restriction does not
affect the inferential conclusions.

In the proposed solution, the survival analysis is computed using the
nonparametric combination Γ′′(ti) = Γ′′X|O(ti) = ψX

(
λ̂
X|O
1 , . . . , λ̂

X|O
D

)
.

Here,

λ̂
X|O
i =

1
2
+
∑B

b=1 I
{
Γ∗bi (ti) ≥ Γo

i

}
B + 1

,

represents the estimated p-value related to each ti, where ψX is a proper
combining function ψ and B represents the number of independent per-
mutations.

According to Rubin (1976), it is possible to ignore the variable Δ
because it is assumed that Δ does not add any information about the effect
of the variable under test (because we are considering the event of equal
censoring). Therefore, the process which affects the censoring data can
be ignored, and the survival analysis can be computed conditionally on
the actual observed data.
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4.2. Multivariate permutation test in case of unequal censoring ( i.e.

Δ1

d

�= Δ2 )

This solution, introduced by Bonnini, Salmaso and Solari (2005), is a
conditional test based on the probability of failure and on the distribution
of observed time to failure conditional upon censoring data.

In the current framework, the hypothesis system is focused on the
comparison between the global null hypothesis HG

0 :

HG
0 :

{
[S1(ti) = S2(ti) ∀ti , i = 1, . . . , D] and

[
Δ1

d
= Δ2

]}
=
{[

X1
d
= X2

]
and

[
Δ1

d
= Δ2

]}
,

and the overall alternative hypothesis HG
1 :

HG
1 :

{
[S1(ti) < �=> S2(ti) ∀ti, ∃ti : S1(ti) < �=> S2(ti)] or

[
Δ1

d

�= Δ2

]}
=

{[
X1

d

< �=> X2

]
or
[
Δ1

d

�= Δ2

]}
.

In case of unequal censoring, H0 considers the homogeneity in dis-
tribution, with regard to the two groups, of the effective observed and
collected data X, in conjunction with that associated to the censored data
process O. Under unequal censoring data, the null hypothesis must take
into consideration the joint distributional equality of the censored data
process in the two samples, conditional to O, and of outcome X condi-
tional to O. Thus, the overall null hypothesis can be written as:

HG
0 :
{[

O1
d
= O2

]⋂[(
X1

d
= X2

)
|O
]}

.

Under the null hypothesis, we assume exchangeability among the n
individual data vectors in (X,O), with regard to the two samples, which
entails that the effects of the treatment are null on all observed and un-
observed variables. This means that we are making the assumption that
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there is no difference in distribution with respect to the multivariate cen-
soring indicator variables Oj , j = 1, 2, and, conditionally with regard to
O, with respect to the effective observed variables X. Therefore, there is
no need to specify both the censored data process and the data distribu-
tion, as long as marginally unbiased permutation procedures are available.
This is particularly helpful, because in this way we do not have to specify
the dependence relation model in (X,O), as this inferential component is
nonparametrically processed.

Consequently, the global hypothesis system is broken down into the
2×D sub-hypotheses

HG
0 :

{[
D⋂
i=1

(
Oi1

d
= Oi2

)]⋂[ D⋂
i=1

(
Xi1

d
= Xi2

)
|O
]}

=
{
HO

0

⋂
H

X|O
0

}
=

{(
D⋂
i=1

HO
0i

)⋂( D⋂
i=1

H
X|O
0i

)}
,

against

HG
1 :

{(
D⋃
i=1

HO
1i

)⋃( D⋃
i=1

H
X|O
1i

)}
.

Here, the null sub-hypothesis HO
0i points out the equality in distribution

between the two levels of the ith marginal component of the censoring
indicator pattern; and the null sub-hypothesis HX|O

0i points out the equal-
ity in distribution of the ith component of X, conditional on O. Now, for
each of the D sub-hypotheses HO

0i versus HO
1i , it is possible to choose a

permutation test statistic like for instance the Fisher’s exact probability
test or any other appropriate test statistics for suitable testing for binary
data.

The partial permutation test statistic for testing the sub-hypothesis HO
0i

against the sub-alternative hypothesis HO
1i is defined as:

ΓO
i (ti) = ΓO

i (X,O) =

n2∑
i=1

O2i .
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This partial test is permutationally equivalent to Fisher’s exact proba-
bility test.

On the other hand, for each of the D sub-hypotheses H
X|O
0i , O is

considered fixed at its observed value, and therefore it is possible to work
conditionally.

In the framework of unequal censoring, it is also necessary to combine
the D test statistics related to the components of the censoring variable O,
assuming that all partial tests are marginally unbiased.

In conclusion, in order to test H0 : {[
⋂

i H
O
0l ]
⋂
[
⋂

i H
X|O
0l ]} against

H1 : {[
⋃

i H
O
1l ]
⋃
[
⋃

i H
X|O
1l ]} the final step involves the combination of

the D tests ΓO∗
i and the D tests ΓX|O∗

i , i = 1, . . . , D. Therefore

Γ′′ = ψ(λ̂O
1 , . . . , λ̂

O
D; λ̂

X|O
1 , . . . , λ̂

X|O
D ) .

The nonparametric combination of 2×D partial tests may be executed
in at least three different methods:
(i) we consider one single combining function on all 2 × D partial tests
such as: Γ′′a = ψ(λO

1 , . . . , λ
O
D;λ

X|O
1 , . . . , λ

X|O
D );

(ii) we can consider D second-order combinations, one for each compo-
nent variable, Γ′′bl = ψi(λ

O
i ;λ

X|O
i ), i = 1, . . . , D, followed by a third

order combination T ′′′b = ψ(λ′′b1, . . . , λ
′′
bL);

or as another alternative, (iii) we might consider two second-order com-
binations, Γ′′cO = ψO(λ

O
1 , . . . , λ

O
D) and Γ′′cX|O = ψX(λ

X|O
1 , . . . , λ

X|O
D ),

respectively, on the censoring indicator O and on the effective observed
(X|O), followed by a third order combination Γ′′′c = ψ(λ′′cO;λ

′′
cX|O).

If we use the same combining function ψ in all the phases and in
each of the three methods of combination, then Γ′′a, Γ′′′b and Γ′′′c are almost
permutationally equivalent, except for approximations due to the Monte
Carlo procedure and non linearity of combining functions. In addition,
due to assumptions on partial tests, the second-level partial test Γ′′cX|O is

marginally unbiased for H
X|O
0 :

{[(
X1

d
= . . .

d
= XC

)
|O
]}

, hence it al-
lows for separate testing on effective observed data, conditional on O,
even under unequal censoring. This property is useful in many situations,
in particular when the analysis is focused on effective observed data.
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Partial tests Γ∗Oi on the components related to variable O are exact,
unbiased and consistent, while Γ

∗X|O
i on the components related to vari-

able X are unbiased, consistent, but approximately exact. This means that
the combined test T ′′ is unbiased, consistent, and approximately exact for
all ψ ∈ C (see also Pesarin and Salmaso, 2010).

5. A comparative simulation study

The performance of the proposed solutions has been investigated by
means of Monte Carlo (MC) simulations in order to estimate the size and
power under different experimental situations. For each setting, we con-
sidered MC = 1000 simulations and B = 1000 Conditional Monte Carlo
iterations (CMC) for the censoring proportion of 50% in both samples (in
case of equal censoring) and 25% against 75% (in case of unequal cen-
soring).

The different configurations are particularly interesting because they
represent an extensive variety of situations. These configurations involve
most of the challenges tackled in survival analysis. Therefore the aim
of the simulation study was to find out whether or not there is a specific
procedure able to handle all of these issues in a “robust” fashion. More
specifically, the simulated configurations take into consideration: (i) the
type of hazard model under alternative hypothesis (models with propor-
tional hazard rates, early, middle, late and crossing hazard differences),
(ii) the type of censoring model (equal or unequal censoring), (iii) the
sample sizes between the two groups (balanced, left or right unbalanced
sample sizes) and lastly, (iv) the type of alternative (one sided or two sided
hypothesis testing).

The power of the analyzed tests has been compared under several haz-
ard rate models, and specifically the situation of proportional hazard rates
and the interesting circumstances of early, middle, late, and crossing haz-
ard rate differences.

Now, in the simulation study, the survival (or failure) times Tmj , m =
1, . . . , nj , j = 1, 2, were generated from piecewise Weibull distributions
with shape and scale parameters γj and βj , respectively (γ > 0, β > 0),
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hazard function λ(t) = γβ( t
β
)γ−1I(0,∞)(t), probability density function:

fT (t, β, γ) = γβ−γtγ−1exp[−( t
β
)γ]I(0,∞)(t) ,

and survival function:

ST (t, β, γ) = exp[−( t
β
)γ]I(0,∞)(t) ,

Therefore, the notation used is:

Tm1 ∼ Wei(β1, γ1), Tm2 ∼ Wei(β2, γ2) .

and these are the failure times related to the two groups, and generated
from Weibull distributions, where, in all our simulations, γ1=γ2=γ= 2.
The choice of the shape parameter is intended to take into consideration
that in real situations event frequencies increase over time. On the other
hand, the scale parameter βj was properly chosen for each model in order
to simulate the hazard rates configuration of interest in sample j.

Then, the censoring times Cmj , m = 1, . . . , nj , j = 1, 2 were in-
dependently generated from the survival times using the uniform distri-
bution. Therefore, Cmj has density function fC(c, 0, ξ) = 1

ξ
I(0,ξ)(c). In

particular we denote with: Cm1 ∼ U(0, ξ1) and Cm2 ∼ U(0, ξ2) the cen-
soring times related to the two samples.

In each configuration, the constants ξj were chosen to achieve the
target censoring proportions in sample j. Thus, the parameters ξj have
been selected such that ξj : pj(ξj) = π = Pr(Δmj = 1) with 0 ≤ π ≤ 1.

In the simulation study, the multidimensional permutation tests in
case of equal censoring (Callegaro, Salmaso and Pesarin, 2003) and in
the event of unequal censoring (Bonnini, Salmaso and Solari, 2005), de-
noted with the acronyms ECNPC and UCNPC, respectively, represent the
suitable permutation approach for survival analysis. These combination-
based procedures are compared with some other permutation and asymp-
totic nonparametric techniques introduced in the recent literature. With
respect to permutation methods, we considered: (i) the conditional (exact)
log-rank test (PLR, Heimann and Neuhaus, 1998), and (ii) the conditional
(exact) ”Renyi-type” test (RUPT; Callegaro, Salmaso and Pesarin, 2003).



Combination-based permutation testing in survival analysis 31

On the other hand, with regard to asymptotic approaches, we took into
consideration the two most frequently used methodologies for comparing
groups related to right-censoring survival data. Those tests are (iii) the
log-rank test (LR, Mantel, 1966), and (iv) the weighted Kaplan-Meier test
(WKM; Pepe and Fleming, 1989). In addition, we considered other two
recent works related to (v) an integrated version of the WKM (IWKM,
Lee, Lee and Omolo, 2008), and (vi) a modified version of the Fleming-
Harringhton test (MFH; Fleming and Harringhton 1991; Gaugler, Kim
and Liao, 2007).

Tables 1-5 show the power behaviour of the tests in some of the inves-
tigated experimental settings. The results presented in Tables 1-5 show a
general good behaviour of the nonparametric combination method in dif-
ferent settings. On the whole, the achieved results suggest the use of the
multidimensional permutation procedure, especially in case of equal cen-
soring (ECNPC).

Table 1. Power behaviour of the proposed tests with right-censored data.
Models with proportional hazard rates under equal censoring. Two-sided
alternative with right-unbalanced sample sizes (n1 = 10;n2 = 50).

Permutation Tests Asymptotic Tests
α ECNPC UCNPC PLR RUPT LR WKM IWKM MFH

0.01 0.540 0.920 0.571 0.596 0.661 0.499 0.542 0.560
0.025 0.683 0.929 0.736 0.755 0.775 0.631 0.663 0.682
0.05 0.790 0.939 0.830 0.846 0.851 0.730 0.769 0.756
0.10 0.876 0.951 0.913 0.912 0.919 0.828 0.860 0.843
0.20 0.938 0.958 0.962 0.957 0.966 0.909 0.928 0.922
0.30 0.966 0.962 0.982 0.957 0.982 0.943 0.961 0.948
0.40 0.984 0.964 0.989 0.986 0.990 0.963 0.969 0.964
0.50 0.989 0.968 0.995 0.989 0.995 0.974 0.979 0.975
0.60 0.992 0.972 0.996 0.992 0.996 0.983 0.988 0.983
0.70 0.999 0.973 0.997 0.995 0.997 0.988 0.991 0.990
0.80 1.000 0.974 1.000 0.997 0.998 0.992 0.993 0.996
0.90 1.000 0.979 1.000 0.999 1.000 0.995 0.998 0.999
1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 2. Models with early hazard differences, unequal censoring. Power
behaviour of some tests with right-censored data. Two-sided alternative, left-
unbalanced sample sizes (n1 = 50;n2 = 10).

Permutation Tests Asymptotic Tests
α ECNPC UCNPC PLR RUPT LR WKM IWKM MFH

0.01 - 0.847 0.056 0.051 0.094 0.052 0.089 0.168
0.025 - 0.857 0.136 0.125 0.195 0.105 0.133 0.317
0.05 - 0.874 0.259 0.229 0.301 0.166 0.177 0.434
0.10 - 0.884 0.393 0.351 0.426 0.255 0.260 0.569
0.20 - 0.899 0.555 0.510 0.575 0.387 0.386 0.733
0.30 - 0.909 0.650 0.606 0.658 0.494 0.493 0.813
0.40 - 0.916 0.717 0.681 0.720 0.579 0.593 0.870
0.50 - 0.924 0.779 0.755 0.785 0.645 0.678 0.898
0.60 - 0.931 0.829 0.815 0.835 0.720 0.764 0.927
0.70 - 0.938 0.882 0.878 0.885 0.800 0.854 0.952
0.80 - 0.944 0.933 0.932 0.936 0.872 0.929 0.972
0.90 - 0.951 0.971 0.967 0.972 0.938 0.981 0.987
1.00 - 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 3. Models with middle hazard differences under equal censoring. Power
behaviour of tests with right-censored data. One-sided alternative, right-
unbalanced sample sizes (n1 = 10;n2 = 50).

Permutation Tests Asymptotic Tests
α ECNPC UCNPC PLR RUPT LR WKM IWKM MFH

0.01 0.110 0.478 0.024 0.042 0.041 0.061 0.060 0.116
0.025 0.199 0.494 0.041 0.086 0.066 0.113 0.105 0.165
0.05 0.301 0.521 0.072 0.146 0.100 0.165 0.157 0.225
0.10 0.432 0.553 0.137 0.275 0.168 0.245 0.240 0.319
0.20 0.585 0.592 0.245 0.471 0.277 0.387 0.421 0.453
0.30 0.698 0.621 0.353 0.651 0.374 0.490 0.580 0.536
0.40 0.782 0.637 0.449 0.763 0.472 0.581 0.771 0.620
0.50 0.840 0.659 0.540 0.866 0.554 0.678 0.875 0.708
0.60 0.883 0.684 0.650 0.897 0.666 0.750 0.941 0.788
0.70 0.923 0.704 0.748 0.957 0.769 0.825 0.965 0.847
0.80 0.957 0.723 0.854 0.980 0.865 0.887 0.973 0.903
0.90 0.981 0.748 0.925 0.987 0.940 0.944 1.000 0.961
1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 4. Models with late hazard differences under unequal censoring.
Power behaviour of the proposed tests with right-censored data. Two-
sided alternative with balanced sample sizes (n1 = 10;n2 = 10).

Permutation Tests Asymptotic Tests
α ECNPC UCNPC PLR RUPT LR WKM IWKM MFH

0.01 - 0.890 0.079 0.138 0.102 0.190 0.426 0.091
0.025 - 0.906 0.149 0.254 0.186 0.322 0.520 0.156
0.05 - 0.919 0.248 0.411 0.294 0.455 0.596 0.255
0.10 - 0.928 0.397 0.550 0.421 0.581 0.676 0.370
0.20 - 0.942 0.578 0.704 0.600 0.710 0.776 0.547
0.30 - 0.955 0.690 0.800 0.699 0.792 0.839 0.646
0.40 - 0.964 0.767 0.867 0.781 0.857 0.893 0.724
0.50 - 0.972 0.842 0.908 0.846 0.891 0.924 0.784
0.60 - 0.980 0.882 0.941 0.887 0.933 0.958 0.834
0.70 - 0.986 0.915 0.964 0.918 0.957 0.979 0.868
0.80 - 0.991 0.946 0.982 0.949 0.973 0.986 0.911
0.90 - 0.992 0.973 0.990 0.975 0.986 0.998 0.954
1.00 - 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 5. Models with crossing hazard differences under equal censoring.
Power behaviour of the proposed tests with right-censored data. Two-
sided alternative with right-unbalanced sample sizes (n1 = 10;n2 = 50).

Permutation Tests Asymptotic Tests
α ECNPC UCNPC PLR RUPT LR WKM IWKM MFH

0.01 0.730 0.974 0.238 0.428 0.289 0.609 0.514 0.088
0.025 0.834 0.978 0.313 0.575 0.347 0.712 0.637 0.114
0.05 0.896 0.981 0.391 0.695 0.426 0.776 0.723 0.134
0.10 0.946 0.983 0.484 0.804 0.502 0.846 0.813 0.188
0.20 0.970 0.983 0.595 0.887 0.607 0.895 0.903 0.298
0.30 0.979 0.985 0.659 0.924 0.666 0.922 0.939 0.390
0.40 0.991 0.989 0.717 0.953 0.728 0.940 0.967 0.473
0.50 0.993 0.992 0.774 0.974 0.778 0.954 0.985 0.575
0.60 0.995 0.993 0.822 0.984 0.830 0.962 0.992 0.648
0.70 0.997 0.995 0.871 0.989 0.872 0.982 0.997 0.733
0.80 0.999 0.995 0.919 0.997 0.923 0.987 0.999 0.823
0.90 1.000 0.996 0.961 0.999 0.965 0.993 0.999 0.917
1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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The combination-based solution appears to be reasonably effective,
especially in case of equal censoring, and even in those configurations
well-known in the literature as ”ideal” settings for other common permu-
tation and asymptotic tests. It is important to emphasize that this solution
is also effective in those configurations where other nonparametric pro-
cedures cannot properly be used, i.e. with nonproportional hazard rates
models. The combination-based solution can be suggested in the event
of equal censoring, particularly when the (small) sample sizes of the two
groups are markedly unbalanced. The simulation study also underlines
that the novel approach shows a good overall behaviour and the solution
appears to be sensitive to most of all the investigated configurations.

6. An application to a biomedical study

In the specialized biomedical literature, there is evidence to believe
that there is an association between Tricuspide Valve Replacement (TVR)
and high mortality and morbidity; but current knowledge in long-term re-
sults related to TVR is still limited. In this section, it is shown an applica-
tion of survival analysis based on data collected at the Department of car-
diovascular disease, Cardiac Surgery Unit, Policlinico S.Donato Hospital
(Garatti et al, 2009), which was focused on postoperative or in-hospital
mortality and long-term survival of a high-risk population. We studied a
well-known risk factor, and specifically the pre-surgery New York Heart
Association functional classification (NYHA), which enables to grade the
extent of heart failures. This is a seriousness measure which can classify
patients in one of four classes with respect to their limitations and symp-
toms during physical activities related to normal breathing and change-
able levels in shortness of breath and/or angina pain. In this particular
group of patients we observed 16 patients with class-II functional capac-
ity (28%), 30 with class III (54%) and 10 with class IV (18%). The group
of patients in NYHA class III or IV was compared with the group of pa-
tients in class II (control group).

The aim of the study was to analyze the overall mortality (either peri-
operative mortality or long-term follow-up (FU) mortality). Perioperative
mortality includes: i) post-operative mortality, ii) in-hospital mortality
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(all deaths observed at the hospital), and iii) 30-days mortality (all deaths
observed within 30 days from surgery).

Figure 1. Kaplan-Meier survival estimates by NYHA.

Table 6. Results of survival analysis for NYHA. Department of Cardio-
vascular Disease, Policlinico S.Donato, Milan: June 1990 - December
2005

This retrospective study followed a cohort of 56 patients who under-
went TVR for a period of 15 years, from June 1990 to December 2005. 21

Permutation Tests Asymptotic Tests
Alternatives ECNPC WKN
Two-sided 0.020 0.027
One-sided (2)>(3,4) 0.939 0.987



36 R. Arboretti Giancristofaro et al.

(37.5%) deaths was observed during the study period, 8 (38%) during the
hospitalization, and 13 (62%) during the follow-up. Figure 1 illustrates
the survival curves for the two groups.

The sample size of the study is relatively small, and the two groups are
roundly balanced. This trial is particularly interesting because the hazard
rates seem to be proportional, but there is a moderate to heavy unequal
censoring pattern.

For this specific survival analysis, we computed the proposed permu-
tation combination-based approach (ECNPC) and the traditional asymp-
totic Weighted Kaplan-Meier (WKM) test. In order to analyze the effect
of NYHA on the survival of the two groups of patients. For the permu-
tation solution, we used B = 10000 conditional Monte Carlo iterations
(CMC). A p-value < 0.05 was considered statistically significant.

We refer the reader to Pesarin and Salmaso (2010) for details on the
software code.

7. Conclusions and final remarks

This work has introduced a novel permutation combination-based test-
ing technique for survival analysis when the researchers are interested
in comparing whether or not two survival time distributions are equal.
In light of the comparative Monte Carlo simulation study and then as
it can be seen in an application from a real case study, the suggested
permutation-based approach seems to be quite reliable and effective when
compared with traditional asymptotic counterparts. Indeed, the achieved
results show the overall good behaviour of the nonparametric combina-
tion method under different settings. On the whole, the suggested solu-
tion achieves a good performance and it appears to be sensitive to almost
all the examined situations. The achieved results suggest the use of the
multidimensional permutation procedure especially in case of equal cen-
soring, and particularly when the small sample sizes of the two samples
are substantially unbalanced.
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