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Summary: The proper definition of a global performance index is a challenging topic,
especially in the field of New Product Development and Education. Very often in this
context, the research aim is focused on evaluating the performances of treatments (prod-
ucts, services, etc.) from a multivariate point of view, that is, in connection with more
than one aspect and/or under several conditions. Therefore, the main goal of statistical
data analysis consists in the calculation of a proper index to obtain a global performance
evaluation of the treatments under investigation. The purpose of this work is to present
an innovative nonparametric method for ranking of treatments, with reference to the
analysis of variance layout, using a suitable global performance index, and to critically
compare two challenging indexes that can be used in complex situations whereas para-
metric procedures can not be reliably employed. The goal of this paper is to find which
procedure is more reliable. In particular, the procedures are tested by varying experi-
mental conditions such as the number of variable and the distributions of random errors.
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1. Introduction and motivation

Applied research problems are often related to datasets observed over
more units (subjects, samples of product unit, etc.), with reference to sev-
eral variables (evaluations, product performances, etc.), with the aim of
studying the relationships between these variables and a factor of interest
under investigation (a given firm’s feature, product, etc.). In this frame-
work the main goal is to compare the factor levels, with respect to all
variables, in order to rank them and hence to find out the “best” one.

Recently, in the literature there’s a growing interest on the topic of
multivariate ranking methods of treatments. Despite the fact that the liter-
ature of multiple comparison methods addresses the problem of ranking a
set of treatment groups from worst to best (Westfall et al., 1999), no clear
indication is provided on how dealing with the information from pairwise
multiple comparisons, especially in case of blocking and/or multivariate
response variable. Since the seminal paper by Bonnini et al. (2006),
several other methodological contributions have been presented in the lit-
erature (Corain and Salmaso, 2007; Arboretti et al., 2008; Bonnini et al.,
2009).

The ranking and selection approach in multiple decision theory, as
it can be seen in Gupta and Panchapakesan (2002) (which contains an
extensive discussion on the whole theory), provides some hints on the
topic, but essentially for univariate problems and under assumption of
normality. Moreover, although this book deals with a great number of
available procedures, it is more focussed on theoretical aspects such as
defining ranking rules that respect a given probability of correct selection,
or providing formulae for choosing the minimum sample size such that
this probability is attained, rather than providing practical rules that can
be directly used in real situations.

This problem is not only of theoretical interest but also it has a rec-
ognized relevance. In fact, especially for industrial research, a global
ranking in terms of performance of all investigated products/prototypes is
a very natural goal (Bonnini et al., 2006). When performance evaluation
takes into account more than one aspect, the problem can be complicated
and some methodological and practical issues arise: standardization, mul-
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tivariate structure of data, accuracy of partial indicators, distance with
respect to target (highest satisfaction level), stratification in presence of
confounding factors (Fayers and Hand, 2002).

As confirmation of the genuine interest on the topic by practition-
ers, it is worth noting that in 2008 an international industrial organization
called AISE has formally incorporated such a methods as official standard
for industrial research on house cleaning products (AISE, 2009). AISE
is the international Association for Soaps, Detergents and Maintenance
Products. It is the official representative body of this industry in Europe.
Its membership totals 37 national associations in 42 countries, covering
about 900 companies ranging from small and medium-sized enterprises
to large multinationals active both in the consumer goods market and the
industrial and institutional domains (AISE, 2010).

The present paper is organized as follows: section 2 provides the for-
malization of the problem, defines the theoretical background and de-
scribes the concept of ranking parameter along with its use; section 3 is
devoted to the description of the algorithm used to obtain the multivari-
ate ranking; in section 4 we present details on the simulation study used
for comparing the proposed procedures; finally, section 5 contains final
discussion and some conclusions, including some purposes for future re-
searches.

2. Formalisation of the problem

In order to introduce how an inferential approach for ranking of multi-
variate populations can be developed, let Yik be the multivariate numeric
variable related to the p-variate response of any experiment of interest
and let us assume, without loss of generality, that high values of each
marginal univariate component corresponds to better performances and
therefore to a higher degree of preference. The experimental design of
interest is defined by the comparison of C groups or treatments with re-
spect to p different variables where n replications of a single experiment
are performed by a random assignment of statistical units to treatments
(or groups). The C-group multivariate statistical model (with fixed ef-
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fects) can be represented as follows:

Yik = μi + εik, εik ∼ IID(0,Σ); i = 1, ..., C; k = 1, . . . , n ; (1)

where, in the case of a balanced design, n is equal to the number of repli-
cations, index i is related to treatments with p-variate mean effect equal to
μi, index k is related to replications and εik is a p-variate random term of
experimental errors with zero mean and variance-covariance matrix Σ.

In order to determine whether the groups/treatments are equivalent
against the alternative that they are different, we introduce the following
hypothesis testing layout. At first a multivariate global C-sample hypoth-
esis HG

0 is considered. If this is rejected, inference will concern the mul-
tivariate pairwise comparisons H ih

0 , and possibly on univariate pairwise
comparisons H ih

0|j . More formally,{
H

G

0 : μ1 = · · · = μC

H
G

1 : ∃ i, h
∣∣ μi �= μh

(2a)

then, if H
G

0 is rejected

{
H ih

0 : μi = μh

H ih
1 : μi �= μh

(2b)

then, if H ih
0 is rejected

{
H ih

0|j : μij = μhj

H ih
1|j : μij �= μhj

(2c)

i, h = 1, . . . , C, i �= h, j = 1, . . . , p .

Since the focus of this work is not only on hypothesis testing, but also on
defining and estimating a suitable indicator to quantify the relative pref-
erence of each treatment in comparison with each other (in order to rank
them), let us consider a so-called “ranking parameter”
θi = fi (μ1, . . . ,μC) , i = 1, . . . C, such that the rank transformation
of θi may be able to provide a meaningful ranking of the i-th treatment
from a multivariate point of view (the concept of “ranking parameter” can
be found in Gupta and Panchapakesan, 2002).

It is worth noting that the choice of the functions fi(.) is particularly
sensitive, in fact it represents the way in which the data dimensionality is
reduced, hence in general:
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• we cannot think on an optimal solution because it depends on the
unknown underlying data structure;

• goodness of fi(.) depends on the underlying metric, so that geomet-
rical functions can be used only with continuous random variables
while in case of categorical r.v.s it is more appropriate to use a more
robust approach (such as goodness-of-fit functions).

Examples of ranking parameters are:

• Euclidean distance: θdist

i = ‖μi − μ0‖ ;

• squared Mahalanobis distance: θMah

i = (μi − μ0)
�·Σ−1·(μi − μ0) ;

where μ0 is a known reference p-dimensional point, for example the min-
imum or maximum value that can be reached by the response variable.
Mahalanobis distance differs from Euclidean distance in that it takes into
account the correlations of the data-set and is scale-invariant, i.e. it is
not dependent on the scale of measurements. For this reasons, the Maha-
lanobis distance is often preferred with respect to the Euclidean distance.
Note that we are implicitly assuming that all response variables are de-
fined in the same metric and this is true in many real cases of interest.

By combination of the p-values directly related to the set of original
univariate testing procedures (see expression 2c), a robust and even more
informative ranking parameter can be defined:

• NPC score: θ
NPC

i = −2
p∑

j=1

C∑
h=1
h �=i

log pih|j;

where pih|j is a p-value suitable for testing the hypothesis H ih
0|j and here

are calculated using the unknown population means (actual parameters).
Note that the NPC score (NonParametric Combination) is actually the
so-called nonparametric Fisher combining function, often used to derive
multivariate testing procedures (see Pesarin and Salmaso, 2010). Note
that the NPC score depends on the test statistics involved in it and it is
a function not only of all the true means but also of the unknown de-
pendence structure of the multivariate random errors. In order to make
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the NPC score more informative with respect to our goal of ranking the
multivariate treatments, we can take account of directional type p-values,
namely those that are suitable for testing the hypotheses:{

H ih
0|j : μij ≤ μhj

H ih
1|j : μij > μhj

(3)

i �= h, i, h = 1, . . . , C, j = 1, . . . , p.

Note that, similarly to the distance-based ranking parameters, the NPC
score has the following characteristics: (i) it takes values greater (or
equal) to zero and tends to take lower values when the hypothesis of
equality of treatments is true; (ii) conversely, it tends to take large val-
ues under the alternative hypothesis of difference between treatments.

The fact of using directional p-values helps us to make the NPC score
more suitable to our problems and to better discriminate treatments in
order to obtain a ranking of them. In order to achieve the objective of
finding out a ranking of multivariate treatments, let us now rewrite the
inferential problem in terms of ranking parameters:{

H
G

0 : μ1 = · · · = μC

H
G

1 : ∃i, h
∣∣ μi �= μh

�
{

θH
G

0 : θ1 = · · · = θC
θH

G

1 : ∃i, h
∣∣ θi �= θh

(4a)

then, if θH
G

0 is rejected

{
θH ih

0 : θi = θh
θH ih

1 : θi �= θh
(4b)

i �= h, i, h = 1, . . . , C ;

where for the univariate test statistics in the NPC methods we use direc-
tional p-values as it is described in section 2.

Note that the two approaches of testing of hypotheses can not be con-
sidered equivalent. However in this context we are more interested in
estimation and ranking than in hypothesis testing, provided that in this
conversion the “lack of information” is as little as possible. In fact, if
the global null hypothesis on the original parameter μi is true, then the
global null hypothesis on the ranking parameters is also true, but in gen-
eral the viceversa does not always hold. This is due to the reduction of
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dimensionality operated by the synthesis functions fi(.)s in which two
treatments could differ in opposite direction in two different variables,
hiding these differences on the global testing side. Nevertheless p-values
calculation that will be subsequently described is based on the (pairwise)
hypothesis testing 3, in the sense that they could be used to perform those
tests.

Thus the multivariate inferential problem of interest can be viewed as
a simultaneously interval estimation procedure on the differences
θ
T

ih = θ
T

i − θ
T

h i �= h i, h = 1, . . . C ; where T is the type of the
ranking parameter we decide to adopt. As will be discussed afterwards,
the problem becomes only apparently univariate because the ranking pa-
rameter estimator depends on the multivariate distribution of the error
components ε’s. This consideration applies even more to the NPC score
ranking parameter, where a single θi depends on all the comparisons in-
volving the i-th treatment in all variables at the same time. Depending on
the assumptions made on the random errors, the distribution of ranking
parameter estimators can be derived in a parametric or in a nonparametric
way. For example, when assuming the multivariate normal distribution
for random errors, the first score-statistic has an exact F-type distribu-
tion, namely:

θ̂
Mah

i = μ̂�i · Σ̂
−1
i · μ̂i ∼ Fp, n−p ; (5)

with reference to the second score-statistic, i.e. NPC-score, in general the
following asymptotic result holds:

θ̂
NPC

i = −2
p∑

j=1

C∑
h=1
h �=i

log p̂ih|j
d−→ a·χ2

g ; (6)

where n is the sample size, p is the number of variables, Σ̂i is the p × p
sample variance matrix calculated for every treatment and p̂ih|j are p-
values of the statistics for the (ih)-th comparison in the j-th variable cal-
culated as it is described in subsection 3.1 on page 88.

It is noteworthy that actually we are interested in differences between
pairs of ranking parameter estimators (θ̂ T

ih), rather than individual ones
(as it is implicit in formulae above).
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In the case of Mahalanobis score, for the estimator of a pairwise dif-
ference we may easily refer to the Hotelling’s T 2 distribution, while in
the case of the NPC score, the asymptotic distribution is hard to find be-
cause of the coefficient a that multiplies the χ2

g, which is a measure of
dependence between the p-values involved into the statistic and could be
different between different treatments; moreover it is related with the de-
grees of freedom g.

Furthermore the parametric approach presents a number of drawbacks
that have to be taken into account.

1. When keeping the sample size fixed, increasing of dimensionality
(number of variables) results in a loss of degrees of freedom, hence
the estimation procedures may become inaccurate.

2. Under non normal errors, inferential achievements are valid solu-
tions only asymptotically, so for finite samples (sample sizes are
very small indeed, in context of this work) the approximation accu-
racy has to be carefully considered.

3. If the observations cannot be reasonably assumed as a sample from
a multivariate normal distribution (as it is in many real situations),
results can be inconsistent.

Conversely, the nonparametric resampling-based approach offers a
number of advantages.

1. It is a robust solution, with respect to the true underlying distribu-
tion of response variables.

2. The dependence structure of the response variables is implicitly
captured, so there is no need to estimate any dependence coeffi-
cient or to assume any dependence model.

3. It can be used with (virtually) arbitrary complicated indicator (i.e.
ranking parameters).
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3. A nonparametric multivariate ranking algorithm

In this section we present a general nonparametric resampling-based
algorithm devoted to obtain a ranking of several multivariate population
of interest by means of point and interval estimation of a global perfor-
mance index. The proposed algorithm consists in two main steps: (i)
score definition; (ii) estimation of the confidence intervals for pairwise
differences of scores.

3.1. Step 1: defining scores

The step one of the proposed algorithm is described by the following
stages:

1. Choose a suitable score-statistic (i.e. ranking parameter estimator)
that summarise the relative position of each treatment (on the metric
of the statistic). This results in a C-dimensional vector of scores.

2. Construct the confidence intervals for the pairwise differences of
ranking parameter estimators θ̂ih, as described in the subsequent
section.

3. Use these scores to test the C× (C−1)/2 pairwise comparisons
hypotheses 4b (see the previous section). This results in a C×C
zero-one matrix for the rank assignment rule (described in subsec-
tion 3.2).

Because of their complexity, from a parametric point of view, the dis-
tribution of these ranking parameter estimators will be obtained via boot-
strap and permutation resampling. The first one is the squared version of
the Mahalanobis distance from the origin, here the observations are con-
sidered as a random sample from a p-variate distribution with the same
variance-covariance matrix for every group (positive definite). This score
is:

θ̂
Mah

i = y�i · Σ̂
−1· yi , i = 1, . . . , C (7)
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Where yi is the vector of sample means for the i-th treatments. Note
that because homoscedasticity assumption, Σ is estimated by her sample
version using all the n×C observations.

In order to calculate the second ranking parameter estimator, called
NPC (NonParametric Combination), let us consider the j-th response
variable. We used two different approaches to obtain (estimated) p-values
that have to be combined with the Fisher’s combining function.

In the first approach we have considered parametric p-values (so the
reference null distribution is the asymptotic one), performing the follow-
ing steps:

• the statistics of a two-sample t-test is calculated for each of the C×
(C−1) pairwise comparisons between two treatments 1, formally:

Tih|j =
yi|j − yh|j√

2σ̂2
j/n

, i �= h, i, h = 1, . . . , C ; (8)

where yi|j is the sample mean of the i-th treatment in the j-th vari-
able and σ̂2

j is the residual deviance resulted from fitting a one-way
ANOVA model on that variable. Note that the numerator of the
statistic is taken with its sign because the reference hypothesis is
the 3 on page 84. This statistic has distribution tC·(n−1) if H ih

0|j is
true and errors are normally distributed;

• p-values are then calculated with P
[
T � Tih|j

]
= p̂ih|j; where T

has distribution tC·(n−1) .

In the second approach we have considered permutation p-values (hence
the reference null distribution is the permutation one), performing the fol-
lowing steps:

• the statistic to be calculated for each of the C× (C−1) pairwise
comparisons between two treatments is:

Tih|j = yi|j − yh|j, i �= h, i, h = 1, . . . , C ; (9)

1 Note that the comparisons with indexes (K+1, . . . , 2K) are equal to the comparisons with
indexes (1, . . . ,K) with changed signs. Here we calculate all the 2K comparisons in order to test
each group against each other.
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where yi|j is the sample mean of the i-th treatment in the j-th vari-
able

• permutation p-values are then calculated with
1

B
#
(
bTih|j ≥ Tih|j

)
=

1

B
#
[(

byi|j − byh|j
)
≥
(
yi|j − yh|j

)]
;

(10)
where the superscript b indicate that the statistics is calculated using
the b-th permuted sample, #(.) is the function that count the num-
ber of elements of the set that satisfies the condition (here the set is
the B values of the statistic) and the statistic without superscript is
the observed one.

Thus each treatment is matched against all others as if we were to test the
system of hypotheses 3 (see the previous section). These steps has to be
repeated for every variable obtaining a set of p× C× (C − 1) p-values.

Finally the global score for the i-th treatment is calculated with:

θ̂
NPC

i = −2
p∑

j=1

C∑
h=1
h �=i

log p̂ih|j ; (11)

where we use as p-value combination the Fisher’s combining function. It
is noteworthy that this combining function is nonparametric with respect
to the underlying dependence structure among p-values, since all kinds
of monotonic dependencies are implicitly captured. The distribution of
this statistics would be χ2

2p(C−1)
if all partial hypotheses involved are true

and the terms of the summation are independent, but this is not the case.
The p-values can not be considered independent because of the common
denominator in the parametric p-value calculation, and because of the
linear relation between Ti|js, in the permutation p-value calculation.2

Even under HG

0 all we can say about this distribution is that its c.d.f.
has the following property:

P

[
θ
NPC

i ≤ x
]
∈ (P [V ≤ x] , P [W ≤ x]) , ∀x ∈ (0,+∞) (12)

where V ∼ 2p(C−1)·χ2
1 , W ∼ χ2

2p(C−1);

2 In fact if we have 3 groups then we get: T12|j = T13|j − T23|j .
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Furthermore, under H ih
1 the distribution is complicated by the dependence

structure among the terms, another motivation supporting the bootstrap or
the permutation approach.

3.2. Step 2: confidence intervals for pairwise differences of scores

After obtaining the bootstrap (or permutation) distributions of the con-
sidered ranking parameter estimators, in order to test the pairwise hy-
potheses, we decided to construct the K = C× (C − 1)/2 simultane-
ous confidence intervals for pairwise differences of scores. Hence the α
(significance level) has been corrected for multiplicity with Bonferroni’s
method, i.e. α′ = α/K. Then, after this, a one was associated to all com-
parisons for which the confidence interval contains the origin and a zero
elsewhere, producing the C ×C zero-one matrix for the ranking rule (for
details see subsection 3.2).

It is worth to describe here how the issue of constructing confidence
intervals just mentioned has been solved. The simplest way to build these
confidence intervals is to directly use the bootstrap or permutation distri-
bution, taking the sample α′/2 and 1−α′/2 quantiles as estimates of true
quantiles, in this way a proportion of α′ observations are excluded from
the interval and the confidence level is theoretically satisfied. Problems
arise when α′ is too small with respect to the sample size, as it is in our
case (even though there are B = 1000 bootstrap or permutation replica-
tions), because estimates become inaccurate due to the small probability
associated with the binomial distribution of the estimators (it is based on
the empirical c.d.f. statistics).

To get rid of this limitations and following the ideas from Hinkley
(1975) we decided to use the unconditional version of the Box-Cox’s
transformation (that is, there is no regression model), appeared in Box
and Cox (1964) which expression is:

zλ :=

⎧⎨⎩
yλ − 1

λ
, if λ �= 0

log y , if λ = 0

; (13)

and it is monotonic for every fixed λ, which is found with a numerical
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maximisation. From interval estimates of θih (or equivalently observed
p-value related to H ih

0 ) it is desirable to define a suitable algorithm able
to estimate the multivariate ranking of the C treatments. In fact, only in a
few cases when all differences are declared significant, it would be easy
to find out a meaningful ranking but, since a sort of transitive property
of significant differences obviously does not exist, we need a general rule
able to assign a ranking to the multivariate treatments.

All the procedures that will be presented here have a common out-
come: a zero-one C × C matrix containing the results of the pairwise
comparisons. The (i, h)-th cell of this matrix, with h > i, takes the value
“one” if the (i, h)-th pairwise null hypothesis is not rejected and “zero”
elsewhere (hence if the two treatments can not be considered as equal);
“one” where i = h (every treatment is always equal to itself); while (i, h)-
th cells with h < i can be considered as N.A.s (Not Available values ).
Note that treatments have been ordered from the highest (“best”) to the
lowest (“worst”) according to the point estimates (θ̂is), before calculating
pairwise comparisons (and hence before constructing the matrix), thus
the first row contains the comparisons between the best treatment against
each other, and so on.
Starting from this matrix the ranking rule can be described as follows:

1. row 1 is multiplied by 1, so the rank 1 is assigned to all treatments
that are non-significantly different from (1) (“best”), including (1)
itself;

2. row 2 is multiplied by 2, so the rank 2 is assigned to all treatments
that are non-significantly different from (2), including (2) itself;

3. the iterated procedures stops when a rank is assigned to all treat-
ments;

4. mean by columns (without considering zeros) provides a synthesis
of the rank of each of the C treatments, it is a sort mid-rank;

5. finally to obtain the global ranking it is enough to apply the rank-
transformation where, in the case of ties, the minimum value is
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repeated (this because we used the convention that “the lower the
rank, the better the treatment”).

In order to better understand this procedure, we report here an example
with C = 8 treatments:

Table 1. Example of a C × C matrix for the rank assignment rule.

Ord. tr. (1) (2) (3) (4) (5) (6) (7) (8)
(1) 1 1 1 0 0 0 0 0
(2) 1 1 1 1 0 0 0
(3) 1 1 1 1 0 0
(4) 1 1 1 1 0
(5) 1 1 1 1
(6) 1 1 1
(7) 1 1
(8) 1

Rank ass.
1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
5 5 5 5 5

Col.s mean 1 1.5 2 3 3.5 4 4.5 5
Rank 1 2 3 4 5 6 7 8

3.3. Resampling strategies

Here we describe the resampling approaches we have implemented to
obtain the distribution of the ranking parameter estimators, they are based
on either bootstrap or permutation resampling.

1. The first bootstrap version is suggested by the global null hypoth-
esis: since under HG

0 the observations of all groups are exchange-
able, resampling can be made (at every iteration) on the rows of
the whole data-set, so the new dataset is considered as the actual
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observed one. Hereafter we refer to this version as the simple boot-
strap.

For the reason that we are interested in pairwise comparisons each com-
parison should only involve the observations belonging to the pair of treat-
ments considered. This is because if we resample the whole data-set as in
the simple version, observation from possibly inactive groups (so under
H

G

0 ) could influence partial p-values, resulting in a lack of power of the
tests (see Basso et al., 2009).

With this objective we constructed a pseudo dataset before resam-
pling: a 3-dimensional array on which layer j contains data from the j-th
variable and every column of this layer contains the pooled vector of ob-
servations of the i-th and h-th treatment in the j-th variable (so there are
K columns). Then rows of this pseudo dataset are resampled instead of
the original one. Hereafter we refer to this strategy as the synchronized
approach.

2. In the second bootstrap version we adopted the synchronized ap-
proach. The numerator of the statistic (8) on page 88 is calculated
as in the same way of the previous version, while to obtain the σ̂2

j

on the denominator, the original structure of the dataset has to be
recomposed at every iteration. So the first n values of columns of
the type col0 = 1, coli = coli−1 +(C − i) , i = 1, . . . , C − 2 and
the whole last column, must be pooled together before applying the
ANOVA model for the σ̂2

j calculation. Hereafter we refer to this
version as the synchronized bootstrap.

3. The first permutation strategy is similar to the precedent one: the
same pseudo dataset is constructed but rows are resampled without
replacement, so the reference distribution is the permutation one
and therefore we are conditioning on the observed dataset. Never-
theless, in this version observed p-values are still calculated with
reference to the tC·(n−1) distribution. Hereafter we refer to this
version as synchronized permutation with parametric p-values, be-
cause p-values are obtained as in the synchronized bootstrap case,
but with reference to the permutation distribution.
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4. The second permutation strategy has the same layout of the prece-
dent but observed p-values used for the combining function are per-
mutation p-values (see formula (10) on page 89). Hereafter we refer
to this version simply as synchronized permutation.

We have decided to use the two permutation strategies only with the NPC
method, since the synchronized approach is constructed specifically to
increase the power of the permutation tests in a pairwise comparisons
layout (see Basso et al. (2009), Pesarin and Salmaso (2010) and Pesarin
(2001) for details on theory and motivations).

4. Simulation study

In this simulation study we analysed the behaviour of the proposed
methods under the null and under the alternative hypothesis using these
settings:

• generated data from the model: yijk = μij + εijk where μij is the
(known) mean of the i-th treatment in the j-th variable and εijk are
i.i.d random errors (k = 1, . . . , n);

• 3 distributions for random errors: N (0, 1), Exp(1) and t2 ;

• C = 5 number of treatments;

• n = 8 number of replications, i.e. sample size for every treatment;

• p = 3, 6 and 9 variables (only 3 variables under HG

0 );

• MC = 1000 datasets generated independently for each combina-
tion of the settings.

Hence there are 3 variable settings (one for each p) × 3 distributions
for errors × 4 resampling strategies: the first 2 applied with either the
NPC or the Mahalanobis method, the second 2 applied only with the NPC
method so that we have 54 simulations to run under HG

1 and 6 × 3 = 18
simulations to run under HG

0 (just three for each method).
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With the aim of checking the type I error probability of the proposed
procedures, we perform a simulation for each procedure with 3 variables
under HG

0 . Figure 1 reports the behavior of the observed rejection rate
(based on the MC = 1000 replications) of the procedures.

While under HG

0 mean performances of the treatments are all equal,
under HG

1 mean performances could differ in many ways. Therefore we
have chosen to use an empirical rule for calibrating means, with the aim of
keeping equal distances between groups when increasing dimensionality.
This rule can be described as follows:

• let μi = (μi1, . . . μip)
� and calculate μ�i ·μi for every “i”, i.e. the

squared Euclidean distance from the origin;

• try to align these distances (5 in our cases) on a straight line and cal-
culate the slope, for example estimating the least square regression
line of a linear model, hereafter we refer to this value as “η”;

• go on modifying vectors of means until η is close enough to the
chosen value for each of the 3 settings (p = 3, 6 and 9).

Hence η could be considered as a synthetic measure of the real distance
between two consecutive groups (treatments). It is the core of the infor-
mation that we wich to extract from the experiment, hence it has to be
controlled: if it is too high (or low), the proportion of correct classified
ranking could be too close to 1 (or 0), making impossible to effectively
compare the proposed procedures.

With this aim we ran a simulation with 3 and 6 variables, with normal
errors and decided to set all ηs as near as possible to the common value of
−1.7. The following tables report the values of the true means calculated
as previously described.

As a result of this calibration the global information on distances be-
tween groups remained the same in all simulations, hence increasing di-
mensionality do not increase global information and so, for a given vari-
able, groups are closer in the simulations with 9 variables than in that with
3. This could be an explanation of the behavior of the exact ranking rates
with the NPC method, in settings with the same distribution for errors and
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NPC method, synchronized permutation with parametric p-values.

Figure 1. Behavior under HG
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same resampling strategy, when dimensionality increase. This does not
seem to occur with the Mahalanobis method (see figure 2).

Table 2. True means under H1

p = 3 AND η ∼= −1.732
μ1 μ2 μ3

Group

1st 90 89 88
2nd 88.5 88 87.5
3rd 87 87 87
4th 85.5 86 86.5
5th 84 85 86

p = 6 AND η ∼= −1.708
μ1 μ2 μ3 μ4 μ5 μ6

Group

1st 91 90 89 88 87 86
2nd 90.17 89 88.17 87.33 86.5 85.67
3rd 89.33 88 87.33 86.67 86 85.33
4th 88.5 87 86.5 86 85.5 85
5th 87.67 86 85.67 85.33 85 84.67

p = 9 AND η ∼= −1.702
μ1 μ2 μ3 μ4 μ5 μ6 μ7 μ8 μ9

Group

1st 91 90 90 89 89 88 88 86 86
2nd 90.78 89.56 89.33 88.11 88 87.22 87.44 85.67 85.78
3rd 90.56 89.11 88.67 87.22 87 86.44 86.89 85.33 85.56
4th 90.33 88.67 88 86.33 86 85.67 86.33 85 85.33
5th 90.11 88.22 87.33 85.44 85 84.89 85.78 84.67 85.11

In the next pages we report some tables resulting from the simulations
study and, in order to summarise the main information of all tables (not
given here), we also report figures of the “exact ranking rate” vs the
number of variables (p) and of the number of correct ranking of the 3rd

level (the median level) for different type of errors (figure 2).

Starting from the figure related to the Mahalanobis method we can
state that the use of the synchronised approach improve performances
(with respect to the simple approach) in the sense that it increases the
exact ranking rate.
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Errors N (0, 1),exact ranking rate.

Errors N (0, 1) 3rd level correct ranking.
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Errors Exp(1), exact ranking rate.
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Errors t2, exact ranking rate.

Errors t2 3rd level correct ranking.

3 6 9

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Errors  t_2

number of variables

E
xa

ct
  R

an
ki

ng
  R

at
e

Mah.simple

Mah.synchro

NPC.simple

NPC.synchro
NPC.sync.perm 
 (param p−vals)
NPC.sync.perm

Hotelling

3 6 9

0
20

0
40

0
60

0
80

0
10

00

Errors  t_2

number of variables

E
xa

ct
  R

an
ki

ng
  R

at
e

Mah.simple
Mah.synchro
NPC.simple
NPC.synchro
NPC.sync.perm(param p−vals)
NPC.sync.perm
Hotelling

Figure 2. Exact ranking rate for the proposed procedures vs. number of
variables.

vs



Nonparametric multivariate ranking methods 103



104 R. Arboretti Giancristofaro et al.

5. Discussions and conclusions

The aim of this work was developing a method capable of producing
ranking of multivariate treatments, i.e. when considering the joint infor-
mation from more than one response variable. We have compared several
resampling strategies using two score-statistics in a simulation study that
have highlighted some differences between the two proposed types of
score, namely NPC and Mahalanobis, and provided some hints about dif-
ferences between resampling approaches. The proposed nonparametric
methods proved to be reliable tools to rank treatments from a multivariate
point of view. With reference to the two proposed types of scores, we
can state that the NPC method performs generally better than the other,
especially in the synchronised permutation version and using permutation
instead of parametric p-values. Under H1 it has the highest exact ranking
rate with all numbers of variables and all distributions for errors (even
if there is a little crossing over with the 3 variables setting) as it can be
seen comparing results in figure 2, whereas under H0 it respects the α-
nominal level better than the others (it is just below the nominal level,
see figure 1) and seems to be not influenced by the type of error, in fact
lines can be almost overlapped. This is probably due to the lack of power
of partial tests in the simple resampling strategies as already pointed out.
Moreover NPC method is quite flexible, in fact it has the advantage that
the test statistics involved in its expression can be changed in accordance
to the nature of the statistical problem at hand and therefore it naturally
allows to deal with data from both (ordered or binary) categorical and
continuous variable. NPC method is less affected by numerical problems
than the Mahalanobis method, because it considers the problem variable-
by-variable, hence it can be used even in situations where the number of
variables exceeds the sample size of the experiment. In fact we can say
that although it works with one variable at a time, it is able to effectively
summarise information deriving from all variables. Morevoer, in the syn-
chronised permutation approach the time of calculation is reduced 10–15
times using the permutation p-values in place of the parametric ones, and
this could be useful in contexts where there is a low computational power
such as multi-threaded web applications. As far as some directions for
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future research are concerned, it could be useful to extend the proposed
methodology to different designs (for example the randomised complete
block design). Moreover, there is some further aspects that could be better
investigate. First of all, the use of the synchronised approach improves
the exact ranking rate with the Mahalanobis method but this does not
occur with the NPC method with the bootstrap strategy. This is due to
the 4th and the 5th treatments that the procedure consider as equal too
many times. This aspect could be further explored by focusing on the ef-
fect of using the pairwise approach (a methodology developed inside the
permutation context) with the bootstrap resampling strategy. Another in-
teresting further development, especially in the field of evaluation of edu-
cational systems, could be the application (and then the evaluation) of the
proposed procedures on datasets composed by (ordered or binary) cate-
gorical variables. Of course the statistics has to be changed in accordance
to the nature of the specific variable (e.g. statistics of the goodness-of-fit
type for ordered variables). Finally, additional research is needed to study
the effect of heteroscedastic and/or dependent random errors and it could
be worth to perform a simulation study where the main focus is on the
sample size “n”, with the aim of finding the minimum “n” such that the
exact ranking rate is not lower than a fixed rate.
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