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Summary: The aim of this work is to present and discuss a permutation solution for the 
two-sample location-scale testing problem by means of a simulation study. As 
suggested by the simulation results, we can confirm that the proposed solution is a 
good alternative to traditional procedures, such as the Lepage test. One of the greatest 
advantages of our permutation solution is that it has a good behaviour both under the 
null hypothesis and in power with small sample sizes. Hence, in each situation where 
the normality assumption may be hard to justify, this nonparametric procedure can be 
considered a valid solution. 
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1. Description of the problem 

 
Let Z be a random variable with zero mean, variance equal to one 

and unknown continuous distribution P, and let Zij, i=1,…,nj, j=1,2, be 
the i.i.d elements of two independent random samples Zj, j=1,2, from Z. 

With reference to the following model: 

 Xij = µj + s j·Zij, i=1,…,nj,  j=1,2,  
 

we wish to test the following hypotheses of interest: 
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where F(X1) and F(X2) are the unknown cumulative distribution 
functions of the random variables X1 and X2. If hypothesis (1) can be 
rewritten as: 
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we are dealing with the so-called location-scale testing problem. 
Several solutions for this problem have been proposed in the 

literature following either a parametric or a nonparametric approach. 
The best known nonparametric solution was addressed within the rank 
framework and is the result of work carried out by Lepage (1971). It is 
based on a combination of the Wilcoxon and Mann-Whitney statistic W 
for location alternatives and the Ansari-Bradley statistic A for scale 
alternatives: 
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where E(W), E(A), VAR(W) and VAR(A) are the expected values and 
variances of W and A under H0. Note that since W and A are not 
correlated under H0, then the L statistic has a limiting chi-square 
distribution with 2 degrees of freedom. The Lepage test is considered to 
be robust in case of non-normal distributions.  

Several other solutions have been proposed in the literature to 
increase the performance of the Lepage test (Podgor and Gastwirth, 
1994). When replacing both components W and A by arbitrary linear 
rank tests it is possible to obtain so-called Lepage-type tests that were 
introduced by Büning and Thadewal (2000). Kössler (2006) computed 
their asymptotic efficacies and proposed an adaptive test as well.  

Cucconi (1968) proposed a different rank solution to the same 
problem which, unfortunately, is not much known in the literature as the 
original paper was written in Italian and published by a national journal. 
However, the solution is interesting and it is based on the following test 
statistic: 
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and where Wi1 is the rank of the first sample Xi1 and n=n1+n2 is the sum 
of the sizes of the two samples. It is worth noting that U is based on the 
squares of the ranks W1i, while V is based on the squares of the quantity 
(n+1−Wi1) of the first sample. 

 
 

2. A permutation solution 
 
In this section we present two permutation solutions for the two-

sample joint location-scale problem, described in (2). 
With reference to the theory of nonparametric combination of 

dependent permutation tests (Pesarin, 2001), this problem can be solved 
following a two-stage procedure. At first we perform two separate tests, 
one for location and one for scale, where both tests are approximately 
unbiased and consistent, then we combine them into a global test which 
is appropriate for testing (2). 

As far as the first stage of our proposed solution is concerned, the 
two separate tests are indicated as Tµ  and Tσ , where Tµ  is related to 

testing H0µ: µ1=µ2, i.e. the sub-hypothesis of equality of location 
parameters independently of scale, while the second test Tσ  consists in 
testing H0s: s 1=s 2, i.e. the sub-hypothesis of equality of scale parameters 
independently of location. 
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With the goal of deriving an appropriate test Tµ , let us assume that 
response Xj, is symmetrically distributed with unknown distribution P 
around the location parameter µj, with scale parameter s j, j=1,2. Let X%  
be the sample median of the pooled sample X=[X1,X2] and consider the 
transformation µYj=(Xj− X% ), j=1,2. Note that the sub-hypothesis  
H0µ: µ1=µ2 is true if and only if the distribution of µYj, j=1,2, is 
symmetrical around zero. In this way, in order to test H0µ, it is 
appropriate to define two separate test statistics for symmetry, T1 and 
T2, one for each individual sample, then combine them with an 
appropriate combining function. More specifically, we define: 

 ( )1 2
1

, , 1,2
jn

j ij ij j
i

T T T T Y S n jµ µϕ
=

= − = ⋅ =∑  (3) 

where ϕ(·) corresponds to +(·) if the alternative is ‘<’, and to −(·) if the 
alternative is ‘>’, and finally to absolute value |(·)| if the alternative is 
‘?’, and where S={Sij, i=1,…,nj, j=1,2} is a random sample from the 
random variable S which takes the values +1,−1 with probability ½. 

Since µ1 and µ2 are unknown parameters, there is no exact solution 
for testing the sub-hypothesis H0s: s 1=s 2, but we can obtain an 
approximate permutation solution by using the following test statistic: 
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where ϕ(·) has the same meaning as above and where sYij=(Xij− jX ), 
i=1,…,nj, j=1,2, is the deviation of the Xij elements from their own 
sample mean jX , j=1,2. 

In order to obtain an appropriate permutation solution for H0h, h=µ,s , 
let us consider ,obs hT , h=µ,s , i.e. the observed value of Tµ  and Tσ , and 
let us independently and randomly exchange the elements hYij i=1,…,nj, 
j=1,2, h=µ,s , of the pooled samples µY=[Y1,Y2] and sY=[Y1,Y2], with 
respect to the original two samples 1 and 2. Hence, we perform a 
random permutation between the two samples and we independently 
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repeat a random permutation B times, obtaining an estimate of the 
permutation distribution of Tµ  and Tσ  under the null hypothesis. 

Hence, we reject H0h, h=µ,s , when the observed p-value λobs is lower 
than the selected significance α-level: 

*
,

,
h obs h

obs h

T T

B
λ

 ≥ =
#

, 

where h=µ,s , and B is the number of random permutations. 
An alternative solution that can be used to perform two separate tests 

for location and scale can be based on the approximation of permutation 
tests on known distributions. If we assume that s j, j=1,2, is finite and if 
the sample size is large enough, we can refer to the Central Limit 
Theorem to approximate the standardized distribution of Tµ  to the 
standard normal distribution: 
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Moreover, by using the approximation of the sample variance to the 
chi-square distribution, we can approximate the distribution of Tσ  to 
Fisher’s F distribution, i.e. : 
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In order to obtain a final test, which is appropriate for testing 

hypotheses (2), we have to consider a global test T″ as a combination of 
the two aspect under testing, i.e. location and scale. For this goal, let us 
consider the nonparametric combination methodology (Pesarin, 2001), 
to be applied on the two previously obtained tests Tµ  and Tσ . When 

considering an appropriate combining function ψ, the derivation of T″ 
consists in the following steps: 
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2.a the combined observed value of the second-order test is 
evaluated using the same random permutations as in the first 
stage, and is given by: 

, ,( , )obs obs obsT µ σψ λ λ′′ = ; 
2.b the r-th combined value of two statistics is then calculated by: 

* * *
, ,( , )r r rT µ σψ λ λ′′ = , 

where * * *
, ,r h h r hT T Bλ  = ≥ # , h=µ,s , r =1,…,B; 

2.c the p-value of combined test T″ is thus estimated as: 
*

,
obs

obs

T T

Bψλ
′′ ′′ ≥ ′′ =

#

; 

2.d if λ″≤ a, the global null hypothesis H0 is rejected at significance 
level a; 

 
A general characterization of the class of combining functions is 

given by the following three main features for combining function ψ 
(Pesarin, 2001): 

a) it must be non-increasing in each argument: 
(..., ,...) (..., ,...)h h h hifψ λ ψ λ λ λ′ ′≥ < , h ∈{1,…,k}; 

b) it must attain its supremum value ψ , possibly non finite, even 
when only one argument reaches zero: 

(..., ,...) if 0h hψ λ ψ λ→ → , h ∈{1,…,k}; 
c) ∀α > 0, the critical value of every ψ is assumed to be finite and 

strictly smaller than the supremum value: 
Tα ψ′′ < . 

The above properties define the class C of combining functions. 
Some of the functions most often used to combine independent tests 
(Fisher, Lancaster, Liptak, Tippett, Mahalanobis, etc.) are included in 
this class. We have considered the following ones: 

− Fisher combination: 2 log( )F hh
T λ′′ = − ⋅∑ , 

− Liptak combination: 1(1 )L hh
T λ−′′ = − Φ −∑ , 

− Tippett combination: 
1
min( )T hh k

T λ
≤ ≤

′′ = − . 
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When using the approximation of permutation tests Tµ  and Tσ  on 
standard normal and F distribution, it is possible to approximate the 
above combining functions on known distributions as well, more 
specifically: 

− Fisher combination: 2
4

d

FT χ′′→ , 

− Liptak combination: (0, 2)
d

FT N′′→ , 

− Tippett combination: (0,1,0)
d

TT Triangular′′→ . 
 
 

3. Simulation study 
 
In this section we evaluate the appropriateness of the proposed 

permutation solutions for two-sample location-scale testing by means of 
a set of three Monte Carlo simulation studies. For each simulation study 
we estimated the global permutation p-value (with 1000 random 
permutations) for joint location-scale testing (against bilateral 
alternatives), and we applied Fisher, Liptak and Tippett combining 
functions. For the sake of comparison, we also used the approximation 
of permutation tests Tµ  and Tσ  on known distributions. 

Depending on the sample sizes, we consider two main simulation 
settings:  

1. the first setting with several combinations of small/moderate and 
balanced/unbalanced sample sizes, where data are generated from 
normal distribution;  

2. the second setting with balanced sample size, where data are 
generated from some non-normal distributions; 

The first considered simulation setting consists of 1000 Monte Carlo 
simulations for the generation of two samples, with the following 
sample size: 

− n1=5, n2=10, 
− n1=10, n2=10, 

− n1=20, n2=40, 
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where data are generated from normal distribution with parameters: 
− µ1 =0, s 1=1; µ2 =0, s 2=1; 
− µ1 =0, s 1=1; µ2 =0.2, s 2=1.5; 
− µ1 =0, s 1=1; µ2 =0.5, s 2=2; 

− µ1 =0, s 1=1; µ2 =0.8, s 2=4. 

The second considered simulation setting consists of 1000 Monte 
Carlo simulations for the generation of two samples with balanced 
sample size n1=n2=25, where data are generated from the following 
distributions:  

1. normal, 
2. Laplace, 

3. log-normal, 

with location and scale parameters: 

− µ1 =0, s 1=1; µ2 =0, s 2=1; 
− µ1 =0, s 1=1; µ2 =0.5, s 2=1.5; 
− µ1 =0, s 1=1; µ2 =0.5, s 2=2; 
− µ1 =0, s 1=1; µ2 =1, s 2=1.5; 

− µ1 =0, s 1=1; µ2 =1, s 2=2. 

With the aim at comparing our proposed permutation solutions with 
other location-scale testing procedures suggested in the literature, we 
perform a third final simulation study by considering the following 
competitors: Lepage test, modified Lepage test, adaptive Lepage test, 
rank-sum test, Grambsch - O'Brien generalized t-test and Grambsch - 
O'Brien generalized rank-sum test. For details on such competitors we 
refer the reader to Hollander and Wolfe (1999) and Grambsch - O'Brien 
(1991). It consists of 1000 Monte Carlo simulations of two samples with 
balanced sample size n1=25, n2=25, drawn from normal distribution 
with the following parameter settings: 

− µ1 =0, s 1=1; µ2 =0, s 2=1; 
− µ1 =0, s 1=1; µ2 =1, s 2=2. 

Results from the three simulation studies are shown in Tables 1, 2.a, 
2.b and 3. 
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Table 1. Rejection rates (α=0.05) for the first simulation study 

permutation tests   
approximated permutation tests  

on known distributions 
n1=5 n1=10 n1=20  n1=5 n1=10 n1=20 

n2=10 n2=10 n2=40  n2=10 n2=10 n2=40 C
om

bi
ni

ng
 

fu
nc

tio
n 

N1(0,1)   N2(0,1)  N1(0,1)   N2(0,1) 
Fisher 5.5 4.9 5.8  7.5 4.5 9.2 
Liptak 5.3 5.0 5.4  6.6 5.1 7.1 
Tippett 4.9 5.3 5.4  8.5 5.7 7.3 
  N1(0,1)   N2(0.2,1.5)  N1(0,1)   N2(0.2,1.5) 
Fisher 4.2 9.6 16.8  12.6 13.1 16.7 
Liptak 4.8 9.2 17.4  11.2 12.1 16.1 
Tippett 4.0 9.4 10.7  9.5 10.2 19.3 
  N1(0,1)   N2(0.5,2)  N1(0,1)   N2(0.5,2) 
Fisher 10.8 23.2 53.2  14.2 19.3 29.0 
Liptak 13.6 23.8 56.8  13.5 18.6 26.4 
Tippett 7.5 17.3 39.9  14.1 20.0 24.8 
  N1(0,1)   N2(0.8,4)  N1(0,1)   N2(0.8,4) 
Fisher 21.8 53.6 90.0  14.5 51.3 85.8 
Liptak 22.6 52.6 88.2  12.7 51.8 84.3 
Tippett 11.4 46.2 81.7   15.1 34.5 81.3 

 
Table 2.a Rejection rates (α=0.05) for the second simulation study 

(permutation tests) 

µ1=0,s 1=1 µ1=0,s 1=1 µ1=0,s 1=1 µ1=0,s 1=1 µ1=0,s 1=1 
µ2=0,s 2=1 µ2=0.5,s2=1.5 µ2=0.5,s2=2 µ2=1,s2=1.5 µ2=1,s 2=2 

Ra
nd

om
 

D
ist

rib
ut
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n 

Co
m
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fu
nc
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permutation tests 
 Fisher 4.4 58.7 86.6 92.5 96.4 
Normal Liptak 4.6 57.8 74.5 93.3 94.4 
 Tippett 4.7 53.5 87.8 86.1 93.8 
 Fisher 5.2 33.5 54.2 65.9 75.1 
Laplace Liptak 5.2 32.7 46.2 65.8 72.1 
 Tippett 5.2 29.6 52.6 59.1 70.4 
 Fisher 8.0 62.8 80.2 91.9 95.3 
Log-Normal Liptak 9.2 68.2 85.4 93.1 97.1 
 Tippett 3.0 42.8 63.2 81.3 87.4 
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Table 2.b Rejection rates (α=0.05) for the second simulation study 
(approximated permutation tests) 

µ1=0,s 1=1 µ1=0,s 1=1 µ1=0,s 1=1 µ1=0,s 1=1 µ1=0,s 1=1 
µ2=0,s 2=1 µ2=0.5,s2=1.5 µ2=0.5,s2=2 µ2=1,s2=1.5 µ2=1,s 2=2 

Ra
nd

om
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approximated permutation tests on known distributions 
 Fisher 4.5 46.0 82.7 81.1 93.7 
Normal Liptak 4.7 44.2 73.0 80.6 93.3 
 Tippett 4.2 38.8 82.6 70.7 87.1 
 Fisher 12.3 43.6 74.4 62.2 81.4 
Laplace Liptak 10.9 39.2 65.2 62.0 77.9 
 Tippett 12.0 42.1 73.2 55.9 78.9 
 Fisher 37.8 91.3 97.3 97.6 99.8 
Log-Normal Liptak 35.4 90.7 97.2 97.8 99.8 
  Tippett 39.3 90.1 97.3 96.7 99.8 

 
Table 3. Rejection rates (α=0.05) for the third simulation study 

µ1=0,s 1=1 µ1=0,s 1=1 Location-scale test 
µ1=0,s 1=1 µ2=1,s 2=2 

Permutation test 4.4 96.4 
Lepage 4.8 84.3 
Modified Lepage 4.6 86.7 
Adaptive Lepage 4.6 87.5 
Rank sum 9.8 67.9 
Grambsch-O'Brien gen. t 9.3 92.2 
Grambsch-O'Brien gen. rank-sum 9.7 91.8 

 
 

4. Discussion and conclusion 
 
Table 1 shows that when either the sample size and the true 

difference between parameters of two populations increases, the 
rejection rates also increase considerably and this is confirmation that 
the proposed permutation solution is a valid solution for the two-sample 
location-scale testing problem. This is true whether starting from 
permutation or approximated permutation tests with respect to the first-
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stage separated location and scale tests. As far as the combining 
function is concerned, Fisher and Liptak seem to be more ‘stable’ than 
Tippett combining function. 

When considering several types of random distributions for data 
generation (Tables 2.a and 2.b), it is worth noting that: 

− under normality, permutation tests have a slightly better power 
performance than approximated permutation tests on known 
distributions, most likely because despite data being normal, the 
sample size of n1=25, n2=25 is never too large; 

− under non normal distributions, the power of approximated 
permutation tests is only apparently higher than the power of 
permutation tests since under H0, approximated permutation tests 
present inflated nominal alpha levels.  

With reference to the comparison with solutions proposed in the 
literature (Table 3), first of all it is worth noting that our proposed 
permutation test does respect the nominal a-level under H0 and this is 
also true for Lepage-type tests. Moreover, in term of rejection rates, 
permutation solution seems to be more powerful than Lepage-type tests. 
Under H0 Rank sum and Grambsch-O'Brien-type tests have an 
anticonservative behaviour, hence under H1 the related rejection rates 
are inflated. In conclusion, we can say that the proposed permutation 
solution for the two-sample location-scale testing problem is a good 
alternative compared to traditional procedures such as the Lepage test. 

As final remark, it is possible to expect a future valuable analytical 
perspective to be developed from this permutation solution we proposed 
in this work. In fact, since permutation tests are particularly suitable to 
derive multivariate tests via nonparametric combination, it would be 
possible to develop a solution for the multivariate two sample location-
scale problem. Such solution might be compared with recent ones 
proposed by the literature (Zu and He, 2006; Rousson, 2002). 
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