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Summary: In the present paper the accuracy of multi-step ahead predictors has been
evaluated through the forecast densities of a selection of nonlinear time series
structures which present conditional variance changing over time. The forecast
densities and the forecast regions have been estimated using a Monte Carlo
simulation procedure. The relevance of the estimated coefficients on the amplitude of
the forecast regions has been investigated and the role of the model intercepts on the
density shape of the regime switching models have been examined.
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1. Introduction

It has been observed that, in many settings, nonlinear models often
allow better forecasts than linear models. This is related to the so
called “nonlinear features” that are beyond the capacity of linear
model forecasts. For example the nonnormality, the asymmetry and
multimodality of forecast distributions, the variation of the prediction
performance, the nonmonotonicity of prediction error variances, the
sensitivity to initial conditions, are strictly related to nonlinear time
series forecasts (Tong, 1990).

In order to evaluate the uncertainty associated with the predictions
from different nonlinear models with time varying conditional
variance, we have generated multiperiod forecasts for three models by
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means of a Monte Carlo simulation and we have estimated the
forecast density of l steps ahead predictors using smoothing
techniques. The main purpose of this simulation study is to derive the
empirical predictive distribution in order to show some relevant issues
in forecasting with nonlinear parametric models. The results obtained
are compared to the results derived from a simpler model used as a
benchmark.

In section 2 the examined models are briefly presented and for each
of them their naïve predictors (Granger and Teräsvirta, 1993) are
shown. In section 3 the forecast regions are introduced. The results of
the simulation study are given in section 4. In section 5 some features
of the predictors generated through a nonlinear regime switching
model with a double threshold structure are shown. Some concluding
remarks are given in the final section.

2. The examined models

In the last twenty years the nonlinearity has assumed growing
relevance in time series analysis.

Tong (1990) provides an excellent summary in this regard
focusing, among the others, the attention on the threshold structures
which have been widely applied to model the asymmetric behaviours
in the level of the economic and financial time series data.

It is well known that most of these data sets are affected by
volatility clustering which is well modelled through the
Autoregressive Conditional Heteroskedastic (ARCH) model
introduced by Engle (1982) and widely generalised in order to
differently model the conditional variance.

Tong (1990) suggests to combine the use of a nonlinear model for
the conditional mean with a structure for the conditional variance,
introducing the so called second generation models.

Among this category, in the following pages the SETAR-ARCH
and the DTARCH models are briefly introduced and, for each of
them, the l-steps ahead predictors are explicitly presented. The
prediction results are compared with those obtained from the simpler
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model AR-ARCH. The forecasts are generated using the so called
naïve methods which allow to forecast the skeleton of a given time
series using unbiased (in minimum mean square error sense)
predictors. They are given as expected values of l+tX  conditionally to

the past informations of the series up until time t, tΨ , and are

indicated as ][)(ˆ
ttt XEX Ψ= +ll

The combination of different parametric models which allow to
model the conditional mean and the conditional variance
simultaneously has been anticipated in Weiss (1984) for a simpler
structure introduced for economic time series. He proposed the AR-
ARCH model given as the combination of an autoregressive structure
for the conditional mean and an ARCH(q) structure for the conditional
variance which allows the variance of the noise εt to be function of the
time:
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where ),0( tt hN∼ε , 11 <iφ , i=1,…,p, 01
0 >α  and 01 ≥wα , w=1,...,q.

The forecasts of the conditional mean model in (1a) are generated
following the well known procedure of Box and Jenkins (1970) where
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whereas )(ˆ lth  is generated iteratively through the following equation:
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Tong (1990) has proposed the combination of the Self Exciting
Threshold Autoregressive model (Tong and Lim, 1980) with the
ARCH structure, naming this combination SETAR-ARCH. It has been
subsequently described in Li and Lam (1995) who address the use of
this model mainly to the analysis of financial time series, where the
asymmetry in the levels can be well captured by a threshold structure
whereas the time dependence of the variance can be examined using
an ARCH model. In particular, the SETAR models, which are the
simplest generalization of the linear autoregressions, allow the piece-
wise linearization of the nonlinear model over the state space by the
introduction of thresholds in the following way:

SETAR(k; p1, p2, ..., pk):
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where 1(⋅) is an indicator function, p1, p2, ..., pk are the autoregressive
orders of the k regimes, εt is an i.i.d. sequence of white noise.

],( 1 jjj rrR −∈ , j=1,2,...,k, is a partition of the real line R such as R1

∪ R2 ∪... ∪ Rk=R with the threshold values -∞=r0< r1< r2 <...<
rk=∞, d is the threshold delay and dtX −  is the threshold variable.

The l steps ahead forecasts of the SETAR-ARCH are generated
combining the following predictor for the conditional mean:
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with that of the conditional variance given in (4).
A further extension that allows to consider a regime structure for

both the conditional mean and the conditional variance is the Double
Threshold Autoregressive Conditional Heteroskedastic (DTARCH)
model due to Liu, Li and Li (1997). This complex structure was first
proposed to catch the well known asymmetry of financial returns
through the conditional mean model and the so called leverage effect
through the conditional variance model which can be differently
defined for periods of growing market uncertainty and of market
stability.

A DTARCH(p1,p2;q1,q2) model, is given by:
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where pj and qj are the order of the autoregressive regimes and of the
heteroskedastic regimes respectively, for j=1,2, εt ∼ N(0, ht), d and s
are the threshold delays for the mean and the conditional variance, r
and v are the threshold values.

The predictor of the DTARCH model, examined in detail in Niglio
(2000), has the following equation:
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where the complexity of the structure has a considerable impact on the
forecast accuracy.

3. High Density Regions

The prediction accuracy is often evaluated defining the interval
forecasts (Chatfield, 1993) which are generally calculated as
symmetric intervals around the mean.

In the nonlinear domain, where the predictors are often
characterized by asymmetric and multimodal distributions, this
procedure can be unsatisfactory and it is often preferable to use the
density forecasts (see Tay and Wallis, 2000, for a recent survey)
which provide a complete description of the uncertainty associated
with a prediction.

In order to compare the accuracy of the forecast )(ˆ ltX  generated
through different models, we are interested in having a measure which
summarizes, in some sense, their density function ( )(Xft l ).

In this context Hyndman (1995) has proposed the construction of
the forecast regions, Rα, which can be differently defined in relation to
the shape of )(Xft l . In particular, in order to construct a 100(1-α)%
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forecast region, Hyndman has suggested the following three ways:

1) in presence of a symmetric and unimodal distribution

wR t ±= lµα (9)

where ltµ  is the mean of )(Xft l .

2) with an asymmetric and unimodal distribution

)]2/1(),2/([ ααα −= ll tt QQR (10)

where )2/(αltQ  is the α/2-th quantile of )(Xft l .

3) the presence of an asymmetric and multimodal distribution
allows the introduction of the so called high density regions
(HDR) (Hyndman, 1996):

)}()(:{ αα fXfXR t ≥= l (11)

where f(α) is chosen such that αα −=∈ 1)Pr( RX t l .

The HDR are graphically shown in Figure 1 where the HDR are given
as the union of several intervals which satisfy (11). It is clear that the
region calculated using (10) masks the multimodality of )(Xft l

implying a wider region whereas (11) is the most informative about the
shape of the density.

The complexity of the nonlinear models often does not allow the
analytic derivation of the forecast density )(Xft l  of the predictors. In

this context the generally applicable way to obtain an approximation
of the forecast density is via simulation as shown in the next section.
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4. The simulation study

The forecast accuracy of the models discussed in section 2 is
evaluated representing and estimating the density function of their
multiperiod forecasts obtained through a Monte Carlo simulation
procedure.

The simulation study is implemented using three different models:
AR-ARCH(2;1), SETAR-ARCH(2,1;1) and DTARCH(2,1;1,1). The
selected coefficients are shown in Table 1, where the symbols used
follow the notation introduced in section 2. The errors of all models
are assumed Gaussian, the threshold delays of the SETAR and
DTARCH models are equal to 1 and the threshold values are all fixed
equal to 0.

The simulated series are 1.000 for each model with length n=500,
obtained after dropping the first 100 observations in order to eliminate
the influence of the initialisation. For each simulated series the
generation of forecasts is performed for the three models under study,
at lead time l=4.
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Figure 1: Two different 100(1-α)% forecast regions for )(Xf t l
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In order to evaluate the impact of the coefficients estimation on the
forecast accuracy, the series simulated in the previous step have been
used to obtain maximum likelihood estimates for the coefficients of
the three models under study. This computationally intensive
procedure require a fairly greater amount of computer resources due to
the stability check which has been performed at each of the 1.000
iterations.

Table 1: Model coefficients used in the simulation study
Conditional Mean Coefficients

1
0φ 1

1φ
1
2φ 2

0φ 2
1φ

values 0.028 -0.28 0.39 0.032 -0.45
Conditional Variance Coefficients

1
0α 1

1α 2
0α 2

1α
values 0.045 0.13 0.05 0.35

The upper and lower bounds of the forecast regions (given in (10))
of the three models under study are shown in Table 2, where the
empirical quantiles, at 5% and 95% confidence levels of )4(X̂500 , are
reported in case of known and estimated coefficients.

Table 2: 5% and 95% empirical quantiles of the four steps ahead
forecasts of the three examined models

MODEL Q(0.05) Q(0.95)
KNOWN COEFFICIENTS

AR-ARCH -0.117 0.172
SETAR-ARCH -0.084 0.074
DTARCH -0.088 0.078

ESTIMATED COEFFICIENTS
AR-ARCH -0.123 0.176
SETAR-ARCH -0.090 0.078
DTARCH -0.143 0.141

As expected, the amplitude of the interval between the 5% and the
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95% quantile grows in presence of the estimated coefficients.
The SETAR-ARCH model and DTARCH model do not show

remarkable differences in the conditional mean forecast uncertainty.
Their forecast variance depends non trivially upon the current
information set and, as the forecast horizon increases, it will tend to
converge to the unconditional variance of the process.

The similar structure of the conditional mean of the SETAR-ARCH
and DTARCH models implies that the shapes of the conditional mean
density forecasts are not remarkably different for the two models
(Amendola and Niglio, 2001). The amplitude of the forecast regions
R0.05 for the SETAR-ARCH model, given as the difference between
the 95% and the 5% empirical quantiles, is slightly narrower than that
of the DTARCH. This suggests an increasing uncertainty of the
conditional mean forecasts generated through the DTARCH model
with respect to the SETAR-ARCH model.
The bimodality of their forecast densities, estimated non
parametrically following Silverman (1986), is evident in Figure 3 and
Figure 4. In this case the forecasts are attained using the estimated
coefficients which are obtained fitting the models to the simulated
series generated through the conditional mean coefficients reported in
Table 3.

Table 3: Model coefficients for the conditional mean
 used in the simulation study

Conditional Mean Coefficients
1
0φ 1

1φ
1
2φ 2

0φ 2
1φ

values -0.10 -0.28 0.39 0.20 -0.45

As expected, the predictor of the conditional mean of both models
shown in Figures 3 and 4, is bimodal being the density obtained from
a finite mixture distribution.
Moreover, the values of their modes have suggested to better
investigate on the dependence of the forecast density function upon
the regime intercepts, as discussed in the next section.
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5.  The Effects of Parameter Estimation on Prediction Densities of
DTARCH models

In nonlinear time series the intercepts play an important role on the
stability of the model and on the accuracy of the generated forecasts
(Tong, 1995).

These intercepts, which are strictly related to the initial values of
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Figure 4: Estimated densities for the conditional mean
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the data generating process, have a great impact on the shape of the
density distribution and consequently on the accuracy of the forecasts
generated.

Franses and Van Dijk (2000) show that this impact is more evident
for models characterised by a structure with regimes.

In this context the relevance of DTARCH conditional mean
intercepts are evaluated in order to better understand their role in
forecasting.

This task is performed using the simulation scheme with known
coefficients described in section 4. Only the DTARCH conditional
mean intercepts are differently assigned considering two different
cases (Table 4):

Table 4: Intercepts of the further simulated models
Model 1 Model 2

01
0 =φ 02

0 =φ 10.01
0 =φ 20.02

0 −=φ

whereas all the other values of the conditional mean and conditional
variance are given in Table 1.

The four step ahead density forecasts of the conditional mean of
Model 1 and Model 2 are shown in Figure 5 and 6.

Figure 5 confirms the unimodal distribution of the predictors
whereas Figure 6 highlights the bimodal distribution of the forecast
density which is markedly asymmetric and multimodal as the lead
time increases, as shown in Amendola and Niglio (2001).

The shape of the forecast density of Model 2 suggests to define the
forecast region, Rα, of )4(X̂500 , whose density is shown in Figure 6,
through the high density region given in (11) which is explicitly
represented through the union of two intervals:

R0.10 = [-0.2712, -0.1580]∪[-0.0732, 0.1437]

which are graphically shown with two grey bars.
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The comparison of the shapes of the conditional mean forecast
densities of Figures 5 and 6 shows the bigger uncertainty assigned to
Model 2 (Figure 6) with respect to the other case and the misleading
results which could be reached through the expected values

]X[E tt Ψ+l , for l=4.
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Figure 6: Forecast density and HDR for
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6. Concluding remarks

The advantage of the forecast densities to evaluate the prediction
accuracy of a selection of nonlinear time series models has been
considered.

The asymmetry and/or the multimodality of the predictors of some
threshold conditionally heteroskedastic models have been examined
through a Monte Carlo simulation study. The results obtained for the
DTARCH model highlight a clear dependence of the forecast density
shape on the model coefficients which has been further explored.

Forecast regions and high density regions (Hyndman, 1995) have
been calculated for the DTARCH model and the advantages obtained
in the evaluation of the forecast accuracy are shown.

The results confirm the presence of asymmetric and multimodal
distribution of the predictors as the complexity of the nonlinear
structure and the forecast horizon grow.
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