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1. Introduction

The importance of conditional volatility in finance has led researchers
(e.g., Hull and White, 1987; Longstaff and Schwartz, 1992; Heston, 1993)
to extend early asset pricing theories (e.g., Black and Scholes, 1973; Va-
sicek, 1977) to the case in which volatility evolves in a non deterministic
way. Empirically, stochastic volatility is well captured by the ARCH-type
models introduced by Engle (1982). From a continuous time perspective,
the initial contribution of Nelson (1990) established that ARCH models
can be seen as approximations of diffusion processes. Furthermore the
continuous time approach provided by diffusion processes can be useful
when data are observed at non-regular intervals. These reasons justify the
extensive use of stochastic volatility models in finance to describe some
empirical facts of the stock and the derivative prices. The general stochas-

The present work focuses on the inference in stochastic volatility models. More pre-
cisely, estimation of suitable functions of the mean vector of the increment stock price is
performed without estimating in advance the parameters of the model. A moving block
bootstrap (MBB) approach is then suggested in order to estimate the variance of those
functions and properties of the involved estimators are discussed. Simulations on the
model are also performed.
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tic evolution for the stock and its volatility is described by two stochastic
differential equations. In this way this approach permits to handle with
Ito’s calculus which provides methodologies already well-established in
literature.

In this paper we focus our attention on the following stochastic volatil-
ity model:

dYt = σt dW1,t

(1)
dσ2

t = (ω − ϑσ2
t ) dt+ ασ2

t dW2,t.

where the diffusion Yt is the centered log-price of the stock and W1 and
W2 are two independent Brownian motions. The model (1) is known in
literature as GARCH diffusion since, under suitable assumptions on the
parameters, it comes out in the well known paper by Nelson (1990) as the
continuous limit in law of a suitable GARCH model.

In estimating the parameters α, ϑ, ω in the model (1), methods based
on classical maximum likelihood or conditional moments do not work
(see, for example, Figà-Talamanca, 2009). In a previous paper (Albano
et al., 2010(a)), using relations between the moments of volatility and the
increments of the log-stock price Yt, a method based on unconditional
moments was proposed. Naturally, if the aim is estimating any function
of the process, for example the variance or the autocovariance functions,
a plug-in method can be used, after estimating the parameters α, ω and
ϑ in (1). Unfortunately, this procedure is not always efficient, since long
time series are generally needed.

This paper focuses on the inference on smooth functions of the volatil-
ity, such as autocovariance functions. We propose a method able to esti-
mate them avoiding the first step of the estimation of the parameters.

The paper is organized as follows: in Section 2 theoretical properties
of the process (1) are presented and in Section 3 inference for the pa-
rameters ω, ϑ and α in (1) and for smooth functions of the mean of the
increment process of Yt is discussed. In Section 4 a bootstrap procedure
for estimating the variance of the involved estimators is proposed. Fi-
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nally, in Section 5 simulation results are presented and some concluding
remarks are discussed in Section 6.

2. Preliminary results

In this section we investigate some theoretical properties of the pro-
cess (1) which are useful for the results on the inference discussed in the
following sections.

Firstly, it can be shown (e.g. Capasso and Bakstein, 2005) that, if
ω and α in (1) are positive constants, then there exists a strong solution
to (1). Moreover, if the volatility at initial time t0, i.e. σ2

0 , is a random
variable independent from W2,t, by Ito’s formula it is possible to obtain
the explicit expression of the volatility:

σ2
t = ω F−1(t,W2,t)

∫ t

0

F (s,W2,s)ds+F−1(t,W2,t)σ
2
0 ∀t ≥ 0, (2)

where F (t,W2,t) = exp{(ϑ + α2

2
)t − αW2,t}. For simplicity, in (2) we

have assumed t0 = 0. From (2) it is easy to see that the volatility process
{σ2

t } is non negative for all t ≥ 0. Moreover, after some cumbersome
calculations, it is also possible to obtain the following approximation for
the stochastic integral in (2):

F−1(t,W2,t)

∫ t

0

F (s,W2,s)ds =

∫ t

0

exp
{
− (ϑ+

α2

2
)s+ αW2,s

}
ds

≈ 1− e−ϑt

ϑ
. (3)

More precisely, setting It =
∫ t

0
exp
{
− (ϑ+ α2

2
)s+αW2,s

}
ds, it can

be proved that:

E It =
1− e−ϑt

ϑ
,

E
(
It It−k

)
=

1− e−ϑt

ϑ

1− e−ϑ(t−k)

ϑ
.
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From (3) the volatility process in (2) can be written as:

σ2
t ≈ σ2

0Λ(t) +
ω

ϑ

(
1− e−ϑt

)
(4)

where Λ(t) ∼ LN
(
− (ϑ+ α2

2
)t, α2t

)
and LN is the lognormal distribu-

tion.
Stationarity and ergodicity of the process (Yt, σ

2
t ) is guaranteed if

the initial value (Y0, σ
2
0) is assumed to be independent from the two-

dimensional brownian motion (W1,t,W2,t).
For the volatility process σ2

t , if 2ϑ
α2 > −1 and ω > 0,

σ2
t

d→ InvΓ

(
1 +

2ϑ

α2
,
2ω

α2

)
where InvΓ is the inverse Gamma distribution.

3. Inference on the model

Let Y0, Yδ, . . . , Yhδ, . . . , Ynδ be observations on the GARCH diffusion
model (1) with frequency δ, and let σ2

0 , σ2
δ , . . .,σ

2
hδ, . . ., σ

2
nδ be the corre-

sponding volatilities. Let Xt be the increment process of Yt, i.e.

Xt = Yt − Yt−1 =
√

σ2
t δ Zt (5)

where Zt
i.i.d.∼ N(0, 1) (t = 0, δ, . . . , nδ). From (4) it is easy to obtain the

following recursive relation for the volatility:

σ2
hδ = e−(ϑ+

α2

2
)δ+αWδσ2

(h−1)δ +
ω

ϑ
(1− e−ϑδ) h = 1, 2, 3, . . . , n. (6)

In the following, we illustrate a method to estimate the parameters ϑ,
α and ω in the GARCH diffusion model (1) and we propose a procedure
to estimate directly any smooth function of the moments of Xt which
avoids the first step of the estimation of the parameters.
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3.1. Inference on the parameters in the GARCH diffusion model

From (6) it can be proved that (Albano et al., 2010(a)) the asymptotic
moments of the volatility are:

lim
h→∞

E[σ2
hδ] =

ω

θ
, (7)

lim
h→∞

E[σ4
hδ] =

ω2

θ2
1− e−2θδ

1− e(−2θ+α2)δ
, (8)

lim
h→∞

E[σ2
hδσ

2
(h−1)δ] = e−θδEσ4

tδ +
ω2

θ2
(
1− e−θδ

)
. (9)

Moreover, from (5) we find that they are linked with the correspond-
ing ones of the increment process Xt in the following way:

lim
h→∞

EX2
hδ = δ lim

h→∞
Eσ2

hδ

lim
h→∞

EX4
hδ = 3δ2 lim

h→∞
Eσ4

hδ (10)

lim
h→∞

E[X2
hδX

2
(h−k)δ] = δ2 lim

h→∞
E[σ2

hδσ
2
(h−k)δ].

Then, if there exists the second moment of the volatility, the method
based on the moments of the volatility process suggests the following
estimators for θ, ω and α2:

θ̂ := f1(M2,M4, E1) =
1

δ
log

γ̂(0)

γ̂(1)
,

ω̂ := f2(M2,M4, E1) = M2 θ̂ (11)

α̂2 := f3(M2,M4, E1) =
1

δ
log

{
e2θ̂δ
(
1− M2

2

M4

)
+

M2
2

M4

}
.

where the statistics M2, M4 and E1 are defined as follows:

M2 =
1

nδ

n∑
t=1

X2
t , M4 =

1

3nδ2

n∑
t=1

X4
t , E1 =

1

nδ2

n∑
t=1

X2
t X

2
t−1 (12)

and γ̂(0) and γ̂(1) are the sample variance and covariance of {σ2
hδ}:

γ̂(0) = M4 −M2
2 γ̂(1) = E1 −M2

2 . (13)
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Moreover, assuming the existence of the eighth moment of the incre-
ment process, the strong consistency and the asymptotic normality for the
proposed estimators can be proved (Albano et al., 2010(a)).

3.2. Inference on smooth functions of the mean

Let v = (v1, v2, . . . , vm) (m ≥ 1) be a mean vector of the increment
process Xt defined in (5), i.e.

vi = E[Xj1
t Xj2

t−1 · · ·X
jd
1 ] (j1, j2, . . . , jd ∈ N0; i = 1, . . . ,m).

Let Vn = (V
(n)
1 , V

(n)
2 , . . . , V

(n)
m ) (m ≥ 1) be the corresponding sam-

ple mean vector, i.e. V (n)
i is the sample estimator of vi. Let us consider a

function H : Rm −→ R and suppose that the parameter of interest θ is a
function of v, i.e.

θ = H(v).

A natural estimator for H(v) is H(Vn).
In the following we will suppose that the following assumptions hold:

A1. the function H has continuous partial derivatives with respect all
the components in a neighborhood C of v;

A2. the gradient Av of H is non-null in C.

Under these assumptions, it can be shown (see, for example, Serfling,
1980) that

√
n
[
H(Vn)−H(v)

] d−→ N(0,Av
TΣvAv) (14)

and
n[var H(Vn)]−Av

TΣvAv −→ 0, n→∞ (15)

i.e. H(Vn) is asymptotically normal and it is a consistent estimator of
H(v). In (14) and (15) Σv represents the asymptotic covariance matrix
of the vector Vn.

An example. Let us focus on the autocovariance functions γσ2(k)
with lag k (k ≥ 0) of the volatility process σ2

t . Moreover, from (5) it is
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easy to see (Albano et al., 2010(a)) that it is related to the autocovariance
function of the square of the increment process X2

t . So a natural estimator
for γσ2(k) is

γ̂σ2(k) =

{
M4 −M2

2 k = 0
Ek −M2

2 k > 0
(16)

where M2, M4 are defined in (12) and

Ek =
1

nδ2

n∑
t=k+1

X2
t X

2
t−k.

Further, the variance of γ̂σ2(k) is such that

n varγ̂σ2(k)→ Av
TΣvAv,

with

v = (v1, v2) =

{ (EX2
t ,EX

4
t ) k = 0

(EX2
t ,EX

2
t X

2
t−k) k > 0

and Av = (1,−2v1)T . �

From (14) and (15) it is evident that to obtain an estimation of the
variance of H(Vn) it is necessary a preliminary estimation of Σv. For
particular choices of the function H , explicit expressions for Σv can be
obtained and a plug-in procedure can be improved to estimate the asymp-
totic variance of H(Vn) (see, for example, Genon and Catalot, 2000 and
Figà-Talamanca, 2009). Further, in such kind of procedures, since the
process {Xt} has two independent noises, for small samples, the estima-
tion could not capture the dependence on {Xt}. Finally, finding explicit
expressions for Σv involves some cumbersome calculations which, more-
over, depend on the particular choice of the smooth function H . To avoid
such kind of problems, we propose a moving block bootstrap procedure,
which is independent from the particular choice of H and applicable in a
more general context.
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4. MBB for estimating the variance

In order to estimate Σv we use a bootstrap procedure for dependent
data. This class of resampling procedures comes out as an extension
of the classical bootstrap for independent data first proposed by Efron
(1979). The main advantage is that MBB is able to preserve the depen-
dence structure of the original data in the bootstrap samples. More pre-
cisely, in nonparametric schemes, blocks of consecutive observations are
randomly resampled with replacement from the original time series and
assembled by joining the blocks in random order to obtain a simulated
version of the original series (Kunsch, 1989; Politis, 1992). These ap-
proaches, known as blockwise bootstrap or moving block bootstrap, gen-
erally work satisfactory and enjoy the properties of being robust against
misspecified models. In order to illustrate the procedure in our context,
let us consider the centered and scaled estimator Vn given by

Tn =
√
n
(
Vn − v

)
.

Suppose that b = 
n/l� blocks are resampled so the resample size is
n1 = bl. If V∗

n is the sample mean of the n1 bootstrap observations based
on the MBB, the block bootstrap version of Tn is:

T∗n =
√
n1

(
V∗

n − E∗V∗
n

)
where E∗ denotes the conditional expectation given the observations χn =
{X1, X2, . . . , Xn}.

In the following we will assume for simplicity that n1 ≈ n, a reason-
able choice in the case of long time series.

Using the geometrically α−mixing condition for the process {Xt} as
proved in (Genon and Catalot, 2000) and choosing the length l of the
blocks such that

A3. l →∞; l−1 + l
n
−→ 0 n −→∞,

we have (Lahiri, 2003) that

var∗ T ∗n
p→ Σv. (17)
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Now, let T1n =
√
n
[
H(Vn) − H(v)

]
be the centered and scaled es-

timator of the smooth function H(v); then the block bootstrap version of
T1n is

T ∗1n =
√
n1

[
H(V∗

n)−H(E∗V∗
n)
]
.

Under the assumptions A1, A2 and A3 it can be proved (Albano et
al., 2010(b)) that the bootstrap distribution of T ∗1n converges to the distri-
bution of T1n, i.e. to the normal distribution. So, for the inference on T1n

trough T ∗1n we just need to estimate the variance of T1n. Moreover, it can
be proved (Albano et al., 2010(b)) that

var∗(T ∗1n)
p→ Av

TΣvAv as n→∞.

So, setting T ′∗ = ÂT
vV

∗
nÂv, where Âv is the sample estimator of the

gradient Av, from (17) we obtain:

n var∗(T ′∗) = ÂT
v (n var∗V∗

n) Âv
p→ Av

TΣvAv (18)

from which we can estimate the variance var∗T ∗1n using the bootstrap
variance V∗

n and the sample estimator Âv.

5. Simulations

In order to evaluate the performance of the proposed procedure, a
small Monte Carlo experiment has been performed. The parameters in
(1) are fixed as ϑ = 0.6, ω = 0.5, while three different values for α are
chosen: α = {0, 0.2, 0.4. The value α = 0 corresponds to a deterministic
volatility. The frequency of the observation is fixed as δ = 1/4. Three
different time series lengths are considered n = {500, 1000, 2000}, and
for each length N = 300 Monte-Carlo runs are generated. In Figure 1
the distribution of the statistics M2, M4 and E1 are reported. Straight
line indicates the corresponding true value of the involved moment. It
is evident that the widths of the corresponding box plots become smaller
and smaller as the length of the time series increases. These empirical
results confirm the consistency of the sample mean vector (M2,M4, E1).
Moreover also the bias seems to be slight for the three statistics. When α
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increases the box plots show a smaller variability, so the estimates seem
to work satisfactory when the stochastic component of the volatility is not
negligible. Let A(j)

n (j = 1, 2, 3) be the rescaled statistics of M2, M4 and
E1, respectively.

In Table 1 the root mean square error

RMSE : =
√
EN

[
var∗(A

j
n)− v(j)

]
(j = 1, 2, 3) is reported for the

three different time series lengths.
It is evident that it tends to decrease as the length of the time series in-
creases. Now, let us focus on the variance of the volatility process, γσ2(0).
Also in this case, the results reported in Figure 2 confirm the consistency
of the proposed estimator γ̂σ2(0), for the three values of α. Moreover, the
root mean square error of

√
nγ̂σ2(0) seems to decrease as n increases.

Figure 1. Box plots for M2, M4 and E1 for α = 0 (left), α = 0.2 (center)
and α = 0.4 (right). The straight line represents the true value of the
corresponding moment.
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Table 1. Root mean square error of Aj
n (j = 1, 2, 3) for α = 0, 0.2 and

0.4.

α
n 0 0.2 0.4
500 0.0678 0.1180 0.4512

M2 1000 0.0490 0.0850 0.3359
2000 0.0333 0.0731 0.3052
500 0.2789 0.2724 5.1979

M4 1000 0.1302 0.1922 1.5314
2000 0.0863 0.1412 1.1772
500 0.1453 0.3310 2.0566

E1 1000 0.1207 0.1872 1.3008
2000 0.0746 0.1659 1.2919

6. Concluding remarks

The present paper proposes a method for estimating smooth functions
of the mean in stochastic volatility models, avoiding the preliminary es-
timation of the parameters of the model. A MBB approach is then per-
formed to evaluate the variance of the proposed estimators. The pro-
cedure yields satisfactory results in a simulation study for finite sample
sizes.

Several different aspects should be further explored to get a better
insight of the suggested procedure.

Table 2. Root mean square error of γ̂σ2(0) for α = 0, 0.2 and 0.4.

α
n 0 0.2 0.4

500 0.1404 0.0998 3.7975
1000 0.0506 0.0851 0.8231
2000 0.0386 0.0635 0.6784
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