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Summary: Econometric literature has devoted a good deal of attention to the
aggregation problem, especially within the framework of parameter estimation (Theil,
1954). In this context the question is: what is the relationship between the parameters
of the aggregate relation and the parameters of the micro-relations? A second issue is
concerned with prediction. In this context starting from Grunfeld and Griliches’s
pioneer work (1960) the focus is on whether to predict the aggregate dependent
variable by means of macro or micro equations. If we define perfect aggregation as
non contradiction between the two models, we would expect perfect aggregation
conditions within the two contexts to be the same. However this is not the case. In fact
perfect aggregation within prediction is implicitly defined as equivalence between
aggregate and disaggregate models with respect to some goodness of fit criterion; thus
giving rise to a less restrictive definition, inconsistent with Theil’s rule of perfection.
The aim of the present paper is to unify the estimation and the prediction approaches
by defining a goodness of fit criterion that does not contradict Theil’s findings.
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1. Introduction

The aggregation problem has been thoroughly studied in
econometrics mainly within the framework of parameter estimation. In
this context the question is: what is the relationship between the
parameters (b) of the aggregate regression and the parameters (B, i=
1,..., m) of the micro-relations? It is well known that least squares (LS)
estimation of the aggregate model leads, in general, to biased
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estimators. As Theil (1954) shows, in order for the LS estimator to be
free of aggregation bias it has to be either:

Bi=b Vi=12,...,m
or:
exact linear relations between independent variables of different
microrelations’.

A second issue is concerned with prediction. In this context starting
from pioneer work of Grunfeld and Griliches (1960), herein GG, the
focus is on whether to predict the aggregate dependent variable by
means of macro or micro equations. These authors — followed
successively by others (see for example Sasaki, 1978) — introduce a
within sample goodness of fit criterion based on the sum of the squared
residuals (R?) and argue that whenever the goodness of fit of the
aggregate model is greater than the goodness of fit of the model derived
from the micro-equations, there is an aggregation gain.

More recently Pieraccini (2005) shows that direct estimation of the
aggregate model leads in general to aggregation bias and that even in
presence of perfect aggregation the disaggregate model is to be
preferred. Thus, in reply to GG’s question: “Is aggregation necessarily
bad?” he asks: “Is aggregation ever necessary?”

In this paper — consistently with Pieraccini’s findings - we argue that
the selection criterion suggested by GG is biased: the expected goodness
of fit of the aggregate model cannot be greater than that of the model
derived from the correctly specified micro-relations.

In fact when predicting an aggregate variable (y, = 2.;y; ) by means
of a macro relation we are projecting y, on the subspace (S,) spanned by
the k aggregate independent variables (in other words, on a subspace
whose dimension is at most k). Vice versa when we resort to micro-
relations each micro dependent variable y; is projected on a k-
dimensional subspace (S;); thus the sum of these projections can belong
to a subspace (T) of greater dimension (Hefferson, 2008). Thus the
goodness of fit of the model derived from well specified micro-relations
will, in general, be greater than that of the aggregate model. Moreover,
since S, T , prediction by means of the aggregate model will be as

"It i s also assumed — although not explicitly - that the aggregate independent variables are
linearly independent.
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good as prediction via the disaggregate model only if the two subspaces,
S, and T, have the same dimension. If we define perfect aggregation
the equivalence between the two models, a necessary condition would
thus be: dim(T) = dim(S,).

As we will see, this condition can be easily reconduced to Theil’s
rule of perfection, derived within the estimation context. Although it
may seem an obvious requirement that conditions for perfect
aggregation within estimation and prediction contexts be the same, this
consistency requirement has rarely been pursued in literature. In fact
perfect aggregation within prediction is often implicitly defined as non-
contradiction between the two models with respect to some goodness of
fit criterion. This gives rise to a less restrictive definition of perfection,
but also to inconsistent consequences. For example Pesaran et al. (1989)
while seeking a test for perfect aggregation within a prediction
approach, explicitly leave aside the case of exact linear relations among
variables.

The aim of the present paper is to define a goodness of fit criterion
that does not contradict Theil’s findings. First of all we will shed a light
on the definition of perfect aggregation in order to unify the estimation
and prediction approaches. Then we will define an appropriate goodness
of fit criterion which — in contrast with GG’s findings — leads to an
unbiased selection criterion, and prove the non implementability of a
test for perfect aggregation suggested by Pesaran ef al. (1989).

2. Perfect aggregation
Let us consider the following micro-behavioural equations referring
to n observations (h = 1,2,...,n) of m micro-units (i = 1, 2,...,m) in
which a dependent variable Y is expressed as a linear combination of &k
explanatory variables X; (j= 1,...,k):
Yin = 2By X + uan
In matrix notation the same model can be written as:

Y,-=Xi[3i+u,~ i= 1,2,...,71’1 (1)
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We assume model (1) to be correctly specified, so that:
E(Y, ): XiBi 5 E(ll,' lll") = Giz | ) E(ll,' llj') = (51']'2 I

and rank(X;)=k Vi=1,....m.

From (1), if we define Y, = 2;Y; we can write the derived aggregate
model H; (sometimes improperly referred to as the “disaggregate
model”) :

Hy: Y, =2Xi B + 2, (2)

Alternatively, defining X, = 2, X; , we can write the aggregate model
H, as:

H,:Y,=Xb+v, (3)

where v, = 2,V;B; + 2u; and 2V;B: = 2 XiB: - Xub 2,
We denote by £, the rank of X,.

Following Theil, we define perfect aggregation as non-contradiction
between the derived aggregate model H, and the aggregate model H,.

Model Hy states that Y, belongs to the sum of the subspaces spanned
by the columns of the X; matrices (plus a random disturbance of null
expected value). Vice versa, the aggregate model states that Y, belongs
to the subspace spanned by the columns of the X, matrix (plus a random
disturbance).

Let us call S; the subspace spanned by X, and define T = S;+...+S,,.
Moreover let us call S,the subspace spanned by the columns of X, . Of
course S, is also — by definition — a subspace of T.

Non-contradiction between the two models requires:

dim(T) = dim(S,)

in other words it requires the subspaces T and S, to be isomorphic (See
for example Hefferson, 2008, for a definition).

% The definition of v, stems from Theil’s’ auxiliary equation: : X; = X, T'; + V,, with: ¥V,
=0 and X I;=1



Perfect aggregation in linear models: a geometrical insight 5

First of all note that dim(T) = rank (X;:......: X,n). Thus a necessary
condition for perfect aggregation to hold is:

rank X1+ ......: X)) =k (c.])

Obviously, given that rank(X;) = k, this condition is met if and only if
any one of the X; matrices spans all the subspaces S;;, V i' = 1,...,m. In
order to derive an equivalent condition, we can resort to a
decomposition of the X; matrices (the so-called auxiliary equations). In

fact, since the X; matrices all belong to R”, and since they all span .-

dimensional subspaces of R”, for a given i and for V i'=1,...,m, X; can
be decomposed in the sum of two matrices, one belonging to S;, the
other belonging to the orthogonal subspace S; © . Thus we can write:

X =XiCiyi +Fyy 4)

where X;/F;;=0.

Since rank (X y)= rank (C y; ) + rank(F ;; ), in order for (X; : X ;) to
have rank k£ a necessary condition is rank(F ;) = 0 (condition that
implies F ;; = 0 and rank (C ;) = k) . Thus, a necessary condition for
dim(T) =k is:

rank(F ;;)=0 VYV i'=l,...,m (c.2)

When this last condition is met (together with the rank condition for
the X; matrices) C ;; is non singular V' i". Thus (c.1) and (c.2) are
equivalent.

From auxiliary equation (4) we can also derive:

Xe=Xi 2Coi+ 2 iFipi=X; Ci+ F; (%)
thus implying that, whenever conditions (c.1) or (c.2) hold:

Xa = X,‘ C,‘ (03)
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Condition (c.3) can also be stated as exact linear relations among
independent variables. It is easy to see that (c.3) «<>(c.1) or (c.2). Thus
conditions (c.1), (c.2) and (c.3) are all equivalent.

However, since rank(X,)= rank(C;) + rank(F;), condition (c.3) does
not itself guarantee that rank(X,)= k; in fact C; is the sum of square full-
rank matrices C ;;, but this does not guarantee its non-singularity;
moreover there are no “obvious” conditions to be posed in order for
this requirement to be fulfilled. Thus in the context of linear prediction,
perfect aggregation requires:

rank (Xi:......: Xp) = rank(X,) = k (c.4)

or, in other words: dim(T) = dim(S,).
This condition is both necessary and sufficient for perfect aggregation.
Of course, whenever the (correctly specified) micro-relations state:

Y,~=X,-b+ui i=1,2,...,m

the derived aggregate model is equivalent to the aggregate model
without further assumptions. Note that in this case condition (c.4) holds
without further assumptions. In fact the derived aggregate model is
given by:

Hy: Y,=X.X;b+Yu =X,b+ D,

thus stating that that E(Y,) belongs to the S, subspace, spanned by the
columns of the X, matrix .

Let us now turn our attention to the estimation context. The
conditions stated by Theil are: X;=X, I, Vi=12,....morB;=b Vi=
1,2,...,m (equality of the micro coefficients). It is easy to see that the
first of these conditions is equivalent to condition (c.4), where as the
assumption of equality of the micro coefficients although sufficient,
seems unduly restrictive.

Obviously, in order for perfect aggregation to hold condition (c.4)
must be satisfied in and out of sample. This extended condition (also
known as compositional stability) is usually stated as:
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Xa:X,'C,' \72', ‘V’h=1,...,n,...,

3. Prediction and within sample goodness of fit

The question is whether to predict the aggregate variable Y, using
model H; or model H,. In the first case we predict the aggregate
variable Y, aggregating the predicted values of the micro-dependent
variables Y, i = 1,...,m; in the second case we predict Y, by means of
the aggregate independent variables.

Assume we use LS. We can thus define the two predictors:

Vo=> XB =Y XB,+Y Au, and §,=X,b=A,>y,;
and the two residuals
e, =y, ~¥,= > Mu, e, =y, ~-§,=ZVip +MZu,
where
A =X (XX )X, A, =X (XX, )X, M;=1-A, M, =1-A/

It is well known that the predictor y, is the orthogonal projection of
the aggregate dependent variable on the subspace spanned by the
columns of the X, matrix. Thus it belongs to the k, dimensional
subspace S,.

Vice versa, ¥y, is the sum of the orthogonal projections of the micro
dependent variables on the S; subspaces, and it belongs to a subspace T.
It should be noted that, in general, ¥, is not an orthogonal projection of
y, on the subspace T.

In order to give a graphical representation of the different subspaces,
assume we have observed two variables x, y , on two micro-units (i=1,2)

*In order for X, to be invertible we will assume either: rank X, = k, or that X, is an nxk, full
rank matrix.



8 S. Terzi

in 3 different occasions (4#=1,2,3). Let us consider the three-

dimensional space R’ where the axes are associated with occasions and
each point-vector represents the time series of observations on a single
variable for one single unit i. The disaggregate model projects y;
(separately for each micro-relation), on the subspace S; spanned by the
vectors x; and the unit vector 1=(1, 1, 1). We can represent the two
subspaces S; and S; in figure 1:

Figure 1

Now let us give a geometrical representation of the two predictors p,, ¥..
The derived aggregate predictor y,; is the sum of the disaggregate
predictors y; y», that lie on different planes, thus j; lies on a subspace T
which is the sum of the two subspaces S; and S,, and — in principle —
could be a three-dimensional subspace. The aggregate predictor j, lies
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on the subspace S, spanned by the vector x, = x; + x, and the unit

vector 1, so it lies on a two-dimensional subspace of R’ .

Figure 2

Since dim(T) 2dim(S,) we should expect y, to have a better fit than y _;
however a goodness of fit measure is needed. Since y, is not an

orthogonal projection of y,, for the disaggregate model we cannot resort
to the usual definition of R” as:
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R? = dev(i’d) 1— ed'ed

devly,) y.,y,

since the equality does no longer hold. But, instead, we have to choose
an appropriate definition among the most frequently used in literature.
We could define, as GG do, R? =1—e—,e . However, since we are
yy
interested in a projection problem, the most appropriate goodness of fit
criterion seems to be the closeness between predicted and observed
values, as measured by the square of the cosine of their angle. We thus
define:

VA 2
R =cos’(§.y)= fyAy /
YY AYY

It can be easily seen that for the aggregate model y,y, =y.y,, thus:

R o050y, ) =) - g,
V.Y,

~

where as for the derived model H:

ERY/) Y
R’>=cos’(y,,y )= '(yayd) - '(edyd‘) + R
4 =CO08 (Yd ya) (ﬁdi'd)(yaya) (yaya)(ﬁdyd) .

Thus, in general R? > R . Moreover R? = R? if and only if e, and ¥,
are orthogonal.
We now want to show that defining goodness of fit as R? leads, on

average, to select the model H; unless perfect aggregation holds (in
which case the two models are equivalent).
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In other words the selection criterion we introduce — unlike the criterion
basedon (R>—R2) —is unbiased.
It can be easily seen that:

VA 2
@R Ny, —ee,+| 80 oo
Y.Y,

All terms that appear in this expression are =>0; however
(e'dyd) ' B2 B2 . . . .

~———<e,e,. Thus [(R;—R;) attains its minimum when
Yi¥Ya
(v,\ 2
ede)
Ya¥a

However, when ey, =0,

' ' ' _ 5 ' 5
ee, =e,y, :Zl_zjyiMiyj = Z,—Z]—Bixz‘M;“;’"'Z,—Z.,-“iMj“j .
Moreover, since it is always VX, =0 6

ee,=> >YuMu, +>SBVM VB =>>uMu, +>>BV VB,
P ) J i

=0, in other words when ¥, is an orthogonal projection of o

i

Thus:

€,e,-€,e,=
ZiZju;(Ma _Mj)uj +Zi2jﬁ;vilvjﬁj _ziZjB;X;Mjuj

and:

* Of course perfect aggregation is a sufficient condition for 5’ 4 to be the orthogonal
projection of y,.

3 Recall that M :1_)9(&_)9)’1&_

® Like the other auxiliary equations we introduced, the auxiliary equation: X; = X,I; +V;,
assumes V; e S,° and thus: V/X, = 0.
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E(e'aea —e'ded) = (k—k, )Zizjo;j +Z;Z_,B;V;VJBJ > ()

so that our selection criterion is unbiased.
It can easily be seen that, whenever condition (c.4) holds e,¥, =0, k.=k

and V; =0 Vi. Thus, in this case R} = R”.

4. Concluding remarks

Although Theil’s findings clearly show that prediction via micro
equations would yield more precise estimates of the aggregate
dependent variable than the corresponding macro equation, some
authors still claim the opposite could well be true (see Stoker, 1993 for a
survey of the subsequent econometric literature, and Barreto and
Howland, 1998, for a survey of the issues concerning the aggregation
problem and how they have sometimes been disregarded in economic
theory).

In their paper Grunfeld and Griliches (1960) wonder: “Is aggregation
necessarily bad?” and conclude that under certain circumstances it can
give rise to a better fit. They consequently suggest a selection criterion

based on E(e'aea—e'ded) and define perfect aggregation as
2.2 BVVB,=0.Itiseasy tosee that 3 > B,V,VB,=0if

a)B;=b Vi=1,..m

or:
F.,=0Vi'=1,....m

b)V,=0Vi=1,..m & )
rank(C,)=k,Vi=1,...,m

These properties suggest that a perfect aggregation test could be based
on the statistic f = Zi X[ﬁi —Xaﬁ . In fact this is the suggestion from

Pesaran et al. (1989 ).
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On the contrary we have argued, in line with Pieraccini (2005), that
there has been much misunderstanding on the performances of
aggregate models, misunderstanding that can sometimes be reconduced
to a biased selection criterion, and that has led to a less restrictive
definition of perfect aggregation, in contrast to Theil’s findings. If
perfect aggregation within the prediction framework is to be defined as
non contradiction between the two models with respect to some
goodness of fit criterion, it is necessary to resort to an appropriate,

unbiased goodness of fit measure; for example the R *that we have

suggested. However it would also be of great use to have a test for
perfect aggregation. Unfortunately the test introduced by Pesaran et al.
is not implementable. In fact they show that, under the assumption that
u is normally distributed with mean zero and known covariance matrix,

when 3 5" BV p,=0:

where:

Yy =m" iO'UH[Hj;

=
H; = (Ai-A,)
v = rank(y,, )

They also derive a sufficient (but not necessary) condition for y, to

have full rank.
It is easy to see that when condition (c.2) holds:

MM A- A= XK X)X xe X ) ex

is a symmetric and idempotent matrix; thus it is positive semi definite
with rank k-rank(C;). However when V; =0, rank (C; )= k Vi, so that,
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in fact, under perfect aggregation the test for perfect aggregation is not
implementable.
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