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Summary: When microdata Þles for research are released, it is possible that external
users may attempt to breach conÞdentiality. For this reason most Statistical Agencies
apply some form of disclosure risk assessment and data protection. Risk assessment Þrst
requires a measure of disclosure risk to be deÞned. The deÞnition of disclosure risk that
we adopt is based on re-identiÞcation. Therefore our risk measure is speciÞc to cells of
the contingency table built by cross tabulating the variables that allow identiÞcation. In
this paper we discuss two Bayesian hierarchical models for disclosure risk estimation.
Model I is an extension due to Polettini and Stander (2004) of a model discussed by
Bethlehem, Keller and Pannekoek (1990). Model II is an extension of Model I that
takes account of the large number of empty cells and that makes use of the available
estimate of sample cell probabilities based on sampling design weights. For each model
we present in detail the distributions that are necessary for risk estimation. An artiÞcial
sample of the Italian 1991 Census data allows us to assess the relative performance of
each model.
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1. Introduction

When microdata Þles for research are released, it is possible that ex-
ternal users may attempt to breach conÞdentiality. For this reason most
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Statistical Agencies apply some form of disclosure risk assessment and
data protection. Risk assessment Þrst requires a measure of disclosure
risk to be deÞned; as this is usually cast in terms of population quantities,
risk estimation is then achieved by introducing suitable statistical models.
If the estimated risk is considered not tolerable, protection measures must
be put into practice.

We base our deÞnition of disclosure on the concept of re-identiÞcation.
Therefore by disclosurewemean a correct record re-identiÞcation opera-
tion that is achieved by an intruder when comparing a target individual in
a sample with an available list of units that contains individual identiÞers
such as name and address (see Willenborg and de Waal, 2001).

Even when attention is focused on re-identiÞcation disclosure, differ-
ent approaches to risk assessment can be pursued. For instance, global
risk measures can be deÞned that allow us to screen out unsafe data re-
leases; see, for example, Fienberg and Makov (1998), Duncan and Lam-
bert (1989), Bethlehem, Keller and Pannekoek (1990), Lambert (1993),
Skinner and Elliott (2002), and Carlson (2002). Alternatively, individual
or combination-level risk measures, as deÞned in Benedetti and Fran-
coni (1998), Skinner and Holmes (1989), Carlson (2002), and Elamir and
Skinner (2004) among others, can be exploited to identify and protect un-
safe records before the microdata Þle is released. A routine for comput-
ing a measure of individual risk of disclosure is now implemented in the
software �-Argus, developed under the European Union project CASC
on Computational Aspects of Statistical ConÞdentiality. For a compre-
hensive approach that integrates both individual and global measures, see
Franconi and Polettini (2004).

In social surveys, the observed variables are frequently categorical in
nature, and often comprise publicly available variables, such as sex, age,
and region of residence. Variables such as these that may allow identiÞ-
cation and are accessible to the public are referred to as key variables. In
such a framework, risk is usually deÞned as a function of combinations of
values of key variables. These combinations correspond to a contingency
table built by cross-tabulating the key variables. Records presenting com-
binations of key variables that are unusual or rare in the population clearly
have a high disclosure risk, whereas rare or even unique combinations in
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the sample do not necessarily correspond to high risk individuals.
Benedetti and Franconi (1998) introduced a Bayesian framework to

estimate a record-level measure of re-identiÞcation risk (for a general
Bayesian formulation of re-identiÞcation, see Fienberg andMakov, 1998).
They noticed that ���� is the probability of re-identiÞcation of individ-
ual � in cell �, � � �� � � � � �, when �� individuals in the population are
known to belong to this cell. In order to infer the population frequency ��
of a given combination from its sample frequency ��, they then focused
on the posterior distribution of �� given ��. Finally, they deÞne what
we refer to as the Benedetti-Franconi risk as the expected value of ����
under this distribution.
This proposal aroused a large debate that resulted in a series of pa-

pers by Di Consiglio, Franconi and Seri (2003), Polettini (2003) and
Rinott (2003). In this paper we analyse a model proposed in Polettini
and Stander (2004), that we refer to as Model I. This model is based on
the one discussed by Bethlehem, Keller and Pannekoek (1990). We then
introduce an extension to Model I, that we refer to as Model II.
For each model we present all the relevant computations to derive

the posterior distribution1 of the population frequency for each combina-
tion of values of the key variables given the observed sample frequencies,
������� � � � � �� �. Knowledge of this distribution enables us to obtain suit-
able summaries that can be used to estimate the risk of disclosure; one
such summary is E ��������� � � � � ���, but different summaries, such as
the mode or the median, can offer better performance. The methodol-
ogy adopted in the paper follows a superpopulation approach similar to
that used in Bethlehem, Keller and Pannekoek (1990), where a Poisson-
gamma model is Þrst proposed; Skinner and Holmes (1998) suggest in-
stead using a Poisson-lognormal model. A different, yet related procedure
is described in Carlson (2002) and Elamir and Skinner (2004).
The paper is organised as follows: we begin by introducing some no-

tation in Section 2; in Section 3 we discuss the data set that we use to
assess the risk estimates that can be obtained under our approach. The
data consist of an artiÞcial sample, drawn from the 1991 Italian Census

1Here and in the sequel we use the compact notation ��� to denote the probability
mass or the probability density function of a random variable � .
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data according to the sampling scheme of the Labour Force Survey, so that
we know the population frequencies. In Section 4 we present Model I. In
Section 5 we give all the relevant computations to obtain the posterior
distribution ������� � � � � �� � under Model I, whereas in Section 6 we de-
rive the marginal law of �� and the associated log-likelihood under the
same model. In Section 7 we present Model II, which is a reÞnement
of Model I. In this section we also derive the posterior distribution of ��
given ��� � � � � �� , the marginal law of �� and the associated log-likelihood
under Model II. In Section 8 we discuss our approach to estimating the
risk of disclosure, and in Section 9 we present the estimated risks obtained
fromModel I and Model II. Finally, Section 10 contains some concluding
remarks and some suggestions about further models that could be used for
disclosure risk estimation.

2. Some notation

Let the microdata Þle be a random sample of size 	 drawn from a Þnite
population of
 units, where
 is assumed known. For a generic unit � in
the population, we denote as �� the sampling design weight, that is the re-
verse of the probability that � is included in the sample. We shall consider
the contingency table obtained by cross-tabulating the population and the
sample data according to a predeÞned set of key variables. This operation
deÞnes a total of� cells. We shall denote the set of records in the sample
that belong to the �-th cell as ��.
Let

�� �  �a member of the population falls into cell �� (1)

and

�� �  �a member of population cell � falls into the sample� � (2)

� � �� � � � ��.
As we want to infer the population frequencies from the sample fre-

quencies, a distribution of interest is ������� � � � � ���. This allows us to
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compute the risk of disclosure for cell �

�� � �

�
�

��

���� ��� � � � � ��
�
� (3)

3. The data

The data that we consider are an artiÞcial sample of 	 � ����	

records drawn from the 1991 Italian Census data according to the com-
plex sampling scheme of the Labour Force Survey, as described in Di Con-
siglio, Franconi and Seri (2003). This is a widely used, unequal probabil-
ity, sampling scheme.
The data come from four administrative Italian regions, namely Cam-

pania, Lazio, Val d�Aosta and Veneto. The total number of individuals
in the population from these four regions is 
 � �����
��
�. Among
the many variables collected in the Census, we chose the following as
key variables: sex (2 categories), age (14 categories), region of resi-
dence (the 4 regions just mentioned), position in profession (14 cate-
gories) and relationship with the head of the household (13 categories),
giving� � 
����������� � 
�����. Since this is an instance where
the population cell frequencies �� are known, the data allow the proposed
procedure to be assessed by comparing known population quantities with
their corresponding estimates.

4. DeÞning the model

Our approach to risk estimation is based on a Bayesian hierarchical
model. In order to estimate (3), we need to deÞne a model that allows us
to derive ������� � � � � �� �.
We assume that the ��s are drawn independently from a gamma��� ��

distribution:

���� �
��

���
����� ����� �

in which ��� is the gamma function ��� �
��
�

�������d�. To ensure
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that �
���

��� ��

�
� 
 , we impose the constraint that �

���

��� ��

�
�

�, from which it follows that � � ��. With this constraint we obtain that
� ���� � ��� and Var���� � �������.
We assume that given ��, the ��s are drawn independently from a

Poisson�
��� distribution. Therefore the probability mass function of
�� � �� is:

������� �
����� �
���

��

���
�

Next, we assume that the ��s are drawn independently from a beta���� ���
distribution:

���� �
�	���� ��� ���


���

����� ���
�

in which ����� ��� is the beta function

����� ��� �

� �

�

�	������ ��
���d� �
��������

��� � ���
�

Finally, we assume that conditionally on the other random variables in
the model, the observed sample cell frequencies are drawn independently
from a binomial���� ��� distribution:

������� ��� ��� �
���

������ � ����
���� ��� ���

����� �

which does not depend on ��.
Overall, this model, that we refer to as Model I, takes the following

form:

�� � gamma������� �� � �� � � �� � � � ��

����� � Poisson�
���� �� � �� �� � � �

�� � beta���� ���� � � �� � �

������ ��� �� � binomial���� ���� �� � �� �� � � � � ���

(4)

independently across cells.
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5. Computation of ������� � � � �� �

The derivation of the laws ������� � � � � �� � is performed in several
stages. First we note that the independence assumption allows us to write
������� � � � � �� � � �������.

For simplicity of notation we now drop the subscript �; the Þrst step
in obtaining the law �� �� � is to use the following integral representation:

�� �� � �

� �

�

� �

�

�� ��� �� ������� ������ �d� d�� (5)

which holds since the integrand simpliÞes to ��� �� ��� �. In the next sec-
tions we derive explicit formulations for the elements that appear in for-
mula (5). We shall make considerable use of the hypergeometric function
(see Abramowitz and Stegun, 1965) which in its integral representation is
deÞned as:

���������� �� �
���

����� ���

� �

�

������� ��������� �����d��

(6)
for ���� � ���� � �.

5.1. Obtaining ����� ��

We begin by using Bayes� theorem to write

����� �� � �� ��� �������

� �� ��� ����� by the prior independence of � and ��

So we need to obtain �� ��� ��.
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5.2. Obtaining �� ��� ��

To obtain �� ��� �� we proceed as follows:

�� ��� �� �
��
���

�� ��� �� ���� ��� ��

�
��
���

� �

� ��� � ���
�� ��� ��������� �
���

� �

given the constraint � � �

�
������

� �

��
���

��� ������
���

�� � ���

�
������

� �
�
�����������

� ����� �
����

� �
� � � �� �� � � � �

by changing the variable in the summation.

Hence � ��� � � Poisson�
���. From �� ��� �� it is straightforward to
compute �� ���, a result that we shall need soon.

5.3. Obtaining �� ���

To obtain �� ���, we write

�� ��� �

� �

�

�� ��� �����d��
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using the results of the previous paragraph we have

�� ��� �

� �

�

����� �
����

� �

��

���
��������d�

�
�
���

� �

��

���

� �

�

���������������d�

�
�
���

� �

��

���

�� � ��

�
�� �����

�
�� � ��

����� � ��

�
�


�� �

���

�


�� �

��

� (7)

� � �� �� � � � � where we write � � � �� � ��.
In fact, if � � � is an integer, this is a negative binomial distribution,

representing the probability that � tails are thrown before the �th head,
where  �head� � ���
�� �� � ����
�����.

5.4. Obtaining �� �

The marginal of � takes a similar form:

�� � �

� �

�

�� ������d��

substituting the expressions for �� ��� and ��� deÞned in (4) we obtain:

�� � �

� �

�

�� ������d�

�

� �

�

���� �
���

� �

��

���
��������d�

�

�

� �

��

���

� �

�

��������������d�

�

�

� �

��

���

�� � � �

�
 � �����

�
��� � �

����� � ��

�
�


 � �

���




 � �

��

� � � �� �� � � � �
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5.5. Returning to ����� ��

Now that we have �� ��� ��, we can easily obtain ����� ��:

����� �� � �� ��� �����

� ����� �
����

� �

��

���
��������

� ��������������� after some simpliÞcation�

From the previous equation we can immediately recognize that ���� � �
gamma�� � ��
�� ��, from which we obtain the full form of the law:

����� �� �
�
�� �����

�� � ��
���������������� � � ��

5.6. Obtaining ���� �

The next ingredient that we require for the calculation of �� �� � is
���� �. It turns out that this requires the hypergeometric function. We
begin simply:

���� � � �� ������

�
�� � ��

����� � ��

�
�


�� �

���

�


�� �

��
�	����� ��
��

���� ��

�
�	������� ��
��

�
�� �����
� � � � � ��

We need the multiplicative normalizing constant �:

� �

	� �

�

�	������� ��
��

�
�� �����
d�


��
� (8)
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If we make the following substitutions into the hypergeometric func-
tion (6):

� � � � � 	 �

� � �� � 	 � and � � �

� � �� �� � 	 � and � � �

� � �



�
	 �

we obtain after a little simpliÞcation

���

�
� � �� �� � � �� �� � ��




�

�

� ����
��� �� ��

��� �����

� �

�

�	������� ��
��

�
�� �����
d��

so that

� � ����
��� �� ��

��� �����

�

���

�
� � �� �� � � �� �� � ���

�

� �
If we now write


��� �� �� �� � ���

�
� � �� �� � � �� �� � ��




�

�
(9)

for simplicity of notation, we obtain

� � ����
��� �� ��

��� �����

�


��� �� �� ��
(10)

and so

���� � �
������� �� ��

��� �����
��� �� �� ��

�	������� ��
��

�
�� �����
� � � � � ��

The Þnal ingredient in the calculation of �� �� � is �� ��� �� ��.
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5.7. Obtaining �� ��� �� ��

By Bayes� theorem we have

�� ��� �� �� � �� ��� �� ��
�� ��� ��

�� ��� ��
� �� ��� �� ��

�� ���

�� ��� ��
�

since given �, � is independent of �.

Using the expression obtained above for �� ��� �� we Þnally get:

�� ��� �� �� �
� �

� ��� � ���
�� ��� �����

�����
���

� �

� �

������
����

�
��� ������
��������������

�� � ���
�

� � �� � � �� � � �.

We now have everything that we need to Þnd �� �� �.

5.8. Putting everything together to obtain �� �� �

In Section 5 we wrote

�� �� � �

� �

�

� �

�

�� ��� �� ������� ������ �d� d��
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So substituting the above results for �� ��� �� ��, ����� �� and ���� � we ob-
tain

�� �� � �

� �

�

� �

�

��� ������
��������������

�� � ���

�
�� �����

�� � ��
�

����������������
�	������� ��
��

�
�� �����
d� d�

�

����

�� � ����� � ��
�� �

�

� �

�

�	������� ������
�����������������d� d�

�

����

�� � ����� � ��

� �

�

��������������d��� �

�

�	������� ������
��d�

�

����

�� � ����� � ��

�� � � �

�
 � �����
���� �� � � � � ���

Substituting in for � from (10) we get

�� �� � �

���

�� � ����� � ��

�� � � �

�
 � �����
�

���� �� � � � � ������
��� �� ��

��� �����

�


��� �� �� ��
�

Writing the beta function in terms of gamma functions, rearranging the
terms and reintroducing the subscripts we Þnally get the following result.

Distribution 1 The probability mass function of �� given �� is

������� �
�������� � �� � ���

������ � ���
���� �� ��� ���


�����

�
 � ������
�

�� � ������ � �� � ���

��� � �� � ������ � �� � ��
� �� � ��� �� � �� � � � �
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6. Computation of ����

It is now straightforward to Þnd the marginal distribution �� � using the
expression for �� ���:

�� � �

� �

�

�� ������d�

�

� �

�

�� � ��

����� � ��

�
�


�� �

���

�


�� �

��
�	����� ��
��

���� ��
d�

�
��� ����
 �

����� � ������ ��

� �

�

�	������� ��
��

�
�� �����
d�

�
��� ����
 �

����� � ������ ��

�

�
�

by the deÞnition of � given in (8). Using the expression for � given in (10)
and after some simpliÞcation we Þnally have:

Distribution 2 The probability mass function of �� for � � �� � � � � � is

���� �
����

�������� ���

�



�

��� �� � ������ ���

��� � ����� � �� � ���

���� �� ��� ����

�� � �� �� � � �

This marginal distribution can be used for goodness of Þt purposes and to
compute the likelihood.

6.1. The log-likelihood function

In order to estimate the model parameters by maximum likelihood,
thus performing an empirical Bayesian (EB) analysis (see Efron and Mor-
ris, 1973), we can now consider the log-likelihood function of �, ��� � � � � ��
and ��� � � � � �� given data ��� � � � � �� . Up to an additive constant this can
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be written as

���� ��� � � � � �� � ��� � � � � ��� � �� ��� ���

�
��
���

	
��� ��� � ���� ��� ���� � ��� ��� ���

� ��� ��� � ���� ��� ��� � �� � ���� �� ����

� ��� ���

�
� � ��� �� � ��� �� � �� � ����




��

�

�

(11)

Model (4) is cell-speciÞc, because the parameters �� and �� are allowed
to depend on the cell �. To obtain maximum likelihood estimates of the
parameters, Polettini and Stander (2004) make the simplifying assump-
tion that �� � � � � � �� � � and �� � � � � � �� � �. This is a special
case of Model I, where

�� � gamma��� ��� �� � �� � � �� � � � ���

����� � Poisson�
���� �� � �� �� � � � �

�� � beta��� ��� � � �� � ��

������ ��� �� � binomial���� ���� �� � �� �� � � � � ���

(12)

independently across cells at all levels. Up to an additive constant, the
log-likelihood function (11) then becomes

���� �� �� � �� ���� ���� ��� ��� �� � ��� ���

�
��
���

	
��� ��� ��� � ��� ��� ���

� ��� ��� �� ���� �� ����

� ��� ���

�
� � ��� �� ��� �� �� ����




��

�

�

(13)

7. An extension of Model I

Model (12) has the drawback that all cells having the same sample fre-
quency �� will have the same risk, since the posterior distribution �������
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only depends on cell � through ��. This is not a desirable feature, as we
want to be able to classify records � sample uniques, for example � into
safe and unsafe.
We decided to modify the model estimated in Polettini and Stander

(2004) for several reasons. First, we wanted to deÞne the model so that the
risk was cell-speciÞc; secondly, we wanted to make use of the sampling
design weights that are released with the data. For this aim we introduced
the ��� used by Benedetti and Franconi (1998) and deÞned as

��� �
���
����

��

� (14)

where, as mentioned in Section 2, �� is the sampling design weight at-
tached to record �. Finally, we wanted to account for the large number
of empty cells: in practical applications there is indeed a large number
of empty cells, many of which derive from structural zeroes in the pop-
ulation contingency table. These are not accounted for by Model I. We
took account of these aspects by assuming that the ��s are drawn indepen-
dently from a mixture of a beta distribution and a distribution with point
mass at zero, with weight  	 ��� ��.
Model II takes the form:

�� � gamma������� �� � �� � � �� � � � ���

����� � Poisson�
���� �� � �� �� � � � �

�� �  beta������ ���� ����� � ���  � Æ�������� �� 	 ��� ���

������ ��� �� � binomial���� ���� �� � �� �� � � � � ���

independently across cells, in which the delta function Æ��� is such that
Æ������ � � and Æ������� � � for �� 	 ��� ��.
We have therefore imposed on the distribution of �� the constraint that

it has mean ���. That was achieved by setting �� � ���� and �� � ���� ����
for some unknown positive parameter �. Under this parametrisation,
the beta���� ��� is now located around the estimated ��� with variance
������ �������� �� and is thus cell speciÞc.
The weight  is not further speciÞed and so has to be elicited or esti-

mated. It is clear that when  � �, we recover Model I, if �� and �� are
as just deÞned.
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Besides returning a cell-speciÞc risk measure, this speciÞcation also
partially accounts for the presence of different sampling fractions in dif-
ferent cells, a characteristic that is typical of most sampling designs. In
our application, for instance, in order to obtain estimates that have ap-
proximately the same precision across region in the presence of both
small regions and large regions, the sampling fraction varies considerably
across regions.
It can be shown that the probability mass function ������� remains the

same as Distribution 1 with �� � ���� and �� � ��� � ���� for �� � �.
There is, however, a change to the marginal distribution of �� reported in
Distribution 2:

Distribution 3 The probability mass function of �� is now

���� �

�����
�����

 ���

�
�� ����� ���

�
��

�
� ���  � if �� � �

 ��	��������
������	����	��������

�
�
��

��� ���������	�������
���������	����

if �� � �,
� ���

�
� � ��� ���� � ��� �� ����

�
��

�
In fact we do not have the value of ��� for cells with �� � �; we will
discuss this further in Section 7.1.

7.1. The log-likelihood function

The log-likelihood ���� ��  � now takes the form� �
�	 ����

��� ����

�
� �� � number of non-empty cells� ������ � ���

in our application � � 
�� ��� and there are 
� ��� non-empty cells. As
mentioned in Section 7, we do not have ���s for cells with �� � �. To
overcome this, we set

������ � �� � ���� ���
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We adopted this choice because the histogram of the ���s corresponding
to cells with �� � � was clearly bimodal, with one mode centered on
���
� corresponding to cells connected with Val d�Aosta, and the other
centered on the lower ������ corresponding to cells connected with the
three other regions (the larger Campania, Lazio and Veneto). The Þrst
mode comprised ��� of the ��s, while the second mode comprised the
remaining ���. The charachteristics of the sampling design reported in
Section 7 imply that the ���s corresponding to cells connected with Val
d�Aosta are considerably greater than that for the three large regions.

8. Our approach to estimating ��

As mentioned, the risk of disclosure for records in cell � is deÞned
in terms of the posterior distribution of the population cell frequency ��
given the observed data, ��� ��� � � � � �� .
Under Models I and II, the assumption of independence allows us to

restrict attention to ������� to compute

�� � �

�
�

��

���� ��
�

�
��

����

�

!
�� ��� � !���� � (15)

where the conditional distribution ������� depends on the unknown pa-
rameters of the model.
Without further assumptions on the hyperparameters of the model, the

risk of disclosure for cell � cannot be evaluated under model (4), as the
risk depends on 
� � � unknown parameters, namely �, �� and ��, � �
�� � � � ��. Under model (12), knowledge of ���� may allow us to estimate
the unknown parameters of the model �, � and � from the data ��� � � � � ��
via an EB approach. The risk (15) is then estimated by plugging in the
estimates of the unknown parameters in the model.
As the results in Polettini and Stander (2004) illustrate, the EB ap-

proach does not work well under Model I. This is because the probability
mass function ���� tends to an improper distribution when � � �, so
that the likelihood function diverges when � tends to zero.
The same problem arises under Model II. For this reason in the present
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paper we adopt a fully Bayesian approach, therefore eliciting the prior
distributions completely, using the marginal ���� to assess our elicitation.
We set � � ���
, � � ���� and � � �� in Model I and � � ���,

� � �� and  � ��	 in Model II.

9. Results

We compare the performance of the two models discussed above by
using the data described in Section 3. As an assessment of the procedure,
we show in Figure 1 the estimated disclosure risk obtained using Model I
and Model II, plotted against the known disclosure risk ����. Model II

1   e−06 1   e−04 1   e−02 1   e+001 
  e
−

06
1 

  e
−

04
1 

  e
−

02
1 

  e
+

00

Val d�Aosta

1/True F

E
st

im
at

ed
 R

is
k

1   e−06 1   e−04 1   e−02 1   e+001 
  e
−

06
1 

  e
−

04
1 

  e
−

02
1 

  e
+

00

Other regions

1/True F

E
st

im
at

ed
 R

is
k

Figure 1: Scatter plots of the disclosure risks estimated using Model I (in
grey) and Model II (in black) against the true risk ����. The left panel is
for the Val d�Aosta region, while the right panel is for three large regions
Campania, Lazio and Veneto. Logarithmic scales are used for all axes.

offers some improvement over Model I. In general, we observe the desir-
able feature that high risks are generally no longer underestimated. There
is also a more appropriate spread in the estimated disclosure risk. Small
risks tend to be overestimated, although using Model II can reduce the
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extent of overestimation especially in the three large regions. Some bias
remains, especially for the large regions.
Following Forster (2005), we consider the procedure of risk assess-

ment as a classiÞer, deÞning a cell as unsafe if its risk is greater than ����.
Tables 1 and 2 show how the classiÞer performs under both models. It can
be seen that Model II is a great improvement over Model I.

�� � ���� �� � ����
��� � ���� 312 109
��� � ���� 0 0

Table 1: Performance of Model I as a classiÞer

�� � ���� �� � ����
��� � ���� 231 5
��� � ���� 81 104

Table 2: Performance of Model II as a classiÞer

10. Conclusion and discussion

In order for Statistical Agencies to perform risk assessment and data
protection, measures of disclosure risk are needed. These measures can
be used to screen out unsafe records and apply protection selectively. The
results reported in this paper indicate that the proposed methodology is
sensible; experiments not reported in this paper also show that Model II
offers some improvement over the risk estimation procedure currently
implemented in the software �-Argus (see Franconi and Polettini, 2004).
Both the models that we have studied assume independence across

cells, although centering the distribution of the ��s on ��� relaxes this as-
sumption. Indeed the ���s depend on calibrated sampling design weights
(see Deville and Särndal, 1992), so that effectively Model II takes account
of the association structure of the population contingency table on which
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the sampling weights are calibrated through the prior distribution on ��.
We believe that further improvements can be achieved by making full use
of the structure of the contingency table. Polettini and Stander (2004) sug-
gested a Dirichlet-multinomial-multinomial framework for this. Again,
the problem of eliciting hyperparameters arises. For this model it is not
possible to obtain the corresponding conditional and marginal distribu-
tions in closed form and so inference has to be performed using Markov
chain Monte Carlo simulations. We have already gained some experience
with this model, the results from which seem quite promising. We plan to
report this in full detail in another paper.
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