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Summary:Data fusion consists of merging information coming from twodifferent sur-
veys. The first one is called reference or donor survey while the second is called punctual
or receptor survey. Such two independent surveys have a block of common variables that
is used as a bridge between them. The aim is to complete the receptor survey exploit-
ing information acquired from the donor one, and file grafting is commonly used for
this aim. As file grafting is based on Principal Component Analysis, it does not con-
sider possible dependency structure among the variables. In this work we present a
new methodology for data fusion based on theConstrained Principal Component Anal-
ysis(CPCA) technique. The proposal allows to impute the missing information into the
second survey taking into account knowledge about the relationship structure among
variables.
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1. Introduction

In recent years, there is a growing interest in methodologies aiming at
combining different sources of information, usually from several surveys.
Parallel questionnaires, panel survey, tentatives of enriching basic surveys
through specific questionnaires (Santini, 2001) may often require such
techniques usually named as data fusion (Aluja-Banetet al. 2007).

Data fusion, also known as statistical matching or file grafting, in-
volves the imputation of a complete block of missing variables in inde-
pendent data sets. It consists of matching two already held surveys in
order to make it possible to transfer part of the informationcontained in
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one survey to a second one. The first survey is called reference survey
(donor matrix); the second is called punctual survey (receptor matrix).
Data fusion allows us to treat data coming from the two distinct surveys
as a whole. These methods found some applications in media studies
(Rius et al., 1999; Lejeune, 2001; Aluja-Banet and Thió, 2001), in web
data analysis, and also in national statistical institutes(D’Orazio et al.,
2006).

With the aim of determining the complete block of unobservedvalues
of a set of variables included in a first survey but not in a second, data fu-
sion can be approached by means of missing data imputation techniques.
Missing data of the receptor matrix will be imputed by exploiting infor-
mation coming from the donor matrix. To perform such an imputation a
set of variables in common to both surveys is required.

Different methodologies have been proposed in literature for data fu-
sion (see e.g. Little and Rubin, 1987; Schulte Nordholt, 1998; Saporta,
2002), and they can be classified in two families. A first group, explicit
model-based estimation methods, relies on finding amodelfor the vari-
ables to be imputed in the donor survey and on applying it for the receptor
survey. Explicit models usually exploit regression modelsand yield good
imputations. However, they underestimate the variance of the imputed
variables and their correlation coefficients (Shao and Wang, 2002).

The second group includes the so-calledimplicit models for impu-
tation. In such a case, for each statistical unit of the receptor survey,
one or more donor units are selected. The values of the donor units are
then imputed to the receivers. Among the implicit methods, file grafting,
based on Principal Component Analysis (PCA), is one of the most largely
used. This method aims at defining a common subspace onto which to
project the statistical units coming from the two surveys. Such subspace
is constructed through aPCAperformed on the common variables of the
reference survey. It is well-known that thePCAanalyzes the correlation
structure, and, in this sense, all the variables play a symmetric role, as-
suming an interdependence structure among them. However, in sociolog-
ical and economic theories some relationships are given andwell-known,
and hence somea priori knowledge on dependency structure among the
X andY variables is available.
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In order to avoid the above-mentioned problems, we propose afile
grafting technique that combines the explicit and implicitapproaches,
and we call itNon Symmetrical Grafting(NSG). The proposed method
exploits the non symmetricalPCA to explore the dependency structure
of the data, i.e. theConstrained Principal Component Analysis(CPCA)
technique (D’Ambra and Lauro, 1982). TheNSGalgorithm projects in-
dividuals belonging to different surveys onto the same subspace, deter-
mined through the non symmetricalPCA. This projection is made by a
linear multiple regression. In such a space, distances among individuals
belonging to the different surveys are evaluated, and for each statistical
unit of the receiver survey, the “missing values” are imputed using the
nearest neighbor donors.

The paper is organized as follows. In Section 2 we present themain
ideas about data fusion and models for imputation; in Section 3 the file
grafting is described. In Section 4 the proposed Non Symmetrical Graft-
ing procedure along with details concerning the imputationmethods. In
Section 5 some issues related to validation are discussed. In Section 6
we discuss the main results of a simulation study, and some final remarks
conclude the paper.

2. Data fusion and imputation models

Data fusion is generally aimed at combining data coming fromsev-
eral surveys. In this paper, we consider its simplest case, called unilateral
fusion, in which there are only two data sets: the donor one that is com-
plete, and the other one with a block of missed variables (recipient data
set).

More precisely, the donor survey contains information about a set of
p+k = q variables observed onn0 subjects; the recipient survey, contains
information about a set ofp + j = z variables observed onn1 subjects.
In both surveys a set ofp variablesX is in common. We denote withX0

the set of common variables referred to the donor survey, andwith X1 the
other one referred to the receiver survey. Analogously we denote with
Z1 the j specific variables of the receptor survey, withY0 thek specific
variables of the donor survey and withY1 the specific variables to be
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imputed. The aim is to fill the hyphened part of the second datamatrix.
We use the donor survey (X0;Y0) to impute the set ofk variables not
observed in the receiver survey (Fig. 1).

Figure 1. Blocks of shared and unshared information.

Data fusion can be considered as a particular kind of missingdata
imputation problem. In such a case, the missing values correspond to
variables missing by design and a complete block of information should
be imputed (Aluja-Banetet al. 2007). In this framework, different ap-
proaches can be adopted. In the class of explicit models, a very simple
imputation procedure relies on a linear regression models of Y onX, es-
timated on the available statistical units (namely, the donor data set), in
order to impute the missing values through the predicted valuesŶ. For
this purpose, the following conditions should be verified:i) regression
models should show a good fitting;ii) the relationships among predictors
X and response variablesY should be constant in both surveys;iii) the
partial correlation ofY givenX and the correlations among the predic-
tors should be equal to zero. More complex regression techniques could
be applied for data fusion. Barcena and Tusell (1999) defineda data fu-
sion procedure working with a multiple imputation via classification and
regression trees namedforest climbingalgorithm.
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However, such methods underestimate the true variance of the vari-
ables they are attempting to substitute. When regression models are used
for the treatment of missing values, a loss of variability ofthe genuine
values occurs (Little and Rubin, 1987). Indeed, one replaces unknown
values scattered around the regression hyperplane throughthe fitted val-
ues lying on the hyperplane (Barcena and Tusell, 1999). Furthermore,
with these methods, the correlation structure of the imputed variables is
not well-reconstructed (Shao and Wang, 2002).

Another approach to data fusion relies on the use of theEM algorithm,
that provides an iterative way to maximize the likelihood function of in-
complete data (Dempsteret al., 1977). In such a case strong assumptions
on the likelihood and on the generating mechanism of the dataare re-
quired. However, data imputed via EM algorithm also suffer same lack of
variability with respect to imputed values through regression models. An-
other method belonging to the explicit models is themultiple imputation
based on the Bayesian framework (Rubin, 2003), that allows us to simu-
late the posterior distribution of the missing values by imputing each data
with several values according to one or more estimation models. Even if
multiple imputation techniques could achieve correct variances, they are
really complex and time consuming (Saporta, 2002).

To overcome such problems, on the other hand, implicit modelmeth-
ods for missing data imputation have been developed in literature. A
very simple method that does not require assumptions on variable dis-
tributions or on relationship structure between the specific and the com-
mon variables is thehot deck imputation(Ford, 1980). In such a case,
the values of some statistical units of the complete survey (donors) are
copied and pasted on other incomplete statistical units (receivers). Ac-
cording to some notion of similarity based on the common variables, the
best donors are selected. Such methods are data-driven and distribution
free; they avoid incoherent estimations since the copied values belong to
real observations (Saporta, 2002). The combined use of hot deck impu-
tation through the nearest neighbor principle and of factorial techniques
as Multiple Correspondence Analysis or Principal Component Analysis
is the base of a reference data fusion procedure known asfile grafting
process (Aluja-Banetet al., 1995).
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3. File grafting for data fusion

File grafting technique essentially consists of two steps (Rius et al.,
1996): pre-grafting and grafting. The former is aimed at studying the
common variables and testing the common space stability in order to en-
sure the grafting feasibility. In this step, a subset of common variables
defining a similar subspace of representation for both data sets is identi-
fied. Such variables represent the “bridge” to transfer information from
one data set to the other (namely, projecting on it).

In the second step, if we consider the case of all continuous variables,
the actual graft is performed through a singular value decomposition of
X0, X0 = V0Λ0U

′

0
. The statistical units are represented in theU0 basis

with coordinatesΨ0 = X0U0, and the elements of the second data set
X1 aregraftedin the same reference basisU0. That is, the individuals of
X1 are projected as supplementary points with coordinatesΨ1 = X1U0.

To perform file grafting the assumption of stability of the relationships
among variables is required (Bonnefouset al., 1986). This latter assump-
tion allows us to define a common space on which to represent the whole
information of both data sets.

Once all the individuals of the two surveys have been projected on the
previously defined subspace, for each individual of the receiver matrixX1

a donor(s) having the closest profile with respect to the common variables
is selected. Thenearest neighborsto thei-th unit of the receptor survey
are those individuals of the donor survey having the minimumdistance
in the common space. In the data fusion original proposal, the nearest
neighbor(nn) algorithm has been applied (Bakeret al., 1989); a modi-
fied version (Aluja-Banetet al., 2001) exploits and applies thek-nearest
neighbors(knn) algorithm (Fukunaga and Narendra, 1975). Finally, miss-
ing data are imputed by hot deck imputation (Ford, 1980).

After the imputation it is necessary to measure the precision of the
performed data fusion. One way consists of carrying out a self-imputation
of Y0 variables upon the same individualsX0. In such a case the observed
values can be compared with the imputed ones by the indexRy (Aluja-
Banetet al., 2001):
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Ry =
tr

[
(Y0 − Ỹ0)

′(Y0 − Ỹ0)
]

tr
[
(Y0 − Ȳ0)′(Y0 − Ȳ0)

] . (1)

TheRy index is the ratio of the sum of squared errors in the case of
file grafting imputation and sum of squared errors when one isimputing
by the simple mean of the variable. When theknnalgorithm is used in the
fusion process, theRy index could be exploited to determine the value of
k. EvaluatingRy for the increasingk and plottingRy as a function ofk,
the optimumk corresponds to the minimum value ofRy.

4. Non Symmetrical Grafting for data fusion

The descriptive factorial analysis commonly used for file grafting (e.g.
PCA, MCA,) do not imply anya priori knowledge about the phenomenon
under study. However, in many cases of sample survey data,a priori in-
formation about different roles of the variables may be available or known
by the specific literature. In the same survey a dependence structure be-
tween two sets of variables often may be reasonably hypothesized (e.g.
income and number of the family member affect the consumptions and
savings). If a set of variables (dependent variables) depends on another
(independent variables) we can use this information to improve the data
fusion process. In order to build a common space on which projecting
information from the two surveys, we propose the use of theConstrained
Principal Component Analysis(CPCA) technique.CPCAconsists of car-
rying out a PCA of theY ’s image projected onto the common variables
subspace through a suitable orthogonal projection operator.

Let X andY be the two blocks of centered and scaled variables ob-
served on the samen units which identify two sub-sets. The goal of
CPCA is the analysis of the relationship of theY block with respect to
theX block in terms of principal components associated with the latter
block. Letℜq be thep + k dimensional vectorial space, and letℜp be the
vectorial sub-space ofℜq generated by the columns ofX, and consider
the image ofY in the sub-spaceℜp:
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Y
∗ = PXY, (2)

i.e Y
∗ is the projection ofY in ℜp through the orthogonal projection

operatorPX = X(X′
X)−1

X
′. TheCPCAanalysis consists on a singular

value decomposition ofY∗,

Y
∗ = V

∗
Λ

∗
U

′∗. (3)

In such a case we represent the row elements in theU
∗ basis, with coor-

dinate
Ψ

∗ = X(X′
X)−1

X
′
YU

∗ = Y
∗
U

∗ (4)

Note that, asY∗ = PXY = X(X′
X)−1

X
′
Y = Xβ̂ with the β̂ the usual

OLS estimate, theCPCA is equivalent to the singular value of the pre-
dicted value ofY through the regressorsX.

Hence, exploiting the properties ofCPCA and the characteristics of
file grafting procedure we propose a three-step procedure that we call Non
Symmetrical Grafting. In the first step, as in the imputationby regression
models, a subset of theX must be selected; in the second step the file
grafting throughCPCA is performed, while in the third step the missing
variables are imputed via hot deck imputation.

4.1. Building the basic matrix

In order to usea priori information for grafting, we should identify the
common variables influencing the specific variables to be imputed. In
other words, a subset of theX variables on which we will perform the
CPCAhas to be selected. We propose to use thebackward elimination
criterion in regression analysis. Considering only the complete survey, we
fit a regression model for each variable belonging toY0 block onX0, and
we select the predictors through the backward elimination.Then, those
selected predictors, in common to both surveys, will be usedto build the
X matrix to be analyzed throughCPCA. This subset of variables will be
the basis of the common space onto which the incomplete survey will be
grafted.
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4.2. Graft in CPCA

Once the common space is built, in order to jointly representthe two data
clouds the grafting process consists of projecting the whole information
in such a common space. Generally, it is possible to perform the projec-
tion of additional individuals which are described by the matrix [Ys|Xs],
starting from the singular value decomposition of theCPCA. The coordi-
nates of the supplementary individuals will be:

Ψ
∗

s
= Xs(X

′

s
Xs)

−1
X

′

s
YsU

∗ = Y
∗

s
U

∗. (5)

However, in our case, the individuals to be supplementary projected
are lines of the receptor matrix, and hence theYs values we need in (5)
are missed. To overcome such a problem we propose to estimatethem
by means of a regression model for each variable, starting from the ref-
erence survey’s data. The usual OLS estimateβ̂0 = (X′

0
X0)

−1
X

′

0
Y0 is

exploited to perform a first imputation of the specific variablesŶ1 in the
punctual survey, with

Ŷ1 = X1β̂0. (6)

Then, for each individual of the receiver matrixYs, defined in (5), is
replaced by thêY1 values obtained from the application of the estimated
regression models. Hence, in the case of Non Symmetrical Grafting, the
coordinates of the supplementary points of the receptor matrix will be the
following:

Ψ
∗

1
= X1(X

′

1
X1)

−1
X

′

1
Ŷ1U

∗

0
= PX1

Ŷ1U
∗

0
(7)

whereU
∗

0
is the basis of theCPCAfor Y

∗

0
= PX0

Y0. This result solves
the problem of the projection in supplementary of the receptor matrix
individuals.

4.3. Imputation

Once all the individuals of the two surveys are projected in the same
subspace constructed through theCPCAtechnique, for each unit of the re-
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ceptor matrix we calculate the distances from the individuals of the donor
matrix. Adopting the Euclidean metric, among the donors we selected the
nearest neighbor(or the group ofk-nearest neighbor) of each receiver sta-
tistical unit. Then, for the imputation we exploit thehot deck imputation.

In the case of just onenearest neighbor, i.e. k = 1, the imputation
consists of copying the donor survey specific variable values given by the
best donor and imputing (pasting) them to the correspondingreceiver. On
the other hand, to obtain a smoother imputation thek nearest neighbor
algorithm can be adopted. In such a case, we calculate the average on the
specific variable values given by the optimalknndonors and impute it to
the considered receptor.

To determine the optimal value ofk in the nearest neighbor algorithm,
we proceed to the auto-imputation of the variablesY0 on X0 itself, in
order to be able to measure the produced error, and to evaluate theRy

index (Aluja-Banetet al., 2001).

5. Validation of imputation

Once the imputation is performed, it is necessary to validate the im-
puted data. In this respect, we have three validation levelsto measure the
imputation quality. The first consists of a global statistics comparison.
We perform an hypothesis testing for differences between the means of
the block of the imputed variables̃Y1 and the block of the donor matrix
specific variablesY0.

The second validation level tends to assess the homogeneityof im-
putations evaluating internal and external coherency of the imputed vari-
ables. The former is based on comparison between the correlation coeffi-
cient matrix ofỸ1 and the corresponding correlation coefficient matrix of
Y0. The latter tends to verify the homogeneity of the two cross-correlation
matrix ofX0 with Y0 and ofX1 with Ỹ1.

In order to evaluate both internal and external coherency, we use the
Fisher transformation of the correlation coefficient and weperform a set
of significant tests based on theZ distribution to verify the pairwise cor-
relation coefficient’s homogeneity. Hence, the imputed variables are co-
herent when a reasonable number of tests on the differences among the
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correlation coefficients is not significant for a givenp-value.
Finally, the third level of the validation process considers the accu-

racy of the imputation, where the term accuracy denotes the agreement
between the imputed values and the “real values”. The accuracy can be
measured evaluating the root mean square error (RMSE) among the im-
puted values̃Y1 and the “real values”Y1 , that we should have had if we
observed those variables in the punctual survey:

RMSE =

√
n−1

1 tr
[
(Ỹ1 − Y1)′(Ỹ1 − Y1)

]
. (8)

Obviously, it is possible to perform such a validation only in the case
of simulation studies, when the real values are known.

6. Simulation study

In this section we present the results of a simulation study performed
to compare the proposedNSGalgorithm with respect to both the classi-
cal file grafting methodology based onPCAand the multiple regression
imputation. We generate 1000 observations from two multivariate nor-
mal distributions; we generate a10 − dimensional standard normal as
X variables and a 5-dimensional standard normal asY. In the simu-
lation study we consider eight different covariance patterns. In the first
case, all the correlations have been set equal to zero (Sim.1), while in the
last case the correlation ofX, of Y and the cross correlations ofX and
Y vary between 0.2 and 0.6 (Sim.8). All the other intermediate cases
consider in turns different combinations of independent/dependentX, in-
dependent/dependentY, and independent/dependentY onX.

Furthermore, we adopt themissing data at random(MAR) approach,
i.e. we randomly delete 500 observations in theY matrix. For thePCA

file grafting and for theCPCA file grafting we consider also the case of
bothk = 1 andk > 1 for the nearest neighbor hot deck imputation, and
the possibility of using a limited number of eigenvectors depending on
the scree plot. For the three methods we performed tests to compare the
“true” variances with the variances of the imputed variables, the “true”
correlation coefficients with the ones obtained on the imputed variables
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(internal and external coherences), and finally we evaluated theRMSE

value for the five variables inY.
Looking at whole results we observed the presence of a trade-off be-

tween the external and internal coherence and theRMSE. Generally, the
better performances in terms ofRMSE are achieved by theknn hot deck
imputation (through bothPCA andCPCA) and by the regression. This
suggest us the idea that the hot deck imputation whenk is quite large is
a sort of nonparametric and local regression. On the other hand, the re-
gression shows the poorest performances in terms of external and internal
coherence, while our proposed procedure shows the best results.

As an example we present the main results of the two extreme cases
denoted bySim.1 andSim.8. Moreover, in the following tables̃Y1

PCA

andỸ
1
CPCA are the imputed matrices through the usual file grafting and

our file grafting using one nearest neighbor and all eigenvectors, respec-
tively. In the same way,̃Yk

PCA and Ỹ
k
CPCA denote the imputed values

using thek nearest neighbors and all the eigenvectors, whileỸREG is the
imputation through multiple regression. Finally, when thescree plot sug-
gested a reduced number of eigenvectors, we added this number to the
abbreviationsPCA andCPCA.

Table 1. Simulation study 1:Number of P-values less than 0.05 (over 5 tests)
for the variance ratio testsH0 : V ar(Y1) = V ar(Ỹ·)

For 5 variables P < 0, 05

Ỹ
1
PCA 4

Ỹ
1
CPCA 2

Ỹ
1
CPCA(2) 1

Ỹ
k
PCA 5

Ỹ
k
CPCA 5

Ỹ
k
CPCA(2) 5

ỸREG 5

In the first case (Tables 1–4), we note that the grafting methods with
theknn algorithm and the multiple regression perform in a similar way
in terms ofRMSE (Table 4). However, multiple regression presents the
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Table 2. Simulation study 1:Number of P-values less than 0.05 (over 10
tests) of tests for the homogeneity of the real correlation coefficients among the
Y1 and the correlation coefficients among the imputedỸ·.

For 10 couples P < 0, 05

Ỹ
1
PCA 0

Ỹ
1
CPCA 2

Ỹ
1
CPCA(2) 0

Ỹ
k
PCA 3

Ỹ
k
CPCA 2

Ỹ
k
CPCA(2) 4

ỸREG 9

Table 3. Simulation study 1:Number of P-values less than 0.05 (over 10 tests)
of tests for the homogeneity of the real cross-correlation coefficients amongX1

andY1, and the cross-correlation coefficients amongX1 and the imputed̃Y·.

For 50 couples P < 0, 05

[X1,Y1]vs[X1, Ỹ
1
PCA] 4

[X1,Y1]vs[X1, Ỹ
1
CPCA] 2

[X1,Y1]vs[X1, Ỹ
1
CPCA(2)] 3

[X1,Y1]vs[X1, Ỹ
k
PCA] 19

[X1,Y1]vs[X1, Ỹ
k
CPCA] 17

[X1,Y1]vs[X1, Ỹ
k
CPCA(2)] 22

[X1,Y1]vs[X1, ỸREG] 30

Table 4. Simulation study 1:RMSE values for different types of imputation
Ỹ·.

Y1 Y2 Y3 Y4 Y5

Ỹ
1
PCA 1.4334 1.3627 1.3584 1.3950 1.3343

Ỹ
1
CPCA 1.4454 1.4096 1.4393 1.4966 1.4043

Ỹ
1
CPCA(2) 1.4297 1.3372 1.3835 1.4307 1.4271

Ỹ
k
PCA 1.0629 0.9583 1.0530 1.0342 1.0484

Ỹ
k
CPCA 1.0668 0.9516 1.0288 1.0178 1.0665

Ỹ
k
CPCA(2) 1.0683 0.9589 1.0411 1.0248 1.0762

ỸREG 1.0657 0.9527 1.0247 1.0267 1.0583
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worst results in terms of both internal and external coherence (Tables 2
and 3). Note that, as all the correlations are equal to zero the PCA and
theCPCA perform similarly. Looking at tests for the variance compar-
ison between the real value of the variances ofY1 and the variances of
the imputed values (Table 1), bothknnalgorithm and multiple regression
imputation underestimate the original variances as all tests rejects the null
hypothesis of equal variances.

In the second simulation we report, bothX andY present a correla-
tion structure and there is also a cross-correlation structure between the
Y block and theX. Our proposed procedure with one nearest neighbor
works better than the other methods, especially in terms of internal and
external coherence and in terms of variance estimation. Note that with
respect to the same criterion, the worst imputation is obtained by multiple
regression, especially in terms of both homogeneity (external and inter-
nal) and variance reconstruction. Our method withk nearest neighbor
works similarly to regression. This is probably due to the large value of
k that transforms our method in a local regression. Being the simulated
relationships linear, these two methods provide similar results. Further
investigations should be done in case of nonlinear relationships, or to find
a way to limit the value ofk.

Table 5. Simulation study 8Number of P-values less than 0.05 (over 5 tests)
for the variance ratio testsH0 : V ar(Y1) = V ar(Ỹ·)

For 5 variables P < 0, 05

Ỹ
1
PCA 3

Ỹ
1
PCA(3) 3

Ỹ
1
CPCA 4

Ỹ
k
PCA 5

Ỹ
k
PCA(3) 5

Ỹ
k
CPCA 5

ỸREG 5
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Table 6. Simulation study 8:Number of P-values less than 0.05 (over 10
tests) of tests for the homogeneity of the real correlation coefficients among the
Y1 and the correlation coefficients among the imputedỸ·.

For 10 couples P < 0, 05

Ỹ
1
PCA 0

Ỹ
1
PCA(3) 4

Ỹ
1
CPCA 3

Ỹ
k
PCA 8

Ỹ
k
PCA(3) 8

Ỹ
k
CPCA 10

ỸREG 10

Table 7. Simulation study 8:Number of P-values less than 0.05 (over 10 tests)
of tests for the homogeneity of the real cross-correlation coefficients amongX1

andY1, and the cross-correlation coefficients amongX1 and the imputed̃Y·.

For 50 couples P < 0, 05

[X1,Y1]vs[X1, Ỹ
1
PCA] 7

[X1,Y1]vs[X1, Ỹ
1
PCA(3)] 10

[X1,Y1]vs[X1, Ỹ
1
CPCA] 3

[X1,Y1]vs[X1, Ỹ
k
PCA] 25

[X1,Y1]vs[X1, Ỹ
k
PCA(3)] 35

[X1,Y1]vs[X1, Ỹ
k
CPCA] 15

[X1,Y1]vs[X1, ỸREG] 15

Table 8. Simulation study 8:RMSE values for different types of imputa-
tion Ỹ·.

RMSE
Y1 Y2 Y3 Y4 Y5

Ỹ
1
PCA 1.5002 1.5520 1.5203 1.5214 1.4517

Ỹ
1
PCA(3) 1.6046 1.5638 1.6094 1.5704 1.5881

Ỹ
1
CPCA 1.4434 1.3656 1.4138 1.4402 1.4368

Ỹ
k
PCA 1.1755 1.1358 1.1524 1.1773 1.1129

Ỹ
k
PCA(3) 1.2515 1.1784 1.2111 1.2260 1.1706

Ỹ
k
CPCA 1.1242 1.0695 1.0883 1.1164 1.0593

ỸREG 1.0657 1.0287 1.0441 1.0686 1.0526
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7. Final Remarks

Data fusion can be considered a particular kind of missing data im-
putation problem and, hence can be treat through several methodologies
depending on both the nature of the data and the correlation structure.

In our opinion, if a dependency structure among the common vari-
ables and the ones to be imputed is present, inimplicit model imputation
it is not sufficient to evaluate the closeness of donors only on the common
variable. In order to define the best donor(s) it is necessaryto consider
also the relationship structure among variables. In this sense, ourNSG
algorithm and multiple regression imputation take into account such a
dependency structure, in contrast with the usual file grafting. In addition,
with respect to the imputation by regression models our proposal works
better in reconstructing variances and covariances of the imputed vari-
ables. Indeed, the simulation study shows thatNSGalgorithm performs
better than multiple regression in terms of both homogeneity (internal and
external) and variance reconstruction.

More simulation studies will be performed to analyze how ourpro-
posal performs when nonlinear relationship structure are present, and fur-
ther works will be done in order to find a new criterion to select the num-
berk of nearest neighbor donors.
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