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Summary: In this paper we derive the observed information matrix forMUB models,
without and with covariates. After a review of this class of models for ordinal data
and of the E-M algorithms, we derive some closed forms for the asymptotic variance-
covariance matrix of the maximum likelihood estimators ofMUB models. Also, some
new results about feeling and uncertainty parameters are presented. The work lingers
over the computational aspects of the procedure with explicit reference to a matrix-
oriented language. Finally, the finite sample performance of the asymptotic results is
investigated by means of a simulation experiment. General considerations aimed at
extending the application ofMUB models conclude the paper.
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1. Introduction

“Choosing to do or not to do something is a ubiquitous state of ac-
tivity in all societies” (Louvieret al., 2000, 1). Indeed, “Almost without
exception, every human beings undertake involves a choice (consciously
or sub-consciously), including the choice not to choose” (Hensheret al.,
2005, xxiii).

From an operational point of view, the finiteness of alternatives limits
the analysis to discrete choices (Train, 2003) and the statistical interest in
this area is mainly devoted to generate probability structures adequate to
interpret, fit and forecast human choices1.

1 An extensive literature focuses on several aspects related to economic and market-
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Generally, the nature of the choices is qualitative (or categorical), and
classical statistical models introduced for continuous phenomena are nei-
ther suitable nor effective. Thus, qualitative and ordinal data require spe-
cific methods to avoid difficulties in the interpretation and/or loss of effi-
ciency in the analysis of real data.

In this area, we investigated a probability model that seems capable
to produce interpretable results and good fitting. The feasibility of effi-
cient maximum likelihood methods and the implementation of accurate
numerical algorithms are essential requirements in order to apply these
new models.

The paper is organized as follows: in the next section, we establish
notations for ordinal data and in sections 3-4 we introduce the logic and
the main properties ofMUB models (without and with covariates, re-
spectively). Then, section 5 presents the E-M algorithms steps to obtain
the maximum likelihood (ML) estimates of the parameters. In sections
6-8 we derive the information matrices while section 9 discusses the re-
lated numerical algorithms. A special emphasis has been devoted to the
minimization of the computation efforts to implement the formal results.
Section 10 investigates the possibility to make direct inference on the
MUB parameters when the model requires some covariates for a better
fitting and in section 11 we check the finite sample performance of the
asymptotic results presented in this work by means of a simulation study.
Some concluding remarks end the paper.

2. Ordinal data

Human choices are placed within a list of alternatives, that we may
call “items” or “objects”, as: brands, candidates, services, topics, sen-
tences, situations, teams, songs, recreation sites, colors, professions, etc.
From a formal point of view, the very nature of the items is not relevant,
although we need to specify them to relate human behavior to some se-

ing management: Franses and Paap (2001). In this regard, a relevant issue is the prob-
lem of discriminating and/or combiningstatedand revealed preferences, as discussed
by Louvieret al. (2000) and Train (2003, 156-160).
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lected covariates.
In our context, ordinal data (=ranks) are integers that express prefer-

ences or evaluations of a group of raters towards a well defined list of
items/objects/ services2. In this regard, we emphasize situations where
ordinal data are used both for preference and evaluation studies; these
contexts are substantially different but share so many structural similari-
ties to suggest common analyses.

More specifically, inpreference analysisthe ranks express the loca-
tion of an “object” in a given list. Instead, inevaluation analysisthe
ranks express the subject’s perceived level of a given “stimulus” (sensa-
tion, opinion, perception, awareness, appreciation, feeling, taste, etc.).

In essence, the main similarities among preferences and evaluations
experiments are the following:

• Both analyses are expressed by ordered integer values.

• The answer is a categorical variable transformed into an integer.

• Psychological, sociological, environmental effects influence (and
bias) the answers.

• The extreme answers are more reliable and persisting than the mid-
dle ones3.

• The answer is the result of a paired or sequential selection process.

Instead, the main differences among preference and evaluation exper-
iments are the following:

2 Ordinal data may be also generated by several different situations. Subjects may be
assigned to categories, as it often happens in Medicine, Psychology and Environmental
Sciences, for instance. Moreover, a continuous variable may be classified in classes and
then a sequential code is given to each class, as it is common in Marketing and Finance
researches.

3 Indeed, especially for those items that do not generate strong liking or disliking
feelings, it seems plausible to assume that the elicitation mechanism exhibits a greater
uncertainty. This fact can be easily shown if we consider, for instance, a repeated rank-
ing of several items by the same group of raters. While the extreme ranks are expected
to remain unchanged, it is very plausible that the intermediate ranks will change some-
where.
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• In preference analyses, the output is a set of related ordered re-
sponses: thus, we study only the marginal distribution of the pref-
erence towards a single object.

• The evaluations of several items are (generally) strongly correlated,
since they express a common (positive/negative) judgement towards
the problem at hand.

In order to avoid frequent repetitions, in the rest of this article, we will
limit the discussion to preference analysis although the approach and the
applications are by far more general than the preference context.

The problem is set as follows: we ask a group ofn subjects (=raters,
judges) to order a set ofm > 1 “objects”: O1, O2, . . . , Oj . . . , Om

giving order (=rank)1 to the preferred one, order2 to the second best,
. . . , orderm to the least preferred object. No ties are allowed.

The experiment produces an×m matrix of the assigned ranks to the
m objects (the columns) by then raters (the rows):




r1,1 r1,2 . . . r1,j . . . r1,m

r2,1 r2,2 . . . r2,j . . . r2,m

. . . . . . . . . . . . . . . . . .
rn,1 rn,2 . . . rn,j . . . rn,m




In this paper, we consider only the collection of ranks assigned by the
n raters to a prefixedOj = O object. Then, we may denote simply by
r = (r1, r2, . . . , rn)

′
the expressed ranking towards a prefixed objectO.

Indeed, we studyonly themarginal distributionof a multivariate random
variable generated by them-th observations of the previous matrix4.

We interpretr as anobserved sampleof sizen, that is the realiza-
tion of a random sample(R1, R2, . . . , Rn). This random sample is the
collection ofn independent and identically distributed discrete random
variablesRi ≡ R ∼ f(r; θ), where the probability (mass) function is
characterized by a parameter vectorθ.

4 We emphasize this point since it restricts and characterizes our approach with
respect to many different models for ordinal data presented in the statistical literature.
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3. A probability model for ordinal data

Many probability models and statistical tools have been proposed for
describing the ranking process and/or analyzing ranks data5. The issue of
ordinal data modeling is generally included in the domain of qualitative
and multinomial models6.

In this area, the standard approach is motivated by a generalized linear
model (GLM) developed by Nelder and Wedderburn (1972), McCullagh
(1980) and McCullagh and Nelder (1989). Generally, thedistributionor
the survival functionsare introduced as tools for expressing the proba-
bility mechanism that relates the ordered responses to some covariates,
via a latent variable which transforms continuous variables into discrete
responses.

Instead, our approach is motivated by a direct investigation of the psy-
chological process that generates the choice mechanism amongm alter-
natives. This approach has led us to a series of results7 which have been
conveyed into a final proposal defining a class of probability distributions

5 Among the several references, we list: Amemiya (1981); Maddala (1983); Agresti
(1984; 1996; 2002); Fligner and Verducci (1993); Marden (1995); Fox J. (1997, 475-
478); Lloyd (1999, 338-352; 355-367); Greene (2000, 875-880); Mittelhammer et al.
(2000, 584-585); Power and Xie (2000), 201-222; Cramer (2001); Franses and Paap
(2001, 112-132); Dobson (2002, 143-148); Woolridge (2002, 505-509); Davison (2003,
507-510). For discrete-choice models, we refer to: Agresti (2002, 298-300); Train
(2003, 163-168).

6 In most cases, the topics is discussed as a specification of qualitative unordered
models, also with some extreme position: “The application of ordered multinomial re-
sponse models seems to be the exception rather than the rule.”: Mittelhammer et al.
(2000, 585).

7 The starting point for this kind of models is a paper by D’Elia (1999; 2003a) where
an Inverse Hypergeometric (IHG) random variable has been introduced to explain the
sequential choice of several objects. Then, the need for a probability distribution with
an intermediate mode suggested the study of a shifted Binomial model: D’Elia (2000a;
2000b). Finally, in order to improve both the interpretation and the flexibility,MUB
models were proposed in 2003 and first published by D’Elia and Piccolo (2005a). Since
all the proposed models included subjects’ covariates, then thelogic of the GLM models
was exploited. Of course, most of these results may be generalized without substantial
modifications if we include in the models bothchoices’ covariatesandchooser’s co-
variates: Agresti (2002, 292).
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calledMUB models.
In essence, while most of the proposed models for ordinal data are

based on log-transformations of probabilities (distribution functions, ad-
jacent categories and continuation-ratio logits, etc.), we will model ex-
plicitly the probability of an ordinal choice, and then we will relate its
parameters to the subjects’ covariates.

In our opinion, a probability model for the random variableR should
be adequatefor representing the psychological choice mechanism,con-
sistentwith the ordinal feature of the data,parsimoniousin that it contains
as few parameters as possible, andrealisticandflexibleto be fitted to dif-
ferent empirical phenomena.

More specifically, one should consider that the rater choice may be a
thoughtfulor instinctiveone, and this choice may result from apairedor
sequentialcomparison of the objects8.

Anyway, the final choice is the result oftwo hierarchical steps:

– aglobaland immediate evaluation of the feeling (the subject agrees,
certainly disagrees or is indifferent);

– a local and reflective setting for expressing the final rank, within
the previous global assessment.

Several models satisfy these requirements; therefore, the choice mech-
anism is the result of afeelingtowards the object and theuncertaintyin
the choice of the rank. Of course, these components interact in the choice
mechanism with different weights.

In this respect, we notice that both feeling and uncertainty arecon-
tinuousand latent random variables, whereas ordinal data are expressed
as discrete responses taking a value in{1, 2, . . . , m}. Thus, to attain effi-
cient transformations of continuous variables into a discrete set, we need
some preliminary investigation about the nature of these components.

• Feelingis the result of a continuous random variable that becomes a
discrete one, since the subject is compelled to express the preferences into
m prefixed bins. Now, the judgement process is intrinsically continuous

8 It seems evident that the sequential choice is preferred for several items whereas a
paired choice is more useful for few items.



Observed information matrix for MUB models 39

and, since this perception depends on several causes, it can be assumed to
follow a Gaussian distribution.

We recall that alatent variable approachfor the analysis of ordinal
data9 assumes that the records are generated by an unobserved continuous
random variable (sayR∗), generally Normally distributed; then, a corre-
spondence with a discrete ordinal random variableR is given by means
of ordered threshold parameters10:

−∞ < R∗ ≤ α1

α1 < R∗ ≤ α2

. . . .
αm−2 < R∗ ≤ αm−1

αm−1 < R∗ < +∞

⇐⇒

R = 1
R = 2
. . . . . . . . . .
R = m− 1
R = m

Following this idea, a suitable model for achieving the mapping of
the unobserved continuous variableR∗ into a discrete random variable
defined on the supportr = 1, 2, . . . , m, may be introduced by theshifted
Binomial distribution11. Indeed, Figure 1 shows how, byvarying the or-
dered thresholds, a standard Normal random variable can be made dis-
crete, obtaining different features (mode, skewness, tails, etc.) that are
well fitted by a shifted Binomial random variable.

• Uncertaintyis a vaguer component that needs some clarification.
Indeed, uncertaintyis not the stochastic component related to the sam-
pling experiment (such that different people generates different rankings).
But, instead, uncertaintyis the result of several factors, intrinsically re-
lated to the choice mechanism, such as theknowledgeor ignoranceof the
problems and/or the characteristic of the objects, the personalinterestor

9 General references to latent variable models are Everitt (1984), Bartholomew
(1987) and Sammelet al. (1997). For ordinal data, the latent variable approach is
widely discussed by Moustaki (2000; 2003), Moustaki and Knott (2000), Jöreskog and
Moustaki (2001), Moustaki and Papageorgiou (2004), Cagnoneet al. (2004), Huberet
al. (2004).

10 The threshold parameters(α1, α2, . . . , αm−1) are also calledcutpoints, and it
is convenient to assume:α0 = −∞; αm = +∞. They are unobserved but may be
estimated by ML methods.

11 We prefer to work with theshiftedrandom variable since usually the choice set
{1, 2, . . . , m} is more common than the Binomial support, that starts with0.
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Figure 1:Shifted Binomial distributions generated byZ ∼ N(0, 1).

engagementin similar activities, objects, opinions, etc., thetime spentfor
elaborating the decision, thelazinessor apathyof the subject, and so on.

Under the circumstance that the subject shows a complete indiffer-
ence (=equipreference) towards a given item, then it seems appropriate
to model ranks by means of a discrete Uniform random variableU with
probability mass: function defined by:

P r (U = r) =
1

m
, r = 1, 2, . . . , m ,

and the choice is the result of a complete randomized mechanism where
the item has a constant probability to be given any rankr ∈ [1,m].

For this reason, we choose thediscrete Uniform distribution as a
building block for modeling the uncertainty in the ordinal modeling12.

Finally, we propose to take into account thecomposite nature of the

12 We remember that the discrete Uniform random variable maximizes the entropy,
among all the discrete distributions with finite support{1, 2, . . . , m}, for a fixedm.
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elicitation processby means of amixture model, where the feeling and
uncertainty components are adequately weighted13.

Thus, we assume that the rankr is the realization of a random variable
R that is aM ixture of aUniform and a shiftedBinomial random variable.

Formally, for a fixed and known integerm > 1, we define the (dis-
crete)MUB random variableR with parametersπ andξ, on the finite
support{r : r = 1, 2, . . . , m}, and denote it byR ∼ MUB(π, ξ), if and
only if its probability distribution is:

P r (R = r) = π

[(
m− 1

r − 1

)
(1− ξ)r−1ξm−r

]

︸ ︷︷ ︸
feeling

+(1− π)

[
1

m

]

︸ ︷︷ ︸
uncertainty

.

Sinceπ ∈ [0, 1] andξ ∈ [0, 1], the parametric space ofR is the unit square
[0, 1]× [0, 1].

TheMUB model turns out to be a flexible stochastic structure since
the distribution varies largely as the parametersπ andθ vary (D’Elia and
Piccolo, 2005a). In this regard, we list some features of theMUB distri-
bution which will be useful for our discussion:

• It may admit a mode at any value of the support{1, 2, . . . , m}.
• It is a symmetric random variable if and only ifξ = 1

2
.

• It is a reversiblerandom variable, since:

R ∼ MUB(π, ξ) =⇒ (m + 1−R) ∼ MUB(π, 1− ξ) .

• It is consistent with the hypothesis that the population is made by
two sub-groups of raters (an informed/reflexive set and a more un-
informed/instinctive one) and their relative ratio isπ/(1− π).

• It emulates many theoretical distributions:

– A Uniformdistribution, ifπ = 0;

13 Recent applications of mixture models to ranked data are discussed by Gormley
and Murphy (2006) with reference to college applications data; see also Marden (1995).
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– A Shifted Binomialdistribution, ifπ = 1;

– An Inverse HyperGeometricdistribution, if π → 1 and ξ
tends to0 or 1;

– A Normaldistribution, ifξ → 1
2

andm →∞;

For our purposes, the moments of this distribution are not relevant
since the sequence{1, 2, . . . ,m} is only aproxy for a qualitative order-
ing, and no metric property should be attached to these integer values.
However, in some contexts and for comparison purposes, it may be use-
ful to know that the first two cumulants14 of R are:

E (R) = π (m− 1)

(
1

2
− ξ

)
+

(m + 1)

2
;

V ar(R) = (m− 1)
{

π ξ (1− ξ) + (1− π)
[

m+1
12

+ π (m− 1)
(

1
2
− ξ

)2
]}

.

As far as the interpretation of the parameters of theMUB model is
concerned, we remember that theπ parameter measures the uncertainty
through the quantity:(1− π)/m, which is themeasure of the uncertainty
distributed over all the support. Also, the ratioπ/(1 − π) measures the
relative weight of the basic feeling and the uncertainty components, re-
spectively.

On the other hand, bothπ andξ are related to the liking towards the
object. The exact meaning ofξ changes with the setting of the analysis
and, being theMUB model reversible, it mostly depends on how the
ratings have been codified (the greater the rating the greater the feeling,
or viceversa). According to the context that we defined for the responses,
theξ parameter may be adegree of perception, ameasure of closeness, a
rating of concern, anindex of selectiveness, and so on.

14 Even thoughR has been introduced with reference to (qualitative) ordinal data, a
complete study of the first four cumulants of theMUB random variable is pursued by
Piccolo (2003b). Notice that some caution is needed when we compare ordinal data by
E (R) since, for a given expectation, many values of the parameters(π, ξ) are admissi-
ble. In fact, when bothπ andξ increase towards1, the mean valueE (R) converges to
1, and then theMUB model implies a greater preference for the given object. Thus,
it is not strictly correct to relate the expected preferenceonly to the parameterξ. For a
graphical evidence, see the next Figure 2.
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Indeed, the presence of both parameters in theMUB model produces
an extremely flexible tool for fitting real data sets and for explaining dif-
ferent judgement choices.

Of course, the introduction of theraters’ covariatesfor relating both
the feeling and the uncertainty to the subject’s characteristics improves
both the results and the interpretation. In this way, the covariates allow
to link the main features of the raters to the rank they assigned to a given
item; both the feeling and the uncertainty can be explained by means of
subjects’ specific covariates, yielding a deeper insight in the preference
data analysis. This allows a sound interpretation of the liking/disliking
behavior to be used for inferential and predictive purposes and/or for char-
acterizing meaningful subsets of the population.

In this regard, the standardGLM approach (where the inverse link
function explains the expectation of the relevant random variable via a
linear function of selected covariates15) cannot be pursued here. In fact,
for a givenm, several couples of different(π, ξ) generates the same ex-
pectation as long as they obey:

π

(
1

2
− ξ

)
=
E (R)− m+1

2

m− 1
.

To be explicit, Figure 2 shows some differentMUB models charac-
terized by the same expectation; in these comparisons, we selectedm = 9
and setE (R) = 6.

For these models, as detailed in Table 1, the mode (that is the most
probable value for the ordinal variableR) and the probability of values
around the expectation, that isP r (5 ≤ R ≤ 7), are completely different;
thus, one takes different decisions when faced with each of these four
models, although they have the same expectation16

15 Nelder and Wedderburn (1972); Agresti (2002, 116-117); Dobson (2002, 43-54).
In fact, our approach is more related to the class of general models discussed by Kinget
al. (2000, 348).

16 In this regard, we observe that the mode of theMUB distribution, that is:Mo =
1 + [m(1 − ξ)], coincides with the mode of the shifted Binomial component of the
mixture. Thus, the mode is more immediately related to the feeling measure.
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Figure 2:DifferentMUB models with constant expectation:E (R) = 6.

Table 1. Location measures for differentMUB models
Models E (R) Mode P r (5 ≤ R ≤ 7)

MUB(25
99

, 1
200

) 6 9 0.249

MUB(1
3
, 1

8
) 6 8 0.310

MUB(1
2
, 1

4
) 6 7 0.469

MUB(1, 3
8
) 6 6 0.728

It should be evident thatMUB models implied by a given expecta-
tion may be substantially different; thus, it seems preferable to look for
a link among model parameters and subjects’ covariates, without a direct
reference to the expectation of this random variable.
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4. MUB models with covariates

It is reasonable to assume that the main components of the choice
mechanism (that is, feeling and uncertainty) vary with the subjects’ char-
acteristics as, for instance, gender, age, income, profession, level of edu-
cation, etc. Thus, it seems worth relating these to subjects’ covariates by
means of an explicit modelling procedure17.

From a formal point of view, inMUB models with covariates we
will assume that theuncertaintyparameterπ is a function ofp subjects’
covariatesY1, Y2, . . . , Yp and/or, similarly, thefeeling parameterξ is a
function ofq subjects’ covariatesW1,W2, . . . , Wq. TheY ’s variables (or
a subset of them) may also coincide with theW ’s variables (or a subset
of them).

Then, in order to classifyMUB models according to the presence/
absence of covariates, we introduce the following terminology:

Models Covariates Parameter Parameter
vectors space

• MUB-00 no covariates θ = (π, ξ)′ [0, 1]× [0, 1]

• MUB-10 covariates forπ θ = (β′, ξ)′ Rp+1 × [0, 1]

• MUB-01 covariates forξ θ = (π, γ ′)′ [0, 1]× Rq+1

• MUB-11 covariates forπ andξ θ = (β′,γ ′)′ Rp+q+2

Suppose we have a sample of ordinal datar = (r1, r2, . . . , rn)′, and
assume that for each of then units we have several measurements on the

17 The problem of choosing the significant covariates for aMUB model is still open
since traditional correlation methods are not effective. In this regard, a study on asso-
ciation indexes and predictability measures for ordinal data might be fruitfully pursued.
Finally, some encouraging results has been obtained by tree-based methods as discussed
by Cappelli and D’Elia (2006a; 2006b).
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subjects summarized in the following matrices:

Y =




1 y11 y12 . . . y1p

1 y21 y22 . . . y2p

. . . . . . . . . . . . . . .
1 yi1 yi2 . . . yip

. . . . . . . . . . . . . . .
1 yn1 yn2 . . . ynp




; W =




1 w11 w12 . . . w1q

1 w21 w22 . . . w2q

. . . . . . . . . . . . . . .
1 wi1 wi2 . . . wiq

. . . . . . . . . . . . . . .
1 wn1 wn2 . . . wnq




.

To make the notation more compact, we introduce the variablesY0

andW0 that assume the constant value1 for all the sample units; they
specify the constants (baselines) of the model.

We denote byyi andwi, i = 1, 2, . . . , n thei-th row of theY andW
matrices, respectively, that is:

yi = (yi0, yi1, yi2, . . . , yip); wi = (wi0, wi1, wi2, . . . , wiq) ;

and let:

β = (β0, β1, . . . , βp)
′; γ = (γ0, γ1, . . . , γq)

′ .

In order to specify a correspondence among the real valuedY andW
and theπ ∈ (0, 1) andξ ∈ (0, 1) parameters, D’Elia (2003a) and Piccolo
(2003a) proposed a logistic mapping defined by:

(π | yi) =
1

1 + e−yi�
=

[
1 + e−

Pp
s=0 βs yis

]−1

;

(ξ | wi) =
1

1 + e−wi

=

[
1 + e−

Pq
t=0 γt wit

]−1

.

Notice that similar mappings18 might be investigated as, for instance,
theprobit function:Φ(z) = 1√

2 π

∫ z

−∞ e−
1
2

z2
and thecomplementary log-

log function: F (z) = exp{− exp(−z)}. However, in the following, we
will limit the study to the logistic function.

18 In this context the common considerations on the transformations in categorical
modeling apply; thus, logit and probit appear quite similar while complimentary log-
log should be an alternative when the impact of covariates is expected to cause some
asymmetric behavior in the response variable.
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Finally, the generalMUB model with covariates is explicitly defined,
for anyi = 1, 2, . . . , n, by the probability distribution:

P r (R = ri | β, γ) =
1

1 + e−yi�

[(
m− 1

ri − 1

)
(e−wi
)

ri−1

(1 + e−wi
)m−1 −
1

m

]
+

1

m
.

We again observe that this approach is logically related to GLM since
we relate the parameters of a model to subjects’ covariates. However, we
are not introducing alink functionbetween the expectation and the covari-
ates, and our probability distribution does not belong to the exponential
family. Indeed, the more relevant difference is that we are relating explic-
itly the parameters of the response distribution to the covariates while in
the GLM approach the relationship is established between a transforma-
tion of the distribution function and the covariates.

5. The maximum likelihood estimation via the E-M algorithm

In this section we discuss the computational steps involved in the E-M
algorithm19 for ML estimation of the parameters in theMUB model20.

The main advantage of the E-M algorithm forMUB models is that
the involved log-likelihood splits into two functions where the observed
and the unobserved quantities (that is the probabilityπ that the observa-
tion comes from one of the two sub-populations) are well defined and
neatly separated. Thus, it is possible to activate two alternating steps of
Expectation and Maximization converging to the ML estimate.

We denote byθ the parameter vector for allMUB models; thus,θ
consists of two elements in the case of aMUB model without covariates

19 A discussion of the E-M algorithm in a general statistical framework is contained
in McLachlan and Krishnan (1997) and Jorgenson (2002) and, for mixture models, in
McLachlan and Peel (2000).

20 The derivation of this algorithm for theMUB-00 model was obtained by D’Elia
and Piccolo (2005a), while the E-M algorithms forMUB-10 andMUB-01 models are
in D’Elia (2003b). Finally, the E-M algorithm for the generalMUB-11 model has been
fully developed by Piccolo (2003a). Notice that Tables2 − 5, here reported, correct
some misprints contained in Piccolo (2003a).
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and of two parameters vectors in the case ofMUB models with covari-
ates, as shown in the previous section.

First, we define the log-likelihood functioǹ(θ) of theMUB model
without covariates, that is:

`(θ) =
m∑

r=1

nr log {Pr (R = r|θ)}

=
m∑

r=1

nr log

{
π

[
b (r; ξ)− 1

m

]
+

1

m

}
,

wherenr are the observed frequencies of(R = r), r = 1, 2, . . . , m and
we denote by

b (r; ξ) =

(
m− 1

r − 1

)
(1− ξ)r−1ξm−r, r = 1, 2, . . . , m,

the shifted Binomial distribution.
The log-likelihood function of theMUB-10 model, where theπ pa-

rameter is explained by some covariates, that isπ = f (Y , β), is:

`(θ) = −
n∑

i=1

log
(
1 + e−yi�

)
+

n∑
i=1

log

(
b (ri; ξ) +

e−yi�

m

)
.

The log-likelihood function of theMUB-01 model, where theξ pa-
rameter is explained by some covariates, that isξ = g (W ,γ), is:

`(θ) =
n∑

i=1

log

{
π

[(
m− 1

ri − 1

)
e−wi
(ri−1)

(1 + e−wi
)m−1 −
1

m

]
+

1

m

}
.

Finally, if both theπ and theξ parameters are explained by covariates,
thenθ = (β′, θ′)′ andπ = f (Y ,β) andξ = g (W ,γ), and the log-
likelihood function of the generalMUB-11 model is:

`(θ) =
n∑

i=1

log

{
1

1 + e−yi�

[(
m− 1

ri − 1

)
(e−wi
)

ri−1

(1 + e−wi
)m−1 −
1

m

]
+

1

m

}
.
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All the steps required for the E-M procedures are reported in the fol-
lowing Tables 2–5, where we define the sample mean of the responses by
Rn =

∑n
i=1 ri/n. In order to stress the correspondence among the four

tables, we have left a blank line where a single step does not apply.

First of all, we present the algorithm in absence of covariates (MUB-
00: Table 2); then, the procedure is shown when only one set of covariates
is present (MUB-10: Table 3 andMUB-01: Table 4); finally, the general
MUB model when both the parameters are functions of two (different or
coincident) sets of covariates is presented (MUB-11: Table 5).

Table 2. E-M Algorithm for aMUB model without covariates.
MUB-00 Model with (π, ξ)

θ = (π, ξ)′ ; ε = 10−6; dim (θ) = 2.

` (θ) =
m∑

r=1

nr log

{
π

[
b (r; ξ)− 1

m

]
+

1

m

}
.

Steps

0 θ(0) =
(
π(0), ξ(0)

)′
=

(
1
2
, m−Rn

m−1

)′
; l(0) = `

(
θ(0)

)
.

1 b
(
r; ξ(k)

)
=

(
m−1
r−1

) (
1− ξ(k)

)r−1 (
ξ(k)

)m−r
, r = 1, 2, . . . , m.

2 τ
(
r; θ(k)

)
=

[
1 + 1−π(k)

m π(k) b(r;ξ(k))

]−1

, r = 1, 2, . . . ,m.

3 Rn

(
θ(k)

)
=

Pm
r=1 r nr τ(r;�(k))Pm
r=1 nr τ(r;�(k))

.

4 π(k+1) = 1
n

m∑
r=1

nr τ
(
r; θ(k)

)
.

5 ξ(k+1) =
m−Rn(�(k))

m−1
.

6

7 θ(k+1) =
(
π(k+1), ξ(k+1)

)′
.

8 l(k+1) = `
(
θ(k+1

)
.

9

{
if l(k+1) − l(k) ≥ ε, k → k + 1; go to 1;

if l(k+1) − l(k) < ε, θ̂ = θ(k+1); stop.
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=
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=

( m
−1

r i
−1

)(
1
−

ξ(
k
)) r

i
−1

( ξ(
k
)) m

−r
i
,
i
=

1,
2,

..
.,

n
.

2
π

(k
)

i
=

1

1
+

e−
y

i
�
(k

)
;

τ
( r i

;θ
(k

))
=

[ 1
+

e−
y

i
�
(k

)

m
b (

r i
;ξ

(k
)
)] −

1

,i
=

1,
2,

..
.,

n
.

3
R

n

( θ
(k

))
=

P n i=
1

r i
τ
(r

i
;�

(k
)
)

P n i=
1

τ
(r

i
;�

(k
)
)

.

4
Q

1

( β
(k

))
=
−

n ∑ i=
1

{ lo
g

( 1
+

e−
y i
�

(k
)
) +

( 1
−

τ
( r i

;θ
(k

)))
e−
y i
�

(k
)
} .

5
β

(k
+

1
) =

a
rg

m
a
x
�

Q
1

( β
(k

)) .

6
ξ(

k
+

1
)
=

m
−R

n
(�

(k
)
)

m
−1

.

7
θ

(k
+

1
)
=

( β
′(k

+
1
) ,

ξ(
k
+

1
)) ′

.
8

l(
k
+

1
)
=

`
( θ

(k
+

1
)) .

9

{ if
l(

k
+

1
)
−

l(
k
)
≥

ε,
k
→

k
+

1;
g
o

to
1;

if
l(

k
+

1
)
−

l(
k
)
<

ε,
θ̂

=
θ

(k
+

1
) ;

st
op

.



Observed information matrix for MUB models 51
Ta

b
le

4
.

E
-M

A
lg

o
ri
th

m
o

fa
M

U
B

m
o

d
e

lw
ith

co
va

ri
a

te
s

fo
rξ.

M
U

B
-0

1
M

o
d
e
l

w
it

h
ξ

=
g

(γ
;w

)

θ
=

(π
,γ

′ )
′ ;

ε
=

10
−6

;d
im

(θ
)

=
p ξ

+
2.

`
(θ

)
=

n ∑ i=
1

lo
g

{ π

[ (
m
−

1

r i
−

1

)
e(
−w

i


)(

r i
−1

)

(1
+

e(
−w

i


) )

m
−1
−

1 m

] +
1 m

}

S
te

ps

0
θ

(0
)
=

( π
(0

) ,
γ
′(0

)) ′
=

( 1 2
,
0.

1,
..

.,
0.

1) ′
;
l(

0
)
=

`
( θ

(0
)) .

1
ξ(k

)
i

=
1

1
+

e−
w
′ i


(k

)
;

b
( r i

;γ
(k

))
=

( m
−1

r i
−1

)
e−

(r
i
−

1
)
w

i


(k

)

� 1
+

e−
w

i


(k

)
� m−1

,
i
=

1,
2,

..
.,

n
.

2
τ

( r i
;θ

(k
))

=

[ 1
+

1
−π

(k
)

m
π

(k
)
b (
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We observe that, in Tables 2-3, step 3, the conditional average rank
Rn

(
θ(k)

)
is the average rank weighted by thea posteriori probability

that each observed rank originates from the first component distribution
b (r; ξ).

Secondly, according to the Bayes’ theorem, the quantities:

τ
(
r; θ(k)

)
=

[
1 +

1− π(k)

mπ(k) b (r; ξ(k))

]−1

=
π(k) b

(
r; ξ(k)

)

P r (R = r)
,

express the probability that ther-th unit belongs to the first component
(the shifted Binomial population) given that(R = r), ∀r = 1, 2, . . . , m.

Finally, a main problem of the E-M algorithm is the choice of a con-
venient set of starting values for the estimates, since this procedure is
generally slower than the second order convergence rates of the ML rou-
tines.

In the previous algorithm, we set the starting values according to the
following criteria:

• for π, we choose the midrange of the parameter space;

• for ξ, we choose the moment estimator, givenπ = 1, that isRn;

• for theβ andγ vectors, we choose arbitrary small values (e.g.,0.1).

Of course, when somea priori information are available, it is conve-
nient to choose more appropriate initial values; in fact, Piccolo (2003b)
showed that moment estimates of the parameters for theMUB-00 model
are suitable starting values in order to accelerate the convergence of the
E-M algorithm21.

The asymptotic variance-covariance of ML estimators has been de-
rived by D’Elia (2003a) forMUB-01 andMUB-10 models, under the
statement that the estimatorŝβ andγ̂ were asymptotically uncorrelated.

21 Indeed, many different proposals have been suggested for this aim (McLachlan and
Krishnan, 1997, 70-73); however, in our extensive experience –in estimating models for
real data sets and running simulations experiments– we never need modifications of the
previous stated rules.
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This assumption has been adopted also by Piccolo (2003a) in the general
MUB-11 model.

However, parameter estimators of theMUB models are correlated
and, in some circumstances, the effect of ignoring the asymptotic correla-
tion might be sensible; thus, in this paper, we remove this simplification
and obtain the correct results22.

6. The information matrix of theMUB-00 model

It is well known that the asymptotic variance-covariance matrixV (θ)
of the ML estimatorŝθ of the parameterθ of a random variableR ∼ f(x; θ)
is obtained by inverting the negative of the expectation of the second
derivatives (the Hessian) of the log-likelihood function`(θ).

Then, theexpected information matrixI(θ) and the asymptotic variance-
covariance matrixV (θ) are related by:

I(θ) = −E
(

∂2 `(θ)

∂ θ ∂ θ′

)
; V (θ) = [I(θ)]−1 .

An alternative method, which shares the same asymptotic properties,
is based on theobserved information matrixI(θ), that is the Hessian
computed atθ = θ̂.

Several Authors have supported statistical inference based on the ob-
served information with respect to the expected one; in this regard, the
main contribution is Efron and Hinkley (1978), while discussions with
empirical evidences are reported by Lloyd (1999, 30-31) and Pawitan
(2001, 244-247). Indeed, the observed information should be relevant
when inferential statements are related to the sample under considera-
tion, and thus it should deserve more importance for assuming statistical
decisions.

22 Empirical results on several case studies show that the effect of ignoring the cor-
relation among the parameters estimators may be relevant, since it leads to a general
understatement of standard errors. We report that this effect is less dramatic for the
ξ parameter (and for the parameters of the covariates explainingξ). However, we re-
mark that any inferential consideration based on likelihood functions and/or deviances
is unaffected by the amount of the parameters correlations.
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With reference to theMUB model without covariates, D’Elia and
Piccolo (2005a) obtained the explicit formulae23 for the expectedinfor-
mation matrixI(θ), where the parameters areθ = (π, ξ)′. In this work,
instead, we deduce theobservedinformation matrixI(θ) when the model
is characterized by the parametersθ, and also when the parametersπ and
ξ are functions of the covariates observed on the sample units.

The matrixI(θ) is obtained by explicit computation of the second
derivatives of the log-likelihood function defined by:

`(θ) = log
n∏

i=1

P r (R = ri | θ) =
m∑

r=1

nr log {pr(θ)} ,

wherenr are the sampling frequencies of(R = r), r = 1, 2, . . . ,m and
the probability distributionpr(θ) = P r (R = r | π, ξ) has been defined
in section 3.

From an inferential point of view, in theMUB model without covari-
ates, the set of information contained inr = (r1, r2, . . . , rn)′ is strictly
equivalent to the set(n1, n2, . . . , nm)′. In fact, for a given sample sizen,
the random sample(N1, N2, . . . , Nm−1)

′ is a minimal sufficient statistic
for θ.

However, in order to achieve formal results which are more homoge-
nous and comparable with respect toMUB models with covariates, in
the following expressions, we show also the formulae obtained by using
all the sample datar = (r1, r2, . . . , rn)′. Thus, we will use the symbol
r when it is useful to refer to the value of the observed random variable
R or for grouped data (and we need also the corresponding frequencies
nr, r = 1, 2, . . . , m), and we will use the symbolri, i = 1, 2, . . . , n when
the ordinal value is referred to the sample observation.

23 Theexpectedinformation matrix for theMUB model without covariates has been
obtained, by exploiting a well known result by Rao (1973, 367-368), which concerns
score and information functions for grouped data.
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After some algebra, we found that24:

∂2 `(θ)

∂π2
= − 1

π2

m∑
r=1

nr (1− qr)
2 = − 1

π2

n∑
i=1

(1− qi)
2 ;

∂2 `(θ)

∂π ∂ ξ
= +

1

π

m∑
r=1

nr vr qr q∗r = +
1

π

n∑
i=1

vi qi q
∗
i ;

∂2 `(θ)

∂ξ2
= −

m∑
r=1

nrq
∗
r

[
ur − (1− q∗r)v

2
r

]
=−

n∑
i=1

q∗i
[
ui − (1− q∗i )v

2
i

]
;

where the quantitiesvr, ur andqr, q∗r , for r = 1, 2, . . . , m, are defined by:

vr =
m− r

ξ
− r − 1

1− ξ
; ur =

m− r

ξ2
+

r − 1

(1− ξ)2
;

qr =
1

m pr(θ)
; q∗r =

π br(ξ)

pr(θ)
= 1− (1− π) qr ;

and, similarly, the quantitiesvi, ui and qi, q∗i , for i = 1, 2, . . . , n, are
defined by:

vi =
m− ri

ξ
− ri − 1

1− ξ
; ui =

m− ri

ξ2
+

ri − 1

(1− ξ)2
;

qi =
1

m pi(θ)
; q∗i =

π bi(ξ)

pi(θ)
= 1− (1− π) qi .

Then, the asymptotic variance-covariance matrixV (θ) of the ML es-
timators ofθ, computed atθ = θ̂ = (π̂, ξ̂)′, is obtained as:

24 The formal expressions presented here are aimed at minimizing the computational
effort; for instance, all the derivatives are expressed in terms of the probabilitiespi(θ),
and their transformations, and so on.
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V (θ) =
[
I(θ̂)

]−1

= −



∂2 `(�)
∂π2

∂2 `(�)
∂π ∂ ξ

∂2 `(�)
∂π ∂ ξ

∂2 `(�)
∂ξ2



−1

(�=�̂)

.

7. The information matrix of theMUB-11 model

In MUB models with covariates the log-likelihood function has to be
expressed with reference to the sample unitsi = 1, 2, . . . , n, since each
of them conveys different information about the values of the covariates.

In this regard, it is convenient to introduce some simplifying nota-
tions25 to obtain the second derivatives of`(θ).

Thus, for anyi = 1, 2, . . . , n, we let:

ki =

(
m− 1

ri − 1

)
; bi = e−yi�; ci = e−wi
 ;

Ei(β) =
1

1 + bi

; Bi(γ) = ki
(ci)

ri−1

(1 + ci)m−1
.

In this way, the probability distribution for the generalMUB model
may be written26 as:

pi(θ) = Ei(β)

{
Bi(γ)− 1

m

}
+

1

m
; i = 1, 2, . . . , n,

and the related log-likelihood function is expressed by:

`(θ) =
n∑

i=1

log

[
Ei(β)

{
Bi(γ)− 1

m

}
+

1

m

]
.

25 The objective of these settings is to separate in theMUB modeling the role of
the β andγ parameters, respectively. Then, we will omit explicit references to these
parameters when no confusion occurs.

26 Notice that theEi are functions only of theβ parameters, and theBi are functions
only of theγ parameters.
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We also let:

Fi(γ) =
1

1 + ci

; ai(γ) = (ri − 1)− (m− 1)(1− Fi) ;

Ẽi = Ei(1− Ei) =
bi

(1 + bi)2
; F̃i = Fi(1− Fi) =

ci

(1 + ci)2
;

and

Ei = Ei(β); Bi = Bi(γ); Fi = Fi(γ); ai = ai(γ);

when no confusion arises.
In the sequel, we will need the following derivatives, fori = 1, 2, . . . , n:

∂ bi

∂βs

= −yis e−yi� = −yis bi; s = 0, 1, 2, . . . , p ;

∂ ci

∂γt

= −wit e
−wi
 = −wit ci; t = 0, 1, 2, . . . , q;

∂ Ei

∂βs

= yis Ei(1− Ei); s = 0, 1, 2, . . . , p ;

∂ Bi

∂γt

= −wit ai Bi; t = 0, 1, 2, . . . , q;

∂ ai

∂γt

= (m− 1) wit Fi(1− Fi); t = 0, 1, 2, . . . , q.

We generalize the symbols of the previous section, by defining:

q∗i = 1− (1− Ei)qi; Q̃i = q∗i (1− q∗i ); i = 1, 2, . . . , n.

whereqi = 1/ (mpi(θ)) ; i = 1, 2, . . . , n, has been already defined with
reference toMUB-00 models.

After lengthy algebraic calculations, we can finally obtain the second
derivatives of the log-likelihood function. For anys = 0, 1, 2, . . . , p and
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t = 0, 1, 2, . . . , q, they are expressed, respectively, by:

∂2 `(θ)

∂βs ∂ βt

= −
n∑

i=1

yis yit

{
Ẽi − Q̃i

}
;

∂2 `(θ)

∂βs ∂ γt

= −
n∑

i=1

yis wit ai Q̃i ;

∂2 `(θ)

∂γs ∂ γt

= −
n∑

i=1

wis wit

{
(m− 1) q∗i F̃i − a2

i Q̃i

}
.

8. The information matrix of theMUB-01 andMUB-10 models

The general results obtained for theMUB-11 model require some
modifications in the cases ofMUB-10 andMUB-01 models, where only
π or ξ are functions of covariates. Thus, in the following table, we collect
the symbols we need for these models:

Symbols ModelMUB-10 ModelMUB-01

pi(�) Ei(�)
�
Bi(ξ)− 1

m

	
+ 1

m
π
�
Bi(
)− 1

m

	
+ 1

m

Bi(
) Bi(ξ)
�m− 1

ri − 1

� (e−wi
)ri−1

(1 + e−wi
)m−1

Ei(�)
1

1 + e−yi�
π

Fi(
) ξ
1

1 + e−wi


qi
1

m pi(�, ξ)

1

m pi(π,
)

q∗i 1− qi {1− Ei(�)} 1− qi {1− π}

Finally, the information matrices for theMUB-10 andMUB-01 mod-
els are expressed by the following formulae, where the dimensions of
each component matrices have been indicated:
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• MUB-10

I(θ̂) =




[
∂2 `(θ)
∂βs∂βt

]

(p+1,p+1)

[
∂2 `(θ)
∂βs ∂ ξ

]

(p+1,1)[
∂2 `(θ)
∂ξ ∂ βt

]

(1,p+1)

[
∂2 `(θ)

∂ξ2

]

(1,1)




(�=�̂)

where:
∂2 `(θ)
∂βs∂βt

=
n∑

i=1

yis yit

{
Ẽi − Q̃i

}
;

∂2 `(θ)
∂βs ∂ ξ

= −
n∑

i=1

yis vi Q̃i ;

∂2 `(θ)
∂ξ ∂ βt

= −
n∑

i=1

yit vi Q̃i ;

∂2 `(θ)
∂ξ2

=
n∑

i=1

{
ui q

∗
i − v2

i Q̃i

}
.

• MUB-01

I(θ̂) =




[
∂2 `(θ)

∂π2

]

(1,1)

[
∂2 `(θ)
∂π ∂ γt

]

(1,q+1)[
∂2 `(θ)
∂γs ∂ π

]

(q+1,1)

[
∂2 `(θ)
∂γs ∂γt

]

(q+1,q+1)




(�=�̂)

where:

∂2 `(θ)
∂π2

=
1
π2

n∑

i=1

{1− qi}2 ;

∂2 `(θ)
∂π ∂ γt

=
1
π

n∑

i=1

wit ai qi q
∗
i ;

∂2 `(θ)
∂γs ∂ π

=
1
π

n∑

i=1

wis ai qi q
∗
i ;

∂2 `(θ)
∂γs ∂γt

=
n∑

i=1

wis wit

{
(m− 1) q∗i F̃i − a2

i Q̃i

}
.
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9. A unifying scheme for numerical implementation

In the previous sections, the matrixV (θ) =
[
I(θ̂)

]−1

has been ob-

tained for each type ofMUB model.
Specifically, the matrixV (θ) of a MUB model without covariates

has dimensions(2 × 2) and it is computed by the formulae obtained in
section 6. Instead, forMUB models with covariates, the matrixV (θ) is
evaluated by means of the formulae presented in sections 7-8.

In this section, we now present a unifying scheme that allows us to
simplify the numerical implementation of the variance-covariance matrix
V (θ) in a matrix-oriented language27.

We consider the followinginputsandoutput:

INPUT OUTPUT

• the fixed value ofm • the variance-covariance matrixV (θ)
• the sample vectorr
• the sample matricesY ,W

• the ML estimateŝβ, γ̂

and we suggest to proceed as follows:

1. Compute probabilitiespi(θ), i = 1, 2, . . . , n;

2. Compute the following vectors of lengthn, according to the defini-
tions given in sections 6-8:

Models Vector elements

MUB-00 qi, q∗i , vi, ui

MUB-10 qi, q∗i , vi, Ẽi, Q̃i

MUB-01 qi, q∗i , ai, Ẽi, F̃i, Q̃i

MUB-11 qi, q∗i , ai, F̃i, Q̃i

27 The implementation we will discuss about is related to theGAUSS language.
Minor modifications are necessary for programming inR (andS-plus) orMATLAB
languages.
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3. Define the vectors̃f , g̃, g̃10, g̃01, h̃, whose elements fori = 1, 2, . . . , n
are specified in the following table:

Models Vectors Elements

MUB-10 , MUB-11 f̃ f̃i = Ẽi − Q̃i

MUB-11 g̃ g̃i = ai Q̃i

MUB-10 g̃10 g̃10,i = vi Q̃i

MUB-01 g̃01 g̃01,i =
ai qi q

∗
i

π

MUB-01 , MUB-11 h̃ h̃i = (m− 1) q∗i F̃i − a2
i Q̃i

Given the sample data{r, Y , W }, theobserved information matrix
I(θ̂), computed atθ = θ̂, is obtained by:

I(θ̂) =



I11(θ̂) I12(θ̂)

I21(θ̂) I22(θ̂)


 =



I11 I12

I ′12 I22


 .

where each sub-matrix is specified as follows28:

28 It is convenient to introduce theelement-wise matrix productA ¯ v between a
matrixA and a vectorv (with the same number of columns).

Formally, ifA is a(n×p) matrix andv is a(n×1) vector, we define theelement-wise
matrix productas the matrixB = A¯ v of dimensions(n× p) matrix whose elements
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Models I11 I12 = I ′21 I22

MUB-00 1
π2

n∑

i=1

{1− qi}2 − 1
π

n∑

i=1

viqiq
∗
i

n∑

i=1

{
ui q∗i − v2

i Q̃i

}

(2, 2) (1, 1) (1, 1) (1, 1)

MUB-10 Y ′(Y ¯ f̃) −Y ′g̃10

n∑

i=1

{
ui q∗i − v2

i Q̃i

}

(p + 2, p + 2) (p + 1, p + 1) (p + 1, 1) (1, 1)

MUB-01 1
π2

n∑

i=1

{1− qi}2 g̃′01W W ′(W ¯ h)

(q + 2, q + 2) (1, 1) (1, q + 1) (q + 1, q + 1)

MUB-11 Y ′(Y ¯ f̃) Y ′(W ¯ g̃) W ′(W ¯ h̃)

(p + q + 2, p + q + 2) (p + 1, p + 1) (p + 1, q + 1) (q + 1, q + 1)

Finally, the asymptotic variance-covariance matrixV (θ) of the ML
estimators is computed for anyMUB model as:

V (θ) =



I11 I12

I ′12 I22




−1

=
[
I(θ̂)

]−1

.

10. Inference on feeling and uncertainty parameters

The formulae presented in the previous sections are suitable for sta-
tistical decisions concerning the parameterθ in theMUB models.

bij are obtained by the relationships:

{bij} = {aij vi}, i = 1, 2, . . . , n; j = 1, 2, . . . , p .

This operation is quite common in matrix-oriented languages.
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In some applications, the inferential interest focuses directly on the
uncertainty(π) and feeling(ξ) parameters, while the previous asymp-
totic expressions only refer toβ and/orγ, respectively. This problem is
relevant when the population is stratified and we use the stratification fac-
tor as a covariate for one or bothMUB parameters;for instance, usually,
stated preferences differ according to gender, occupation, residence, etc.
Thus, it will be interesting to account for such variables when making
inference onπ andξ conditional to the gender, say29.

It is convenient to embed the above problem in a general framework,
and to derive the asymptotic standard errors forπ and ξ, respectively,
given a subject’sprofiledi = (d0i, d1i, . . . , dki), for anyi = 1, 2, . . . , n.

Here, we denote by “profile” the values assumed by the subject’s co-
variates that are present in the estimatedMUB model; thus, in a sense,
the profile characterizes the subject with relation to the stated choice.

As usual, the first componentsd0i = 1, and we denote byk the number
of subject’s covariates required for specifying the profile.

Then, we apply the delta method30 to the estimators defined by:

π̂i = π(β̂) | di =
1

1 + e−di �̂
; ξ̂i = ξ(γ̂) | di =

1

1 + e−di 
̂
.

Hereafter, when there is no risk of confusion, we omit the reference

29 A real situation where this approach has been successfully applied toMUB mod-
els is discussed in D’Elia (2007).

30 Specifically, letθ = (θ1, θ2, . . . , θk)′. For an asymptotically unbiased ML estima-
tor Tn = g(θ), the asymptotic variance ofTn is approximated as:

V ar(T ) ' [δ′ V (θ) δ ]θ=θ̂ ,

where

δ =
(

∂

∂θ1
g(θ),

∂

∂θ2
g(θ), . . . ,

∂

∂θk
g(θ)

)′

andV (θ) = ‖Cov(θs, θt)‖ is the variance-covariance matrix of the estimatorθ̂.
For the multivariate version of this approach refer to: Rao (1973, 388); Serfling (1980,

122-124); Casella and Berger (2002, 241-245) and, for categorical data, to: Agresti
(2002, 73-74).
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to the given profile. Thus, we let:

δ� =

(
∂

∂β0

π(β̂),
∂

∂β1

π(β̂), . . . ,
∂

∂βp

π(β̂)

)′
;

δ
 =

(
∂

∂γ0

ξ(γ̂),
∂

∂γ1

ξ(γ̂), . . . ,
∂

∂γq

ξ(γ̂)

)′
;

where, for anyi = 1, 2, . . . , n:

∂

∂βs

π(β̂) = dsi
e−di �̂

(
1 + e−di �̂

)2 = dsi π̂i (1− π̂i); s = 0, 1, 2, . . . , p;

∂

∂γt

ξ(γ̂) = dti
e−di 
̂

(1 + e−di 
̂)2 = dti ξ̂i (1− ξ̂i); t = 0, 1, 2, . . . , q .

If V (β) andV (γ) are the variance-covariance matrices ofβ̂ andγ̂
estimators, respectively, then –for a well defined profile– the asymptotic
variances ofπ(β̂) andξ(γ̂) are given by:

V ar(π(β̂)) ' [
δ′� V (β) δ�

]
�=�̂ ;

V ar(ξ(γ̂)) ' [
δ′
 V (γ) δ


]

=
̂ .

These results are useful for anyMUB model with covariates. For
the sake of simplicity, we develop in detail the case of aMUB-11 model
when a single dichotomous covariate, assuming0/1 values31, is related
both toπ andξ. As a consequence, the only admissible subjects’ profiles
are:

d0 = (1, 0)′; d1 = (1, 1)′ .

Then, omitting explicit reference to the subjects, the conditional pa-

31 This situation is common, for instance, when the covariateGenderexplains a dif-
ferent behavior of subjects’ preference in terms of both feeling and uncertainty.
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rameters are defined in the following scheme:

π̂0 = π(β̂) | d0 =
1

1 + e−β̂0
; π̂1 = π(β̂) | d1 =

1

1 + e−β̂0−β̂1

ξ̂0 = ξ(γ̂) | d0 =
1

1 + e−γ̂0
; ξ̂1 = ξ(γ̂) | d1 =

1

1 + e−γ̂0−γ̂1

Given the profiled0 = (1, 0)′, for anyi = 1, 2, . . . , n, the vectors of
the derivatives, are:

δ� =




∂
∂β0

π̂0

∂
∂β1

π̂1


 =

(
π̂0(1− π̂0)

0

)
= π̂0(1− π̂0) d′0;

δ
 =




∂
∂γ0

ξ̂0

∂
∂γ1

ξ̂1


 =


ξ̂0(1− ξ̂0)

0


 = ξ̂0(1− ξ̂0) d′0 .

Similarly, given the profiled1 = (1, 1)′, for anyi = 1, 2, . . . , n, the
vectors of the derivatives, are:

δ� =




∂
∂β0

π̂1

∂
∂β1

π̂1


 =

(
π̂1(1− π̂1)

π̂1(1− π̂1)

)
= π̂1(1− π̂1) d′1;

δ
 =




∂
∂γ0

ξ̂1

∂
∂γ1

ξ̂1


 =


ξ̂1(1− ξ̂1)

ξ̂1(1− ξ̂1)


 = ξ̂1(1− ξ̂1) d′1 .

These expressions may be stated, for any profilej = 0, 1, in a compact
way as:

δ
(j)
� = π̂j (1− π̂j) d′j;

δ(j)

 = ξ̂j (1− ξ̂j) d′j .
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If we partition the variance-covariance matricesV (β) andV (γ) as:

V (β) =


v

(�)
00 v

(�)
01

v
(�)
01 v

(�)
11


 ; V (γ) =


v

(
)
00 v

(
)
01

v
(
)
01 v

(
)
11


 ;

the asymptotic variances of theπ andξ estimators, for the given profiles,
are:

V ar(π̂j) '
[
δ
′ (j)
� V (β) δ

(j)
�

]
�=�̂

= [π̂j (1− π̂j)]
2 d′j


v

(�)
00 v

(�)
01

v
(�)
01 v

(�)
11



�=�̂

dj;

V ar(ξ̂j) '
[
δ
′ (j)

 V (γ) δ(j)




]

=
̂

=
[
ξ̂j (1− ξ̂j)

]2

d′j


v

(
)
00 v

(
)
01

v
(
)
01 v

(
)
11




=
̂

dj .

Given the dichotomous nature of the covariates, the previous expres-
sions may be further simplified. For instance, ifj = 0, the asymptotic
variances become:

V ar(π̂0) ' [π̂0 (1− π̂0)]
2

(
v

(�)
00

)
�=�̂

;

V ar(ξ̂0) '
[
ξ̂0 (1− ξ̂0)

]2 (
v

(
)
00

)

=
̂

;

and so on.

We apply the previous formulae to a real data set ofn = 354 sample
units related to the ranking of the concern for the immigration in the city
of Naples. D’Elia and Piccolo (2005b) obtained aMUB-11 model whose
estimates are reported in the following table.
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Parameters estimatesStandard errors

β̂0 = 1.599 0.244

β̂1 = −0.801 0.354
γ̂0 = −1.468 0.409
γ̂1 = −0.055 0.016

The covariate for the uncertainty parameterπ is theGender(=0 for
Males, =1 for Females) while the covariate for the parameter32 ξ is the
Ageof the subject (expressed in years and in the interval(18, 55) for the
observed sample). The corresponding estimated parameters are all high
significant.

We compare two profiles by defining anelderly man(Gender = 0
andAge = 55 years) and ayoung woman(Gender = 1 andAge = 19
years); thus, in this example, we have a different profile for the variables
Y (concerningπ) andW (concerningξ), respectively.

Elderly Man: d0 = (y00 = 1, y01 = 0 | w00 = 1, w01 = 55)′

Young Woman: d1 = (y10 = 1, y11 = 1 | w10 = 1, w11 = 19)′

The results are shown in the following table (we report in parenthesis
the asymptotic standard errors of the estimates), where the95% confi-
dence intervals based on the previous asymptotic approximations are also
presented.

Profiles π̂ C.I.(π) ξ̂ C.I.(ξ)

Elderly Man 0.832 [0.764− 0.900] 0.011 [0.0002− 0.022]
(1, 0 | 1, 55)′ (0.034) (0.005)
Young Woman 0.690 [0.568− 0.811] 0.075 [0.052− 0.098]
(1, 1 | 1, 19)′ (0.061) (0.012)

Notice that the two profiles imply different parameters as confirmed
by Figure 3, where we plot theMUB probability distributions condi-
tioned by the profilesd0 andd1, respectively.

32 Notice that, in this study, the “feeling” is indeed ameasure of concern.
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Figure 3:Profiles of Immigration concern according toMUB models.

However, the confidence intervals for the uncertainty parameter(π)
have an overlapping region while the corresponding intervals for the feel-
ing parameter(ξ) are well disjoint among the two profiles. These consid-
erations support the conclusion that while similar in the uncertainty, the
concerns for the immigration problem expressed by young women and
elderly men are significantly different.

11. Finite sample performance behavior

In this section we perform a simulation experiment to assess the fi-
nite sample size performance of the asymptotic standard errors as com-
puted by expected and observed information matrices for theMUB-00
model33.

Givenm = 9, we choose aMUB model withπ = 0.3 andξ = 0.8;

33 An extensive simulation experiment for theMUB-00 model has been carried out
by D’Elia (2004) using the expected information matrix.
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such a model is characterized by a positive skewness with a mode atR =
2 and a secondary mode atR = 3. The mean value of this random variable
isE (R) = 4.280 and the uncertainty factor is(1− π)/m = 0.078.

The results that we present are based on500 simulations; however,
100 simulations were sufficient to produce stable results. With regard to
the sample size, the experiment has been repeated forn = 100, 200, 300,
500, 1000, 5000.

For each simulation experiment and for both parameters, we show the
theoretical standard error computed by assuming that the parameters are
known (using the expected information as in D’Elia and Piccolo, 2005a);
then, we compute the average and the standard deviation of the ML esti-
mates obtained in each run; finally, we present the average of the standard
errors computed by means of the expected and observed information ma-
trices, respectively.

n → 100 200 300 500 1000 5000
Statistics

AVER(π̂) 0.3078 0.3063 0.3025 0.3021 0.2988 0.3019
AVER(ξ̂) 0.7992 0.7995 0.8013 0.7993 0.8006 0.7993
STDEV(̂π) 0.0935 0.0673 0.0544 0.0413 0.0306 0.0136
AVSTERREXP(̂π) 0.0943 0.0671 0.0548 0.0426 0.0301 0.0135
AVSTERROBS(̂π) 0.0944 0.0671 0.0548 0.0427 0.0302 0.0135
STDEV(ξ̂) 0.0511 0.0364 0.0277 0.0221 0.0148 0.0069
AVSTEXP(ξ̂) 0.0495 0.0340 0.0276 0.0212 0.0150 0.0066
AVSTDOBS(̂ξ) 0.0496 0.0342 0.0276 0.0213 0.0151 0.0066

For a full understanding of the previous table, we list the abbreviations
used for each estimated parameters:

– AVER: the average of the estimated parameters obtained by the
simulations;

– STDEV: the standard deviation of the estimated parameters ob-
tained by the simulations;
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– AVSTDEXP: the average of the standard deviation based on the ex-
pected information matrix of the estimated parameters in the simu-
lations;

– AVSTDOBS: the average of the standard deviation based on the ob-
served information matrix of the estimated parameters in the simu-
lations.

The results of the simulation experiments enhance the following points34:

• The main differences among the standard errors are registered only
for small sample sizes35.

• Generally, all the values shown in the previous table are similar,
confirming that standard errors based on expected and observed in-
formation matrices are very close. Anyway, the standard errors
based on observed information matrices are generally larger than
those derived by the expected ones, although their difference is
quite small.

• The simulated distributions of the ML estimates forπ andξ are ade-
quately approximated by a Normal distribution, also for small sam-
ple size; this confirms that the correctness of the classical asymp-
totic theory still holds in statistical decisions concerning theMUB
parameters estimators.

• In all situations, the standard errors of theξ estimators are lower
than the corresponding standard errors of theπ estimators and their
ratio ranges between2 and4.

• The simulated distributions of the standard errors derived by the
expected and observed matrices are similar in all cases; however,

34 Some considerations also derive from box-plots, kernel density estimates and fur-
ther statistical measures that we omit to show for space constraints.

35 Strictly speaking, the results forn = 100 are not reliable since, form = 9, we
need at least 150-200 units to get significant results inMUB modeling. As a matter of
fact, whenn ≤ 100, it is highly probable that some ordinal value might not be observed.
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those related toξ denote a positive skewness (caused by some ex-
treme values) while those related toπ denote a low kurtosis (be-
cause of the high concentration of the results around the mean
value).

Thus, we can apply the asymptotic results of previous sections, even
for moderate sample size. Moreover, our confidence is always higher for
the feeling parameterξ than for the uncertainty parameterπ.

Finally, we suggest the use of the observed information matrix as a
starting point for asymptotic statistical decisions on theMUB model pa-
rameters since this quantity is related to the observed sample and thus is
able to capture the features of the data in a better way.

12. Concluding remarks

In this paper, we obtained the asymptotic variance-covariance of ML
estimators for anyMUB models, derived from the observed information
matrix, and some results about direct inference on the feeling and uncer-
tainty parameters inMUB models with covariates.

The simulation experiment has confirmed that the difference between
the standard errors evaluated from the expected and observed information
matrices for theMUB model without covariates is not generally signifi-
cant, even in the case of moderate sample sizes.

Further topics to be explored, for a fully efficient implementation of
MUB modeling, include the following issues:

• Simulated comparisons of classical ordinal andMUB models.

• Heteroscedastic behavior of the choice mechanism and inclusion of
overdispersion effects.

• Efficient methods for the selection of significant covariates.

• Explicit inclusion of objects’ covariates inMUB models.

• Significance levels of fitting measures forMUB models.
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All these issues require further investigations about the related statistics
distributions, and in several cases non-parametric techniques may be sug-
gested.

Finally, it is worthwhile to mention that, hitherto,MUB models have
been successfully applied in several different areas:

• the preference analysistowards: colors (expressed by young peo-
ple, children, air force cadets) in D’Eliaet al. (2001); the cities
where to live in D’Elia and Sitzia (2002); the future professions (to
be chosen by Political Sciences students) in D’Elia (2003b);

• theconsumers’ preferenceof: olive oil brands in Del Giudice and
D’Elia (2001), and of salmon in Europe in D’Elia and Piccolo
(2007); theevaluation surveysabout Orientation services and Uni-
versity teaching in D’Elia (2001) and D’Elia and Piccolo (2002;
2006);

• the levels of perceptionof: chronic pain in D’Elia (2007); word
synonymy in Cappelli and D’Elia (2004; 2006c); humor in Balirano
and Corduas (2006);

• thegrade of concernfor: the main problems in a metropolitan area
in D’Elia and Piccolo (2005b).

We remark that the MUB modeling approach is a general framework
for the statistical interpretation of ordinal data, and it is not strictly related
to preferences and evaluations analyses. For instance, given a random
sample of related geographical units (boroughs, municipalities, districts,
counties, regions, etc.), we can give an interpretation of theranking of
the political partiesas a function of socio-economic, cultural and envi-
ronmental variables, by estimatingMUB models with covariates.
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