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Summary In this paper we derive the observed information matrix¥6/ B models,
without and with covariates. After a review of this class of models for ordinal data
and of the E-M algorithms, we derive some closed forms for the asymptotic variance-
covariance matrix of the maximum likelihood estimators\ét/ B models. Also, some

new results about feeling and uncertainty parameters are presented. The work lingers
over the computational aspects of the procedure with explicit reference to a matrix-
oriented language. Finally, the finite sample performance of the asymptotic results is
investigated by means of a simulation experiment. General considerations aimed at
extending the application af/U B models conclude the paper.
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1. Introduction

“Choosing to do or not to do something is a ubiquitous state of ac-
tivity in all societies” (Louvieret al,, 2000, 1). Indeed, “Almost without
exception, every human beings undertake involves a choice (consciously
or sub-consciously), including the choice not to choose” (Henshat,

2005, xxiii).

From an operational point of view, the finiteness of alternatives limits
the analysis to discrete choices (Train, 2003) and the statistical interest in
this area is mainly devoted to generate probability structures adequate to
interpret, fit and forecast human choites

1 An extensive literature focuses on several aspects related to economic and market-
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Generally, the nature of the choices is qualitative (or categorical), and
classical statistical models introduced for continuous phenomena are nei-
ther suitable nor effective. Thus, qualitative and ordinal data require spe-
cific methods to avoid difficulties in the interpretation and/or loss of effi-
ciency in the analysis of real data.

In this area, we investigated a probability model that seems capable
to produce interpretable results and good fitting. The feasibility of effi-
cient maximum likelihood methods and the implementation of accurate
numerical algorithms are essential requirements in order to apply these
new models.

The paper is organized as follows: in the next section, we establish
notations for ordinal data and in sections 3-4 we introduce the logic and
the main properties oM/ U B models (without and with covariates, re-
spectively). Then, section 5 presents the E-M algorithms steps to obtain
the maximum likelihood (ML) estimates of the parameters. In sections
6-8 we derive the information matrices while section 9 discusses the re-
lated numerical algorithms. A special emphasis has been devoted to the
minimization of the computation efforts to implement the formal results.
Section 10 investigates the possibility to make direct inference on the
MU B parameters when the model requires some covariates for a better
fitting and in section 11 we check the finite sample performance of the
asymptotic results presented in this work by means of a simulation study.
Some concluding remarks end the paper.

2. Ordinal data

Human choices are placed within a list of alternatives, that we may
call “items” or “objects”, as: brands, candidates, services, topics, sen-
tences, situations, teams, songs, recreation sites, colors, professions, etc.
From a formal point of view, the very nature of the items is not relevant,
although we need to specify them to relate human behavior to some se-

ing management: Franses and Paap (2001). In this regard, a relevant issue is the prob-
lem of discriminating and/or combiningtatedandrevealed preferencess discussed
by Louvieret al. (2000) and Train (2003, 156-160).
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lected covariates.

In our context, ordinal data (ank9 are integers that express prefer-
ences or evaluations of a group of raters towards a well defined list of
items/objects/ servicés In this regard, we emphasize situations where
ordinal data are used both for preference and evaluation studies; these
contexts are substantially different but share so many structural similari-
ties to suggest common analyses.

More specifically, inpreference analysithe ranks express the loca-
tion of an “object” in a given list. Instead, iavaluation analysighe
ranks express the subject’s perceived level of a given “stimulus” (sensa-
tion, opinion, perception, awareness, appreciation, feeling, taste, etc.).

In essence, the main similarities among preferences and evaluations
experiments are the following:

e Both analyses are expressed by ordered integer values.
e The answer is a categorical variable transformed into an integer.

e Psychological, sociological, environmental effects influence (and
bias) the answers.

e The extreme answers are more reliable and persisting than the mid-
dle ones.

e The answer is the result of a paired or sequential selection process.

Instead, the main differences among preference and evaluation exper-
iments are the following:

2 Ordinal data may be also generated by several different situations. Subjects may be
assigned to categories, as it often happens in Medicine, Psychology and Environmental
Sciences, for instance. Moreover, a continuous variable may be classified in classes and
then a sequential code is given to each class, as it is common in Marketing and Finance
researches.

3 Indeed, especially for those items that do not generate strong liking or disliking
feelings, it seems plausible to assume that the elicitation mechanism exhibits a greater
uncertainty. This fact can be easily shown if we consider, for instance, a repeated rank-
ing of several items by the same group of raters. While the extreme ranks are expected
to remain unchanged, it is very plausible that the intermediate ranks will change some-
where.
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¢ In preference analyses, the output is a set of related ordered re-
sponses: thus, we study only the marginal distribution of the pref-
erence towards a single object.

e The evaluations of several items are (generally) strongly correlated,
since they express a common (positive/negative) judgement towards
the problem at hand.

In order to avoid frequent repetitions, in the rest of this article, we will
limit the discussion to preference analysis although the approach and the
applications are by far more general than the preference context.

The problem is set as follows: we ask a groumafubjects (=raters,
judges) to order a set of: > 1 “objects™ Oy, Os, ..., O, ..., O,
giving order (=rank)l to the preferred one, orderto the second best,

..., orderm to the least preferred object. No ties are allowed.

The experiment producesax m matrix of the assigned ranks to the

m objects (the columns) by theraters (the rows):

11 7’172 e TL]‘ ce "1m
21 T22 ... Toj ... Tom
"1 Tn2 ... rn,j oo Tnm

In this paper, we consider only the collection of ranks assigned by the
n raters to a prefixed; = O object. Then, we may denote simply by
r=(r, rq, ..., 7,) the expressed ranking towards a prefixed objct
Indeed, we studpnly the marginal distributionof a multivariate random
variable generated by the-th observations of the previous matffix

We interpretr as anobserved samplef sizen, that is the realiza-
tion of arandom samplé€R;, R», ..., R,). This random sample is the
collection ofn independent and identically distributed discrete random
variablesR; = R ~ f(r;0), where the probability (mass) function is
characterized by a parameter vedior

4 We emphasize this point since it restricts and characterizes our approach with
respect to many different models for ordinal data presented in the statistical literature.
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3. A probability model for ordinal data

Many probability models and statistical tools have been proposed for
describing the ranking process and/or analyzing ranks dahe issue of
ordinal data modeling is generally included in the domain of qualitative
and multinomial modefs

In this area, the standard approach is motivated by a generalized linear
model (GLM) developed by Nelder and Wedderburn (1972), McCullagh
(1980) and McCullagh and Nelder (1989). Generally,distribution or
the survival functionsare introduced as tools for expressing the proba-
bility mechanism that relates the ordered responses to some covariates,
via a latent variable which transforms continuous variables into discrete
responses.

Instead, our approach is motivated by a direct investigation of the psy-
chological process that generates the choice mechanism amattgr-
natives. This approach has led us to a series of résutiih have been
conveyed into a final proposal defining a class of probability distributions

5 Among the several references, we list: Amemiya (1981); Maddala (1983); Agresti
(1984; 1996; 2002); Fligner and Verducci (1993); Marden (1995); Fox J. (1997, 475-
478); Lloyd (1999, 338-352; 355-367); Greene (2000, 875-880); Mittelhammer et al.
(2000, 584-585); Power and Xie (2000), 201-222; Cramer (2001); Franses and Paap
(2001, 112-132); Dobson (2002, 143-148); Woolridge (2002, 505-509); Davison (2003,
507-510). For discrete-choice models, we refer to: Agresti (2002, 298-300); Train
(2003, 163-168).

6 In most cases, the topics is discussed as a specification of qualitative unordered
models, also with some extreme position: “The application of ordered multinomial re-
sponse models seems to be the exception rather than the rule.”: Mittelhammer et al.
(2000, 585).

" The starting point for this kind of models is a paper by D’Elia (1999; 2003a) where
an Inverse Hypergeometric (IHG) random variable has been introduced to explain the
sequential choice of several objects. Then, the need for a probability distribution with
an intermediate mode suggested the study of a shifted Binomial model: D’Elia (2000a;
2000b). Finally, in order to improve both the interpretation and the flexibilify/ B
models were proposed in 2003 and first published by D’Elia and Piccolo (2005a). Since
all the proposed models included subjects’ covariates, theogleof the GLM models
was exploited. Of course, most of these results may be generalized without substantial
modifications if we include in the models bothoices’ covariatesand chooser’s co-
variates Agresti (2002, 292).
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called MU B models.

In essence, while most of the proposed models for ordinal data are
based on log-transformations of probabilities (distribution functions, ad-
jacent categories and continuation-ratio logits, etc.), we will model ex-
plicitly the probability of an ordinal choice, and then we will relate its
parameters to the subjects’ covariates.

In our opinion, a probability model for the random variaieshould
be adequatdor representing the psychological choice mechanison-
sistentwith the ordinal feature of the datgarsimoniousn that it contains
as few parameters as possible, apalistic andflexibleto be fitted to dif-
ferent empirical phenomena.

More specifically, one should consider that the rater choice may be a
thoughtfulor instinctiveone, and this choice may result fronpaired or
sequentiacomparison of the objecs

Anyway, the final choice is the result tfio hierarchical steps

— aglobaland immediate evaluation of the feeling (the subject agrees,
certainly disagrees or is indifferent);

— alocal and reflective setting for expressing the final rank, within
the previous global assessment.

Several models satisfy these requirements; therefore, the choice mech-
anism is the result of geelingtowards the object and thencertaintyin
the choice of the rank. Of course, these components interact in the choice
mechanism with different weights.

In this respect, we notice that both feeling and uncertaintycare
tinuousandlatentrandom variables, whereas ordinal data are expressed
as discrete responses taking a valuélir, ..., m}. Thus, to attain effi-
cient transformations of continuous variables into a discrete set, we need
some preliminary investigation about the nature of these components.

e Feelingis the result of a continuous random variable that becomes a
discrete one, since the subject is compelled to express the preferences into
m prefixed bins. Now, the judgement process is intrinsically continuous

8 |t seems evident that the sequential choice is preferred for several items whereas a
paired choice is more useful for few items.



Observed information matrix for MUB models 39

and, since this perception depends on several causes, it can be assumed to
follow a Gaussian distribution.

We recall that datent variable approactior the analysis of ordinal
datd assumes that the records are generated by an unobserved continuous
random variable (sayt*), generally Normally distributed; then, a corre-
spondence with a discrete ordinal random variables given by means
of ordered threshold paramet&ts

-0 < R'< o R=1
aq <R < oy R=2
= i
Qo < R* < 1 R=m-1
Qo1 < RF < 400 R=m

Following this idea, a suitable model for achieving the mapping of
the unobserved continuous variald into a discrete random variable
defined on the support= 1, 2, ..., m, may be introduced by th&hifted
Binomial distributiont!. Indeed, Figure 1 shows how, byarying the or-
dered thresholdsa standard Normal random variable can be made dis-
crete, obtaining different features (mode, skewness, tails, etc.) that are
well fitted by a shifted Binomial random variable.

e Uncertaintyis a vaguer component that needs some clarification.
Indeed, uncertaintys notthe stochastic component related to the sam-
pling experiment (such that different people generates different rankings).
But, instead, uncertaintig the result of several factors, intrinsically re-
lated to the choice mechanism, such asdhewledgeor ignoranceof the
problems and/or the characteristic of the objects, the persueatstor

9 General references to latent variable models are Everitt (1984), Bartholomew
(1987) and Sammedt al. (1997). For ordinal data, the latent variable approach is
widely discussed by Moustaki (2000; 2003), Moustaki and Knott (20@0¢skog and
Moustaki (2001), Moustaki and Papageorgiou (2004), Cagetiaé (2004), Huberet
al. (2004).

10 The threshold parametefa;, as, ..., a,,_1) are also callectutpoints and it
is convenient to assumey, = —oo; a,, = +oo. They are unobserved but may be
estimated by ML methods.

11 We prefer to work with theshiftedrandom variable since usually the choice set
{1,2,...,m} is more common than the Binomial support, that starts With
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Figure 1:Shifted Binomial distributions generated By~ N (0, 1).

engagemenn similar activities, objects, opinions, etc., ttime spenfor
elaborating the decision, th@zinesor apathyof the subject, and so on.

Under the circumstance that the subject shows a complete indiffer-
ence (®equipreferencetowards a given item, then it seems appropriate
to model ranks by means of a discrete Uniform random vari&beth
probability mass: function defined by:

and the choice is the result of a complete randomized mechanism where
the item has a constant probability to be given any raak(1, m|.

For this reason, we choose tlescrete Uniformdistribution as a
building block for modeling the uncertainty in the ordinal modetfng

Finally, we propose to take into account tt@mposite nature of the

12 We remember that the discrete Uniform random variable maximizes the entropy,
among all the discrete distributions with finite suppfrt2, ..., m}, for a fixedm.
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elicitation procesdy means of anixture modelwhere the feeling and
uncertainty components are adequately weightited

Thus, we assume that the ranis the realization of a random variable
R that is aMixture of aUniform and a shiftedinomial random variable.

Formally, for a fixed and known integer > 1, we define the (dis-
crete) MU B random variableR with parametersr and&, on the finite
support{r : r =1,2,...,m}, and denote it byR ~ MUB(r,¢), if and
only if its probability distribution is:

m—1

Pr(f=r)=m [(T_J(l—é“)“lém‘r] +1—7) [%}

N ~~ 7 N s
feeling uncertainty

Sincer € [0, 1] and¢ € [0, 1], the parametric space &fis the unit square
[0,1] x [0, 1].

The MU B model turns out to be a flexible stochastic structure since
the distribution varies largely as the parameteendd vary (D’Elia and
Piccolo, 2005a). In this regard, we list some features of\lHéB distri-
bution which will be useful for our discussion:

¢ It may admit a mode at any value of the suppadrt2, ..., m}.
e Itis a symmetric random variable if and onlygif= %

Itis areversiblerandom variable, since:

R~ MUB(m,€) = (m+1—R) ~ MUB(w,1—£).

It is consistent with the hypothesis that the population is made by
two sub-groups of raters (an informed/reflexive set and a more un-
informed/instinctive one) and their relative ratiorig(1 — ).

It emulates many theoretical distributions:

— A Uniformdistribution, ifm = 0;

13 Recent applications of mixture models to ranked data are discussed by Gormley
and Murphy (2006) with reference to college applications data; see also Marden (1995).
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— A Shifted Binomiadistribution, ifr = 1;

— An Inverse HyperGeometridistribution, if 7 — 1 and &
tends ta) or 1;

— A Normaldistribution, if¢ — 3 andm — oo;

For our purposes, the moments of this distribution are not relevant
since the sequendd, 2, ..., m} is only aproxyfor a qualitative order-
ing, and no metric property should be attached to these integer values.
However, in some contexts and for comparison purposes, it may be use-
ful to know that the first two cumulanitsof R are:

B(R) =7 (n-1) (5 -¢) +

var(R):(m—1){7r5(1—5)+(1—7r) [ml—;lﬂ(m—u (%_5)2”.

As far as the interpretation of the parameters of & B model is
concerned, we remember that thg@arameter measures the uncertainty
through the quantity(1 — ) /m, which is themeasure of the uncertainty
distributed over all the support. Also, the ratig(1 — 7) measures the
relative weight of the basic feeling and the uncertainty components, re-
spectively.

On the other hand, both and¢ are related to the liking towards the
object. The exact meaning ¢fchanges with the setting of the analysis
and, being theM/U B model reversible, it mostly depends on how the
ratings have been codified (the greater the rating the greater the feeling,
or viceversa). According to the context that we defined for the responses,
the ¢ parameter may bedegree of perceptigrameasure of closeness
rating of concernpanindex of selectivenesand so on.

14 Even thoughR has been introduced with reference to (qualitative) ordinal data, a
complete study of the first four cumulants of thél/ B random variable is pursued by
Piccolo (2003b). Notice that some caution is needed when we compare ordinal data by
E (R) since, for a given expectation, many values of the parameétets are admissi-
ble. In fact, when bothr and¢ increase towards, the mean valu& (R) converges to
1, and then the\/U B model implies a greater preference for the given object. Thus,
it is not strictly correct to relate the expected preferenisly to the parametef. For a
graphical evidence, see the next Figure 2.
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Indeed, the presence of both parameters imttiéB model produces
an extremely flexible tool for fitting real data sets and for explaining dif-
ferent judgement choices.

Of course, the introduction of thaters’ covariatedor relating both
the feeling and the uncertainty to the subject’s characteristics improves
both the results and the interpretation. In this way, the covariates allow
to link the main features of the raters to the rank they assigned to a given
item; both the feeling and the uncertainty can be explained by means of
subjects’ specific covariates, yielding a deeper insight in the preference
data analysis. This allows a sound interpretation of the liking/disliking
behavior to be used for inferential and predictive purposes and/or for char-
acterizing meaningful subsets of the population.

In this regard, the standa@L )M approach (where the inverse link
function explains the expectation of the relevant random variable via a
linear function of selected covariatéscannot be pursued here. In fact,
for a givenm, several couples of differeritr, £) generates the same ex-
pectation as long as they obey:

(3-g)- B
2

m—1

To be explicit, Figure 2 shows some different/ B models charac-
terized by the same expectation; in these comparisons, we setectedl
and seff (R) = 6.

For these models, as detailed in Table 1, the mode (that is the most
probable value for the ordinal variable) and the probability of values
around the expectation, that#s (5 < R < 7), are completely different;
thus, one takes different decisions when faced with each of these four
models, although they have the same expect&tion

15 Nelder and Wedderburn (1972); Agresti (2002, 116-117); Dobson (2002, 43-54).
In fact, our approach is more related to the class of general models discussed ey King
al. (2000, 348).

16 |n this regard, we observe that the mode of #é& B distribution, that is:Mo =
1+ [m(1 — &)], coincides with the mode of the shifted Binomial component of the
mixture. Thus, the mode is more immediately related to the feeling measure.
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Figure 2:Different M/ U B models with constant expectatidi:(R) = 6.

Table 1. Location measures for different/ B models

| Models |E(R) [ Mode| Pr(5<R<7)]|
MUB(Z,2)] 6 9 0.249
MUB(3,3) 6 8 0.310
MUB(3,%) 6 7 0.469
MUB(1,%) 6 6 0.728

It should be evident that/U B models implied by a given expecta-
tion may be substantially different; thus, it seems preferable to look for
a link among model parameters and subjects’ covariates, without a direct
reference to the expectation of this random variable.
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4. MU B models with covariates

It is reasonable to assume that the main components of the choice
mechanism (that is, feeling and uncertainty) vary with the subjects’ char-
acteristics as, for instance, gender, age, income, profession, level of edu-
cation, etc. Thus, it seems worth relating these to subjects’ covariates by
means of an explicit modelling procedtite

From a formal point of view, inV/U B models with covariates we
will assume that the@incertaintyparameterr is a function ofp subjects’
covariatesyy, Ys, ..., Y, and/or, similarly, thefeeling parameter is a
function of ¢ subjects’ covariate®/;, W5, ..., W,. TheY’s variables (or
a subset of them) may also coincide with thés variables (or a subset
of them).

Then, in order to classify/U B models according to the presence/
absence of covariates, we introduce the following terminology:

Models Covariates Parameter | Parameter
vectors space

e MUB-00 | no covariates 0= (m¢&) |1[0,1] x[0,1]

e MUB-10 | covariates forr 0= (3,8 | R x [0, 1]

e MUB-01 | covariates fog 0 = (m,v") | [0,1] x Re*!

e MUB-11 | covariates forr and¢ | 8 = (3',+')’ RPta+2

Suppose we have a sample of ordinal data (ry,rs,...,7,), and
assume that for each of tleunits we have several measurements on the

17 The problem of choosing the significant covariates far & B model is still open
since traditional correlation methods are not effective. In this regard, a study on asso-
ciation indexes and predictability measures for ordinal data might be fruitfully pursued.
Finally, some encouraging results has been obtained by tree-based methods as discussed
by Cappelli and D’Elia (2006a; 2006b).
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subjects summarized in the following matrices:

I oy yi2 -0 Yy I wip wie ... wyy

I yar Y22 -0 Yo I war wae ... wy
yo | o | we

Iy v oo Uip I wy w0 wyy

L Y1 Un2 oo Ynp I wp wpa ... Wy

To make the notation more compact, we introduce the variakjes
and W, that assume the constant valudor all the sample units; they
specify the constants (baselines) of the model.

We denote by, andw;,i = 1,2, ..., n thei-th row of theY andW
matrices, respectively, that is:

Y, = (yiOa Yi1, Yizs - - - 7yip); w; = (ina Wi, Wiz, - - awiq) ;

and let:

ﬁ:(ﬁovﬁla"'vﬁp)/; 7:(707717""’%])/'

In order to specify a correspondence among the real vauaddW
and ther € (0,1) and¢ € (0, 1) parameters, D’Elia (2003a) and Piccolo
(2003a) proposed a logistic mapping defined by:

1 P -1

) — — _Zs: Bs Yis .

(7 |y) = g = [L e 0]
(f ‘ wi)

R wwn}‘l.

1+ e~wiv

Notice that similar mapping® might be investigated as, for instance,
theprobit function: ®(z) = \/%7 I e~z 7 and thecomplementary log-
log function: F'(z) = exp{—exp(—=z)}. However, in the following, we

will limit the study to the logistic function.

18 |n this context the common considerations on the transformations in categorical
modeling apply; thus, logit and probit appear quite similar while complimentary log-
log should be an alternative when the impact of covariates is expected to cause some
asymmetric behavior in the response variable.
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Finally, the generad/ U B model with covariates is explicitly defined,
foranyi =1,2,...,n, by the probability distribution:

PT(R=T¢|ﬂ77)—;[(

o 1+ e—YiB

m—1\ (ewir) it 1 1
(14e @)™ m| m

TZ‘—]_

We again observe that this approach is logically related to GLM since
we relate the parameters of a model to subjects’ covariates. However, we
are not introducing ank functionbetween the expectation and the covari-
ates, and our probability distribution does not belong to the exponential
family. Indeed, the more relevant difference is that we are relating explic-
itly the parameters of the response distribution to the covariates while in
the GLM approach the relationship is established between a transforma-
tion of the distribution function and the covariates.

5. The maximum likelihood estimation via the E-M algorithm

In this section we discuss the computational steps involved in the E-M
algorithm'® for ML estimation of the parameters in thé/ B modef°.

The main advantage of the E-M algorithm f&fU B models is that
the involved log-likelihood splits into two functions where the observed
and the unobserved quantities (that is the probabilitihat the observa-
tion comes from one of the two sub-populations) are well defined and
neatly separated. Thus, it is possible to activate two alternating steps of
Expectation and Maximization converging to the ML estimate.

We denote byd the parameter vector for al/U B models; thusg
consists of two elements in the case af/d/ B model without covariates

19 A discussion of the E-M algorithm in a general statistical framework is contained
in McLachlan and Krishnan (1997) and Jorgenson (2002) and, for mixture models, in
McLachlan and Peel (2000).

20 The derivation of this algorithm for th&/ U B-00 model was obtained by D’Elia
and Piccolo (2005a), while the E-M algorithms fefU B-10 and)M U B-01 models are
in D’Elia (2003b). Finally, the E-M algorithm for the generalU B-11 model has been
fully developed by Piccolo (2003a). Notice that Tab#es 5, here reported, correct
some misprints contained in Piccolo (2003a).
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and of two parameters vectors in the caséff’ B models with covari-
ates, as shown in the previous section.

First, we define the log-likelihood functiof{@) of the A/U B model
without covariates, that is:

"o — én log {Pr (R — ()}
_ inrlog{w[b(r;f)—%}—i-%},

wheren, are the observed frequencies(é = ), r = 1,2,...,m and
we denote by

m—1

JCOR G

)(1 —&remTT r=1,2,...,m,

the shifted Binomial distribution.
The log-likelihood function of the\/U B-10 model, where the pa-
rameter is explained by some covariates, thatis f (Y, 3), is:

(68) =—> log (1+e¥P)+) log <b(ri;§) + 6ylﬁ> .
=1 =1

m

The log-likelihood function of thé//U B-01 model, where thé pa-
rameter is explained by some covariates, thatisg (W, ~), is:

= m—1\ e wivri—l) 1 1
-\ =0
€(0) ;:1 og {W K?“z B 1) (11 cwmym T m} + m}

Finally, if both ther and thet parameters are explained by covariates,
thend = (3, 6') andr = f(Y,3) and¢ = g(W,~), and the log-
likelihood function of the general/U B-11 model is:

i 1 m—1\ (emw)i 1 1
0(0) = E 1 _— - — — 7.
(6) — ©8 { 1+ e uiB [(n — 1) (1+ e—ww)m_l m] + m}
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All the steps required for the E-M procedures are reported in the fol-
lowing Tables 2-5, where we define the sample mean of the responses by

R, = Y. ri/n. In order to stress the correspondence among the four
tables, we have left a blank line where a single step does not apply.

First of all, we present the algorithm in absence of covariaté§ (-
00: Table 2); then, the procedure is shown when only one set of covariates
is present{/U B-10: Table 3 and/U B-01: Table 4); finally, the general
MU B model when both the parameters are functions of two (different or
coincident) sets of covariates is present®tl{B-11: Table 5).

Table 2. E-M Algorithm for a/U B model without covariates.
| MUB-00 Model with (m, £) |

= (m,8)"; e=10"% dim (0) = 2.
- 1 1
() ;n og{ﬂ[ (r;€) m}+m}
Steps
0 90 = (x0, 0 = (é ,m=F )’, 10 = ¢ (90).
L b(rig®) = (70)) (1=€%)" g(’”)mf’” r=12...,m
k) — 1—n (k) _
2 T(T,O())_’&—l—m ,r=12...,m.
- B > anT(T;B(k))
3 Rn (0( )) o ZT 11 nr’r(’r‘ 0(@) '
4 r(k+1) Z N, T 7" O(k
m—R,, (8%)
o ¢r = %
6
7 Q(k+1) (7r k+1) k:—i-l))’.
8 (k:+1 g( k+1)
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_ We observe that, in Tables 2-3, step 3, the conditional average rank
R, (6%)) is the average rank weighted by theposteriori probability

that each observed rank originates from the first component distribution
b(r;€).

Secondly, according to the Bayes’ theorem, the quantities:

Loa® 7T ® g (e g®
T(T;O(k))z 1+ T LA WA (Tg ),
ma) b (r; £F) Pr(R=r)

express the probability that theth unit belongs to the first component
(the shifted Binomial population) given th@R = r), Vr = 1,2,...,m.

Finally, a main problem of the E-M algorithm is the choice of a con-
venient set of starting values for the estimates, since this procedure is
generally slower than the second order convergence rates of the ML rou-
tines.

In the previous algorithm, we set the starting values according to the
following criteria:

e for m, we choose the midrange of the parameter space;
e for ¢, we choose the moment estimator, givee: 1, that iSR,,;
¢ forthe3 and~ vectors, we choose arbitrary small values (éd.).

Of course, when some priori information are available, it is conve-
nient to choose more appropriate initial values; in fact, Piccolo (2003b)
showed that moment estimates of the parameters fartbié3-00 model
are suitable starting values in order to accelerate the convergence of the
E-M algorithn?t.

The asymptotic variance-covariance of ML estimators has been de-
rived by D’Elia (2003a) forM U B-01 andM U B-10 models, under the
statement that the estimatg8sand4 were asymptotically uncorrelated.

21 Indeed, many different proposals have been suggested for this aim (McLachlan and
Krishnan, 1997, 70-73); however, in our extensive experience —in estimating models for
real data sets and running simulations experiments— we never need modifications of the
previous stated rules.
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This assumption has been adopted also by Piccolo (2003a) in the general
MU B-11 model.

However, parameter estimators of thé/ B models are correlated
and, in some circumstances, the effect of ignoring the asymptotic correla-
tion might be sensible; thus, in this paper, we remove this simplification
and obtain the correct resifits

6. The information matrix of theM U B-00 model

It is well known that the asymptotic variance-covariance matfi@)
of the ML estimatord of the parametefl of a random variabl& ~ f(z; 6)
Is obtained by inverting the negative of the expectation of the second
derivatives (the Hessian) of the log-likelihood functid).

Then, theexpected information matrik(@) and the asymptotic variance-
covariance matriy/ () are related by:

10) £ (Fg5y): VO - me) .

An alternative method, which shares the same asymptotic properties,
is based on th@bserved information matrixZ (), that is the Hessian
computed ad = 6.

Several Authors have supported statistical inference based on the ob-
served information with respect to the expected one; in this regard, the
main contribution is Efron and Hinkley (1978), while discussions with
empirical evidences are reported by Lloyd (1999, 30-31) and Pawitan
(2001, 244-247). Indeed, the observed information should be relevant
when inferential statements are related to the sample under considera-
tion, and thus it should deserve more importance for assuming statistical
decisions.

22 Empirical results on several case studies show that the effect of ignoring the cor-
relation among the parameters estimators may be relevant, since it leads to a general
understatement of standard errors. We report that this effect is less dramatic for the
¢ parameter (and for the parameters of the covariates explagdinglowever, we re-
mark that any inferential consideration based on likelihood functions and/or deviances
is unaffected by the amount of the parameters correlations.
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With reference to the\/U B model without covariates, D’Elia and
Piccolo (2005a) obtained the explicit formutaéor the expectednfor-
mation matrixI (@), where the parameters ale= (7,&)’. In this work,
instead, we deduce tlodservednformation matrixZ (6) when the model
is characterized by the parameté@rsaind also when the parameterand
¢ are functions of the covariates observed on the sample units.

The matrixZ(0) is obtained by explicit computation of the second
derivatives of the log-likelihood function defined by:

() =log[[ Pr(R=r:16) =3 n,log {p:(6)},

wheren, are the sampling frequencies@ = r), r = 1,2,...,m and
the probability distributiorp,(6) = Pr(R =r | w, £) has been defined
in section 3.

From an inferential point of view, in th&/ U B model without covari-

ates, the set of information containedsin= (ry,79,...,r,) is strictly
equivalent to the séty, no, ..., n,,)". In fact, for a given sample size
the random sampléNy, Ns, ..., N,,_1)’ is a minimal sufficient statistic
for 6.

However, in order to achieve formal results which are more homoge-
nous and comparable with respect®/ B models with covariates, in
the following expressions, we show also the formulae obtained by using
all the sample data = (ry,72,...,7,). Thus, we will use the symbol
r when it is useful to refer to the value of the observed random variable
R or for grouped data (and we need also the corresponding frequencies
n., r=1,2,...,m),and we will use the symbe}, i = 1,2,...,nwhen
the ordinal value is referred to the sample observation.

23 Theexpectednformation matrix for thel/U B model without covariates has been
obtained, by exploiting a well known result by Rao (1973, 367-368), which concerns
score and information functions for grouped data.
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After some algebra, we found ti34t

0% ((0) 1 & 1 &
Om2 = _F;nr 1_%" = p; 1_% ;
0%10(0) 1 «— 1 <
— +_anvr(b‘q::+_ sz%qra
om o€ T = T =
0% 0(0)

oz ——j{:7uqr u, — (1= g;)o?] j{:qz u; — (1 —g)vi] ;

where the quantities,, v, andg,, ¢;, forr =1,2,...,m, are defined by:

U_m—r_r—l. u_m—r+ r—1
' 3 1-& ' & (1-¢)?
1 T b,(€)
= n = =1—-(1-m)gq,;
@ T e
and, similarly, the quantities;, u; andg;, ¢/, fori = 1,2,...,n, are
defined by:
v‘_m—ri_ri—l. u'_m—ri+ r; — 1
Z 3 1-¢° ' & (1-¢)
1 Wbi(é)
P = ] = =1-(1-7
T ) (I-m)q

Then, the asymptotic variance-covariance ma¥fil@) of the ML es-
timators ofg, computed ad = 6 = (#, £)/, is obtained as:

24 The formal expressions presented here are aimed at minimizing the computational
effort; for instance, all the derivatives are expressed in terms of the probabhilit@®s
and their transformations, and so on.
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9200) 9200)\ !
om? omroé

520(0) 9%1(6)
omos 9/ (9=6)

7. The information matrix of theM U B-11 model

In MU B models with covariates the log-likelihood function has to be
expressed with reference to the sample units 1,2, ..., n, since each
of them conveys different information about the values of the covariates.
In this regard, it is convenient to introduce some simplifying nota-
tions* to obtain the second derivatives 6f0).

Thus, foranyi = 1,2,...,n, we let:
—1
ki = (m ); by = e 4P ci=e
r; — 1
1 (ci)" !
E(B)=——: B =k .

In this way, the probability distribution for the generdllU B model
may be writter® as:

and the related log-likelihood function is expressed by:

() - Z os [ ) { i) - L1+ 1.

25 The objective of these settings is to separate inthe B modeling the role of
the B8 and~ parameters, respectively. Then, we will omit explicit references to these
parameters when no confusion occurs.

26 Notice that theZ; are functions only of thg parameters, and th; are functions
only of they parameters.




58 D. Piccolo

We also let:
1
F() =170 aly)=0i-1)—(m-1{-F);
bi C;
E,=FE,(1—-F,) = : F,=F(1—-F,) =
(3 Z( Z) (1—|—bl)2, A ’l( Z) (1+cl)2)
and

when no confusion arises.

In the sequel, we will need the following derivatives, fet 1,2, ..., n:
db; _
3@9 = _yise_ylﬁz_yisbi; 82071727"'ap;
dc;
¢ - _wite_wi’y = —Ws Gy, t:071727"'7Q;
OV
0 F;
L= ZsEzl_E’L; 82071727"'7 )
5. Yis Ei( ) p
0 B,
= _witaiBi; t:O>1727"'7Q;
O
8(11'
= —Dwy F1-F); t=0,1,2,...,q.
5. = (m—DuwaF(1-F) q

We generalize the symbols of the previous section, by defining:
¢ =1-(1-E)g; Q=q(1-q) i=12..n

whereq; = 1/ (mp;(0)); i = 1,2,...,n, has been already defined with
reference ta\/U B-00 models.

After lengthy algebraic calculations, we can finally obtain the second
derivatives of the log-likelihood function. For ary= 0,1,2,...,p and
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t=0,1,2,...,q, they are expressed, respectively, by:

0*0e) —iyisyit{E’i_@i};
i=1

aﬁs aﬁf

0% ((0) - ~

aﬁsa’Yt - ; yis Wit Q’L )

92 1) " -
I A W D" F —a20, " .
878 8%5 ; Wis Wit {(m )qz 1 a@ Qz}

8. The information matrix of theM U B-01 and M U B-10 models

The general results obtained for théU B-11 model require some
modifications in the cases 8f U B-10 andM U B-01 models, where only
m or ¢ are functions of covariates. Thus, in the following table, we collect
the symbols we need for these models:

[ Symbols] Model MU B-10 [ Model MU B-01 ]
pi®) | BBzl | m{BO) gt
‘ , m—1 (e~wiv)ri—l
B;(v) B;(§) (m _ 1) 0t e—w)ym—1

E;i(B) 1t eviB ™
1
Fi(v) 13 pnp——
. 1 1
& mpi(B,€) mpi(m, )
q; 1-q; {1-Ei(B)} 1-q {1-7}

Finally, the information matrices for thel U B-10 andM U B-01 mod-
els are expressed by the following formulae, where the dimensions of
each component matrices have been indicated:
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« [MUB-10

[826( )] [826(9)}
. 083005, (p+1,p+1) 9Bs 0€ (p+1,1)

[82 (e )} [826(9)]
050 B: ] (1,p1) 962 J (6=9)
where: ,
PUO) _ N~ o (F 5.
aﬁsaﬁt - Zz; Yis Yit {Ez Qz} )
H? 0(0) " ~
8/6586 - _ZyisviQi3
H? £(0)
afaﬂt - _zylthQl7
0% 0(0) -
862 - ; {ul qz U Q’L} .
MUB-01
{a?z(e)} [W(e)]
7(6) - or® OOVt ] (1,441)
[82 ( )} [82 ( )}
Ovs 0 (g+1,1) 975 Ot (¢+La+1)/ (9=6)
where:

d%4(0) 1< 2
W = 7_‘_22;{1_(]2}

D% 0(0) 1 & .
o7 Oy = = ;wztaz%(h‘ ;
020(6) 1 & .
Do = = ;wzsaz%%’ )

9 ((6) = zn:wz‘swit{ —1) 4 F; — a Ql}'
i=1
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9. A unifying scheme for numerical implementation

~ 1
In the previous sections, the matix(6) = [I(O)} has been ob-

tained for each type at/U B model.

Specifically, the matrixd (8) of a MU B model without covariates
has dimension$2 x 2) and it is computed by the formulae obtained in
section 6. Instead, fak/U B models with covariates, the matriX(0) is
evaluated by means of the formulae presented in sections 7-8.

In this section, we now present a unifying scheme that allows us to
simplify the numerical implementation of the variance-covariance matrix
V (6) in a matrix-oriented language

We consider the followingnputsandoutput

| INPUT | OUTPUT |
the fixed value ofn ¢ the variance-covariance matix(6)
the sample vectar

the sample matrice¥’, W
the ML estimates3, ¥

and we suggest to proceed as follows:
1. Compute probabilitiep;(8), i = 1,2,...,n;

2. Compute the following vectors of length according to the defini-
tions given in sections 6-8:

[ Models| Vector elements |
MUB-00 | g, q;, vi, u;
MUB-10 | g, ¢}, v, Ei, @z
MUB-0L | ¢, 4}, ai, Ey, F, Q;
MUB-1L | g, ¢}, as, Fy, Qs

27 The implementation we will discuss about is related to ¢héU'SS language.
Minor modifications are necessary for programmingiirfand S-plus) orM AT LAB
languages.



62 D. Piccolo

3. Define the vectors, g, gio, goi, b, Whose elements far=1,2,...,n
are specified in the following table:

| Models | Vectors| Elements |

MUB-10, MUB-11 f fi=E; — Q;

MUB-11 g | 5=a0qQ

MUB-10 gio J10,i = Vs sz
_ - ai q; q;

MUB-01 go1 o1, = 44

MUB-01, MUB-11| h | hi=(m—-1)q F — a0,

Given the sample datgr, Y, W}, theobserved information matrix

~

Z(6), computed a@ = 0, is obtained by:

~

T11(0)  T15(0) T Ty

7(0) = - =1+
( ) .2-21(9) 122(9> 112 IQ2

where each sub-matrix is specified as foll&fys

28]t is convenient to introduce thelement-wise matrix producd ® v between a
matrix A and a vectow (with the same number of columns).

Formally, if A is a(n x p) matrix andv is a(n x 1) vector, we define thelement-wise
matrix productas the matrixB = A © v of dimensiongn x p) matrix whose elements
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[ Models [ i | Tin=7j | Too |
MU B-00 #Z{l —q) _%Zvi%q: Z{Uz g — vy @z}
=1 =1 =1
(2,2) (1,1) 1,1) (1,1)
MUB-10 Y'(Y © f) ~Y'g1o > {u a — v} @i}
i=1
(p+2,p+2) (p+1,p+1) (p+1,1) (1,1)
MUB-01 Ly {1-q¢}? G W W' (W o h)
=1
(¢+2,9+2) (1,1) (1,g+1) (q+1,q+1)
MUB-11 Y'(Y © f) Y (W ©g) W' (W © h)
(p+ag+2,p+q+2) || (+Lp+1) | (p+1lq+1) (g+1,q+1)

Finally, the asymptotic variance-covariance maix@) of the ML
estimators is computed for aly U B model as:

Tn T\

O P {I(é)rl.

10. Inference on feeling and uncertainty parameters

The formulae presented in the previous sections are suitable for sta-

tistical decisions concerning the parameten the MU B models.

b;; are obtained by the relationships:
{bij}z{aijvi}, i:1,2,...,n;j:1,2,...,p

This operation is quite common in matrix-oriented languages.
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In some applications, the inferential interest focuses directly on the
uncertainty(7) and feeling(§) parameters, while the previous asymp-
totic expressions only refer t8 and/or~, respectively. This problem is
relevant when the population is stratified and we use the stratification fac-
tor as a covariate for one or boliU B parameters;for instance, usually,
stated preferences differ according to gender, occupation, residence, etc.
Thus, it will be interesting to account for such variables when making
inference onr and¢ conditional to the gender, s&y

It is convenient to embed the above problem in a general framework,
and to derive the asymptotic standard errorssfoand £, respectively,
given a subject'profiled; = (do;, dyi, - . ., di;), foranyi = 1,2, ... n.

Here, we denote by “profile” the values assumed by the subject’s co-
variates that are present in the estimatéd B model; thus, in a sense,
the profile characterizes the subject with relation to the stated choice.

As usual, the first components; = 1, and we denote bk the number
of subject’s covariates required for specifying the profile.

Then, we apply the delta meth3do the estimators defined by:

1 . 1
. d.

Ai: 3 dZ:—A, = .
™ W(ﬁ) | 1 _i_e*diﬂ 1 +6_di7

Hereafter, when there is no risk of confusion, we omit the reference

29 A real situation where this approach has been successfully appligdi& mod-
els is discussed in D’Elia (2007).

30 Specifically, let) = (61,65, ... ,6;)". For an asymptotically unbiased ML estima-
tor T,, = ¢(0), the asymptotic variance @f, is approximated as:

Var(T) ~[6'V(0)d]y_s,

where
0 0

5— (g;lgw), a(,zg(e),...,aakg(e))

andV () = ||Cov(8s, 6,)| is the variance-covariance matrix of the estimator

For the multivariate version of this approach refer to: Rao (1973, 388); Serfling (1980,
122-124); Casella and Berger (2002, 241-245) and, for categorical data, to: Agresti
(2002, 73-74).
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to the given profile. Thus, we let:

0 A0 . ) A\
50 = (55 7B) 5 7B 7))
0 0 0 !
0, = | —&®), —£&N),....,.— &) | ;
s = (et s E3)
where, foranyi = 1,2,...,n:
0 . e~diB
a ﬂ-(ﬁ) = ds7,—A2:dsz7%z(1_7ATZ>7 52071727"'7]);
Ps (1—|—e—di5>
9 ¢(4) = d e —dy&(1-&); t=0,1,2
a')/t Y - tl (1+e—di’$’>2_ (ZAN 1) =U, 1L 4...,9.

If V(8) andV (v) are the variance-covariance matricegdofnd~
estimators, respectively, then —for a well defined profile— the asymptotic

~

variances ofr(3) and{(%) are given by:
Var(n(B)) =~ [65V(8)ds], 4

Var(€(%)) ~ [8,V(¥)y] _. .

These results are useful for adyU B model with covariates. For
the sake of simplicity, we develop in detail the case 8f & B-11 model
when a single dichotomous covariate, assuntifig values?, is related
both tor and{. As a consequence, the only admissible subjects’ profiles
are:

dy = (17 O),7 d, = (17 1)/

Then, omitting explicit reference to the subjects, the conditional pa-

31 This situation is common, for instance, when the covai@eederexplains a dif-
ferent behavior of subjects’ preference in terms of both feeling and uncertainty.
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rameters are defined in the following scheme:

. . 1 . N 1
7T0—7T(5)|do—1+67gO 7T1—7T(5)|d1—m
. 1 . 1
=) d=1"= 1 &= =%

Given the profiled, = (1, 0), for anyi = 1,2, ..., n, the vectors of
the derivatives, are:

a0 10 (7%0(1 — 7o)

0

a0 &0 -6\ ..
5 = |7 Y —aa—éa,
& 0

Similarly, given the profiled; = (1, 1)/, for anyi = 1,2,... n, the
vectors of the derivatives, are:

o =~ ~ ~
8—71'1 7T1(1—7T1)

0p = ZO N ( =m(l—m)d;
8_,817T1 7%1(1—7?(1)

0y =

These expressions may be stated, for any prpfie0, 1, in a compact
way as:

>,
2g g

D= A=Ay d;
b= §(1-¢)d,.

=Y
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If we partition the variance-covariance matridé$3) andV () as:

v (B Y (S
i o P oy

the asymptotic variances of theand¢ estimators, for the given profiles,
are:

Var(z;) = [6,7v(8) 85

B=5
B) (B
mammra ()
= |m(l—my ;
! ! ® B !

Yo Y11/ g-g

Var) = |89V ()8 |

=4
L
- [&(1_&)} G\ @
Vo1m Un

Y=%

Given the dichotomous nature of the covariates, the previous expres-
sions may be further simplified. For instance;j i= 0, the asymptotic
variances become:

Var(my) =~ |7 (1—7?0)]2 (Ué§)>5:ﬁ;

vy ~ [o0-6" (@)

and so on.

We apply the previous formulae to a real data set ef 354 sample
units related to the ranking of the concern for the immigration in the city
of Naples. D’Elia and Piccolo (2005b) obtained/&/ B-11 model whose
estimates are reported in the following table.
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] Parameters estimat¢§tandard error$

By = 1.599 0.244
B = —0.801 0.354
Yo = —1.468 0.409
4 = —0.055 0.016

The covariate for the uncertainty parameteis the Gender(=0 for
Males, =1 for Females) while the covariate for the parameters the
Ageof the subject (expressed in years and in the intgr\@&l 55) for the
observed sample). The corresponding estimated parameters are all high
significant.

We compare two profiles by defining atderly man(Gender = 0
and Age = 55 years) and goung womar{Gender = 1 and Age = 19
years); thus, in this example, we have a different profile for the variables
Y (concerningr) andW (concerning), respectively.

Elderly Man: dy = (yo=1,%1=0 | we =1, we; = 55)
Young Woman di = (yo=1yn=1|wyp=1, wy=19)

The results are shown in the following table (we report in parenthesis
the asymptotic standard errors of the estimates), wher®i¥teconfi-
dence intervals based on the previous asymptotic approximations are also
presented.

| Profiles | & | crm || ¢ | crE |
Elderly Man || 0.832 [ [0.764 — 0.900] [| 0.011 | [0.0002 — 0.022]
(1,0 | 1,55)" | (0.034) (0.005)
Young Woman 0.690 | [0.568 — 0.811] || 0.075 | [0.052 — 0.098]
(1,1 ]1,19)" || (0.061) (0.012)

Notice that the two profiles imply different parameters as confirmed
by Figure 3, where we plot thé/U B probability distributions condi-
tioned by the profilegl, andd,, respectively.

32 Notice that, in this study, the “feeling” is indeedraeasure of concern
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Figure 3:Profiles of Immigration concern according fdU B models.

However, the confidence intervals for the uncertainty paranieter
have an overlapping region while the corresponding intervals for the feel-
ing paramete(¢) are well disjoint among the two profiles. These consid-

erations support the conclusion that while similar in the uncertainty, the
concerns for the immigration problem expressed by young women and

elderly men are significantly different.

11. Finite sample performance behavior
In this section we perform a simulation experiment to assess the fi-

nite sample size performance of the asymptotic standard errors as com-
puted by expected and observed information matrices fontie3-00

modef3,
Givenm = 9, we choose a/U B model withm = 0.3 and{ = 0.8;
33 An extensive simulation experiment for tdéU B-00 model has been carried out

by D’Elia (2004) using the expected information matrix.
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such a model is characterized by a positive skewness with a mdtle-at
2 and a secondary mode/t= 3. The mean value of this random variable
isE (R) = 4.280 and the uncertainty factor {8 — 7)/m = 0.078.

The results that we present are based0h simulations; however,

100 simulations were sufficient to produce stable results. With regard to
the sample size, the experiment has been repeated$ot 00, 200, 300,
500, 1000, 5000.

For each simulation experiment and for both parameters, we show the
theoretical standard error computed by assuming that the parameters are
known (using the expected information as in D’Elia and Piccolo, 2005a);
then, we compute the average and the standard deviation of the ML esti-
mates obtained in each run; finally, we present the average of the standard
errors computed by means of the expected and observed information ma-
trices, respectively.

n— 100 200 300 500 1000 5000

Statistics

AVER(7) 0.3078 | 0.3063 | 0.3025 | 0.3021 | 0.2988 | 0.3019
AVER(é) 0.7992 | 0.7995 | 0.8013 | 0.7993 | 0.8006 | 0.7993
STDEV(7) 0.0935 | 0.0673 | 0.0544 | 0.0413 | 0.0306 | 0.0136

AVSTERREXP() || 0.0943 | 0.0671 | 0.0548 | 0.0426 | 0.0301 | 0.0135
AVSTERROBS(r) || 0.0944 | 0.0671 | 0.0548 | 0.0427 | 0.0302 | 0.0135
STDEV(§) 0.0511 | 0.0364 | 0.0277 | 0.0221 | 0.0148 | 0.0069
AVSTEXP(E) 0.0495 | 0.0340 | 0.0276 | 0.0212 | 0.0150 | 0.0066
AVSTDOBS() 0.0496 | 0.0342 | 0.0276 | 0.0213 | 0.0151 | 0.0066

For a full understanding of the previous table, we list the abbreviations
used for each estimated parameters:

— AVER: the average of the estimated parameters obtained by the
simulations;

— STDEV: the standard deviation of the estimated parameters ob-
tained by the simulations;
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— AVSTDEXP: the average of the standard deviation based on the ex-

pected information matrix of the estimated parameters in the simu-
lations;

— AVSTDOBS: the average of the standard deviation based on the ob-

served information matrix of the estimated parameters in the simu-
lations.

The results of the simulation experiments enhance the following ptints

The main differences among the standard errors are registered only
for small sample sizé3

Generally, all the values shown in the previous table are similar,
confirming that standard errors based on expected and observed in-
formation matrices are very close. Anyway, the standard errors
based on observed information matrices are generally larger than
those derived by the expected ones, although their difference is
quite small.

The simulated distributions of the ML estimates faand¢ are ade-
guately approximated by a Normal distribution, also for small sam-
ple size; this confirms that the correctness of the classical asymp-
totic theory still holds in statistical decisions concerning #hé& B
parameters estimators.

In all situations, the standard errors of thestimators are lower
than the corresponding standard errors ofitlestimators and their
ratio ranges betweehand4.

The simulated distributions of the standard errors derived by the
expected and observed matrices are similar in all cases; however,

34 Some considerations also derive from box-plots, kernel density estimates and fur-
ther statistical measures that we omit to show for space constraints.

35 Strictly speaking, the results far = 100 are not reliable since, fan = 9, we
need at least 150-200 units to get significant result®/iti B modeling. As a matter of
fact, whenn < 100, it is highly probable that some ordinal value might not be observed.
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those related tg denote a positive skewness (caused by some ex-
treme values) while those related todenote a low kurtosis (be-
cause of the high concentration of the results around the mean
value).

Thus, we can apply the asymptotic results of previous sections, even
for moderate sample size. Moreover, our confidence is always higher for
the feeling parameterthan for the uncertainty parameter

Finally, we suggest the use of the observed information matrix as a
starting point for asymptotic statistical decisions on & B model pa-
rameters since this quantity is related to the observed sample and thus is
able to capture the features of the data in a better way.

12. Concluding remarks

In this paper, we obtained the asymptotic variance-covariance of ML
estimators for any/ U B models, derived from the observed information
matrix, and some results about direct inference on the feeling and uncer-
tainty parameters i/ U B models with covariates.

The simulation experiment has confirmed that the difference between
the standard errors evaluated from the expected and observed information
matrices for the\/U B model without covariates is not generally signifi-
cant, even in the case of moderate sample sizes.

Further topics to be explored, for a fully efficient implementation of
MU B modeling, include the following issues:

e Simulated comparisons of classical ordinal add’ B models.

e Heteroscedastic behavior of the choice mechanism and inclusion of
overdispersion effects.

Efficient methods for the selection of significant covariates.

Explicit inclusion of objects’ covariates il U B models.

Significance levels of fitting measures fofU B models.



Observed information matrix for MUB models 73

All these issues require further investigations about the related statistics
distributions, and in several cases non-parametric techniques may be sug-
gested.

Finally, it is worthwhile to mention that, hithertd/U B models have
been successfully applied in several different areas:

¢ the preference analysitowards: colors (expressed by young peo-
ple, children, air force cadets) in D’Eliat al. (2001); the cities
where to live in D’Elia and Sitzia (2002); the future professions (to
be chosen by Political Sciences students) in D’Elia (2003b);

e theconsumers’ preferencef: olive oil brands in Del Giudice and
D’Elia (2001), and of salmon in Europe in D’Elia and Piccolo
(2007); theevaluation surveyabout Orientation services and Uni-
versity teaching in D’Elia (2001) and D’Elia and Piccolo (2002;
2006);

¢ the levels of perceptiof: chronic pain in D’Elia (2007); word
synonymy in Cappelli and D’Elia (2004; 2006c¢); humor in Balirano
and Corduas (2006);

e thegrade of concerifior: the main problems in a metropolitan area
in D’Elia and Piccolo (2005b).

We remark that the MUB modeling approach is a general framework
for the statistical interpretation of ordinal data, and it is not strictly related
to preferences and evaluations analyses. For instance, given a random
sample of related geographical units (boroughs, municipalities, districts,
counties, regions, etc.), we can give an interpretation ofrdin&ing of
the political partiesas a function of socio-economic, cultural and envi-
ronmental variables, by estimating( B models with covariates.
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