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Summary: In this work we propose a fast algorithm for computing the exact small sam-
pling distribution of a given statistic, when the population random variable is discrete.
The algorithm relies on a recursion on block matrices that describes all possible random
samples that can be generated. In this way, the power of modern programming which
defines objects in term of matrices is fully exploited for effective computations. Finally,
some instances of applications are shown.
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1. Introduction

The evaluation of the exact distribution of a statistic is a relevant target
in statistical inference, with reference to estimators, test statistics and con-
fidence intervals. As a matter of fact, the exact distribution of a statistic
allows:

1) to evaluate the percentiles and confidence intervals;
ii) to assess the performance of many asymptotic results.

In fact, these problems are relevant when the size of the sample is
small since, for moderate and large sample sizes, asymptotic results are
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generally applicable. Thus, we limit our numerical developments only to
sample of small size.

In this regard, we note that the sample space of all possible samples
of size n increases exponentially with n. Thus, the programming of all its
elements is a demanding task.

In the following, we refer to random samples that are generated by
discrete random variables, and we investigate an algorithm that exploits
the power of matrix languages in order to save time in the sequential loo-
ping. This capability may be easily applied to modern matrix languages
(as GAUSS, R, MATLAB, for instance). Then, we implement the pro-
posal in the first two environments and check the proposed procedure for
some statistics. Some final comments conclude the paper.

2. Notation and formalization

Let X ~ p(x;0) be a discrete random variable defined over a fini-
te support which, in first instance, we suppose to be Sx = {z : = =

1,2,...,m}. In the final section, we will generalize itto Sx' = {z : © =
L1, X2y, T}

Then, X =(X3, Xs,...,X,,) is a random sample of size n, so that
X; ~ px(z;0),i =1,2,...,nis a collection of n identically and inde-

pendently distributed random variables.

We let C,,(X) be the sample space, that is the collection of all the
random samples X of size n generated by Bernoulli drawing from X.

For any well defined real function 7°(.), we are interested in deriving
the exact probability distribution of 7,, = T'(X ). Since S is a discrete
support, the mapping X — T,, will define a discrete support St = {¢ :
t=ti,ta, . taim -

Thus, the statistic 7}, will assume real values with some probabili-
ty distribution pr(¢;0), ¥t € Sr. Indeed, we are looking for the exact
derivation of pr(.;0).

For any observed sample x = (x1,%2,...,,) , we compute the
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probability:
Pr(Xlzl'l, XQZZL'Q, ceey Xn:ZL‘n)

:PT(Tn:T<I17I27"'7$n) ) :HpX(‘rZJe)

=1

To obtain the distribution of 7}, we generate all the possible random
samples of C,(X) and compute for each of them both the value ¢t =
T(x1,2,...,x,) and the probability Pr (T, = t). In this way, Vt € Sr,

PT(Tn:t): Z Pr(Xlle,XQZIL'Q,...,Xn:l'n).

T(z1,22,...,Tn) =t

From an operational point of view, we need to generate all the sam-
ples in C,,(X), compute for each of them the joint probabilities and the
values that the statistic T(z1, x, . .., z,) will assume; then, by summing
the corresponding probabilities over the same values of ¢t € Sy, we get the
exact probability distribution of the statistics 7;,. It is immediate to verify
that the resulting distribution is a well defined probability distribution®.

3. An example

Suppose we draw a sample of size n = 3 from a discrete random
variable X defined over a support Sx with m = 5. Then, for generating
all the samples in C,,(X), we need an algorithm that produces the 5% =
125 samples obtained by changing the values that the 3 random variables
in X = (X1, X5, X3) assumes in the support of X, that is the number
between 1 and 5.

If, for instance, we are interested in deriving the probability distribu-
tion of the sample range statistic T,, = maxz(X ) — min(X ), we have
to define the related support Sy = {t : t = 0, 1,2, 3,4} and compute the
probabilities for each ¢ € Sy. Indeed, we need to implement an algorithm

I Of course, the approach can be easily generalized to sampling without replacement
or sampling with unequal probabilities.



94 D. Piccolo

that will generate all the possible samples in C,,(X), in order to compute
the related probabilities by exploiting the same loop.
This result could be simply obtained as follows:

for 1 (1,5,1);
for 3 (1,5,1);
for k (1,5,1);
to(i, 3, k) = max(i, j, k) — min(i, j, k);
Pr(Xy=i,Xo=j, Xs=k)=
=Pr(X=1i)Pr(X=j) Pr(X =k);
endfor;
endfor;
endfor;

Then, by selecting the distinct values of ¢,, and by summing the corre-
sponding probabilities, it is immediate to derive the sampling distribution
of T;,, for any well defined discrete random variable.

However, the time required for this loop is of the order m”, that is
unfeasible for any real sample sizes, although small.

To simplify the following discussion, we prefer to discuss in some
detail what happens in the previous example, when (m = 5;n = 3).

Then, we list all the 5> = 125 elements of C(X) in a matrix A(C,)
where each row represents the observed sample. In each row, we list also
the corresponding observed value of the statistic 7;,.

Looking at the next matrix A(C,), it is immediate to realize that the
third column vector is formed by expanding each member of the sequen-
ce (1,2,3,4,5) for 5° = 1 time and then replicating the resulting vector
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of length 5 for 52 = 25 times.

1 1 1 0
1 1 2 1
1 1 3 2
1 1 4 3
1 1 5 4
1 2 1 1
1 2 2 1
1 2 3 2
1 2 4 3
12 5 4
13 1 2
1 3 2 2
1 3 3 2
AC,) = =
5o 3 4 2
5 3 5 2
5 4 1 4
5 4 2 3
5 4 3 2
5o 4 4 1
5 4 5 1
5 5 1 4
5 5 2 3
5 5 3 2
5 5 4 1
5 5 5 0

Then, the second column vector is obtained by replicating each mem-
ber of the sequences (1,2, 3,4,5) for 5! = 5 times and then replicating
the resulting vector of length 52 = 25 for 5! = 5 times.
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Finally, the first column vector is obtained by expanding each member
of the sequence (1,2, 3,4,5) for 52 = 25 times and then replicating the
resulting vector of length 5% = 125 for 5° = 1 time.

It is worth to note that each vector is formed by 5% = 125 elements.

This example shows that all the possible samples in C,(X) can be
produced by implementing an algorithm able to provide a nested sequence
of vectors of increasing size based on the original sequence in Sx = {x :
r =1,2,...,m} and made up by repeating the single elements.

In order to reach this objective in a general form, in the next section,
we will introduce some vector operators.

4. The algorithm in a matrix language

For any column vectors
/ / /
v=(v1,02,...,0,), @a=(ay,az,...,a,), b= (b1,ba,...,bp)
and any positive integers r and s, we define:

e Expand operator:

T __
Ev]" = UL UL, - U1, V2,02, U2, ey Upy Upy ooy Up
vV Vv
7 times r times r times
e Replicate operator:
!/
S
Rv]* = | vi,v2,...,0p, V1,02, ...,0p, ..., V1,V2,...,0,
Vv ~ Vv
1 2 s

e Joining operator:

a, by
az  bo

aJb=
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With an obvious notation, the last operator may be generalized:

11 A2 ... Qip
JasmTeg . Ja,=|
apr Gy ... Qpp
Of course, if rows(v) = p, then
rows(E[v]") = rp; rows(R[v]*) = sp.
Now, let us define by w = (1,2,...,m)’ the column vector consisting

of the first m positive integers. Then, the matrix A(C,,) containing all the
possible random sample of size n may be written as’:

AlC,) = <R[5[u]mn71]m0> T T (R[g[u]ml]mn72>
T (REm™ ™ ") =g (R [5[u]m“}m"_l) |

i=1

This is the main result of our paper. Then, to check in a real situation
the correctness of the previous expression, we could let m = 5;n = 3
and derive the results of the worked example that we have fully discussed
in section 3.

It is worth to note that the required loop is of order n, lowering the
time required for generating the elements of C, (X ). Now, if a matrix
language is really effective for manipulating vectors as with the previous
operators by means of intrinsic commands, we can deduce that passing
from a loop of m™ iterations to a loop of n iterations one achieves a
substantial reduction in computing time.

2 We are writing m®, m?, ... (instead of 1, m,...) in order to stress the sequential

pattern of the orders of the implied operators.
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5. The implementation of the algorithm

We implement the proposed procedure in two of the most widespread
languages in the statistical community®. Their ability derives from the
possibility to manipulate matrices in an effective way.

First of all, we refer to the GAUS'S language, where we have the
following correspondences*:

Ev]" = reshape (vec(v'. x ones(r,rows(v))), rows(v) * r,1);
R[v]* == reshape(v,s*rows(v),1);
aJb = a ~ b;

Instead, if we refer to the R language, the previous operators can be
defined more easily to the flexibility of the intrinsic command rep ().
As a matter of fact, the R correspondence is the following:

Ev]" = rep(v,each =r);
R[v]* = rep(v,s);
aJb = cbind(a,b).

Thus, in GAUSS, the following procedure produces the matrix A(C)
containing all the random samples.

3 GAUSS language is a copyright software distributed by Aptech System, Inc.
(2004); we are referring to the version 6.0.25. R is an open-source software freely
available from the R Development Core Team (2004); we are referring to the version
2.0.1. A programming environment which shares many similarities with R is S-plus,
distributed by the Insightful Corporation, Seattle, Washington.

4 Note that the elementwise operator .* between the p rows vector v and the matrix
of 1's ones(k,m) produces a (k, m) matrix whose k rows are replicates of the rows
vector v.
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PROC GENERAG (m,n) ;

LOCAL vett,dim, samplemat, j;

vett=seqga(l,1,m); dim=m"n;

samplemat=reshape (vett,dim, 1) ;

for 7(2,n,1);

samplemat=

reshape (vec (vett’.*ones(m”(j-1),m)),dim,1l)~samplemat;
endfor;

RETP (samplemat) ;

ENDP;

In the R language, the same result is accomplished by the following
function.

GENERAR<-function (m,n) {
serie=1:m;samplemat=rep(serie,m™(n-1));

for(j in 2:n)
{ samplemat= cbind(rep(rep(serie,each=m"(j-1)),

m™(n-j)), samplemat)}
return (samplemat) }

Although the R function seems considerably simpler than the GAU S .S
procedure, we found that the computation times of GAUS'S are signifi-
cantly shorter than R on the same platform; however, the need of mani-
pulating matrices of increasing size might reduce this advantage’.

Of course, the previous procedures can be immediately modified for
generating the matrix of the corresponding probabilities; in this case, it
is convenient to define an external proc, or a function, where the discre-
te probability distribution of X is well defined, for any fixed parame-
ter 6. Then, we should add a line in the code just after the instruction
samplemat to evaluate the probabilities.

> For instance, with a default setting, we get an “insufficient memory” message from
GAUSS when m = 3; n > 14 while R is yet operating.
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6. Some experiences

In this section we apply the proposed algorithm to the computation
of the exact probability distribution of two statistics, both generated by
sample experiments from the discrete Uniform distribution.

6.1. Sampling distribution for the range

For instance, suppose that X ~ Ud(m) is a discrete Uniform random
variable on the support Sx = {x : x =1,2,...,m} so that:

Then, for m = 6 and n = 3, we require the exact distribution of the
statistic sample range defined by:

Tn = mal'(Xl,Xg,Xg) — min(Xl,Xg,Xg)

where (X7, X5, X3) is a random sample generated by X. In fact, the
problem is equivalent to search for the exact distribution of the range of
the points we get in the throwing of 3 fair dice.

Then, if we draw a random sample from X of size n = 3, all the
possible samples in C consist of 6* = 216 elements generated from the
allocation with replacement of 6 distinct numbers in 3 urns.

Thus, after generating the 216 triples of ¢,,, we need to list only the
distinct ones and compute the corresponding probabilities®. Finally, when
Spr ={t: t=0,1,2,...,5}, Figure 1 shows the computed sampling
distribution of 7}, forn = 3,4, ...,8.

Notice how the shape of the sampling distribution varies also at small
changes in the sample size.

6 Matrix languages have convenient commands for this; e.g., in GAUSS, the
command UNIQUE (v, 1) selects just the distinct elements of v.
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Figure 1. Exact sampling distributions of the range T,, when X ~ Ud(6).

6.2. Sampling distribution of an index of diversity

In the socio-political literature, it has been discussed an index of di-
versity, strictly related to the well know Gini index’. The index is aimed
to measure the number of relevant parties (or groups) in policy analysis
of institutions (e.g. Parliament, Senate, etc.). Most of the current work
in this area is limited to descriptive analysis and, generally, to the stu-
dy of frequency distributions. Of course, this kind of measure might be

7 Independently, we introduced this measure in Piccolo (1998, 153), and applied
its normalized version in D’Elia and Piccolo (2005b) for interpreting the uncertainty in
choosing from ordinal random variables. Since its range is greater than the Gini index
and the entropy measures, this index could support an increased discrimination power.
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introduced also as a diversity measure of discrete random variables.
For a discrete distribution, defined over the support Sx = {z : = =
1,2,...,m}, the index of Laakso and Taagepera (1979) is defined by®:

A 1

m

S AP (X =)}

If the sampling experiment generates a random sample of size n, then
the corresponding statistic is

nQ

— 7’”1 s
2
>N
=1

being N, the absolute frequencies of theevent (X = z), z = 1,2,...,m.

For X ~ Ud(m), we derive the exact sampling distribution of T,
when m = 3 and n = 12. In this case, the elements of the sample
space C are 3'? = 531441 and to each of them corresponds a probabi-
lity of 1/3'% ~ 1.882 x 1075. Moreover, the statistic is a function of
(N7, N2, N3) which is a Multinomial random variable whose probability
distribution is:

T,

12! 1

PT(Nl=n17N2=n27N3=n3)=m@7

where 0 <n; <12,i=1,2,3; > n; = 12.

81t is immediate to show that A varies between m when the random variable is
a discrete Uniform, and 1 when it degenerates to a single value. Thus, a normalized
expression on [0, 1] is defined by considering (A — 1)/(m — 1).
It is also worth to note that, by analogy to the Box and Cox (1964) transformation, a
generalized version of A defined by:

Ar—1
A(N) = ,
0=
produces the Gini (for A = —1), the Simpson (for A — 0) and the Laakso and Taagepera
(for A = —1) indexes, respectively. We are currently studying what A is optimal for

inferential purposes.
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Following the algorithm discussed in section 4, we found that the sup-
port of 7}, is extremely variable depending upon the arithmetical combi-
nation of m and n. Then, if we sum over Sx the constant probability 1 /312
we obtain the exact distribution of T,.

To give an idea of the atypical shape of this kind of distribution, we
show in the Figure 2 the exact probability distributions of 7}, for m = 3
and varyingn = 3,6,9, 12.
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Figure 2. Exact sampling distributions of the index of Laakso and
Taagepera when X ~ Ud(3), for selected n = 3,6,9,12.



104 D. Piccolo

7. Generalizations and concluding remarks

In general, the previous procedure should be modified for the sup-
port Sy’ = {z : x = x1,79,...,2,}. In fact, we need to establish the
correspondence ¢ <— x;, for any 7 = 1,2,..., m. In other words, the
generation of the elements listed by the procedure are simply the indexes
of the sample elements and not their values.

In this way, the matrix we obtain from the procedure is just the ma-
trix of the indexes of the elements in the sample. The programming lan-
guages, mentioned in the previous sections, have effective commands to
relate the indexes of a matrix to the corresponding element values. For
instance, in the GAU S'S language, the command to select the elements in
an arbitrary list (also with indexes repeated) is: x[1ist], where 1ist
is an arbitrary column vector of real numbers (of course, rounded to the
next integer).

Recently, D’Elia and Piccolo (2005a) applied successfully the approa-
ch of this paper to obtain the exact small sample distribution of the mo-
ment estimator of the parameter of the Inverse Hypergeometric random
variable. In their work, the procedure allowed to compare effectively the
exact distribution of the estimator with the Edgeworth and saddlepoint
approximations, respectively.
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