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The behavior of the sphericity test
when data arerank transfor med

Stefano M. Pagnotta
Dipartimento Persona, Mercato, Istituzioni, Univegsidegli Studi del Sannio
E-mail: pagnotta@unisannio.it

Summary:In this paper we give empirical evidence of the behavior ef sphericity
test when original data are transformed in ranks. The stsigheiformed by an exten-
sive Montecarlo simulation. Specifically the type | erroolpabilities the powers under
different alternative hypotheses are evaluated. Alsoidenshe robustness of the test
when the population is not multivariate Gaussian distets investigated. Finally the
selection of the principal components is discussed.

Keywords:Sphericity test; Rank transformation; Empirical asymiptdtstribution.

1. Introduction

Principal Component Analysis (PCA) is a standard methodo&gi
tool adopted when a large setiofiumerical variableX(,, k = 1,2, ..., p,
is available. The original data are linearly transformedhsa new varia-
blesY;,j =1,2,...,p, are computed. Thg;’s are mutually uncorrelated
and ordered according to their variances, i.e[¥ar> vary;| > --- >
varlY,|; moreover the identity~"_, varfY;] = >>}_, var{X;] is satisfied.
The main problem of PCA is the selection of the principal congras
Y;’s in order to reduce thge dimension of the original data to a lower one
so that most part of7_, var{ X,] is preserved. In literature many rules of
selection (see for example Joliffe (2002), chap. 6) are ssiggl and one
of them is based on the sphericity test when the data are askstmbe
drawn from a multivariate Gaussian probability law.
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The test of sphericity concerns the null hypothelis : ¥ = 071,
whereX is the covariance matrix grvariate Gaussian population. Spe-
cifically, I is the identity matrix and-? is a positive value. The test-
statistic was first derived by using the generalized likadith ratio method
(Mauchly, 1940). It involves the determinant and the traicéne ML es-
timate of the covariance matriX = 1% (xi — %) (x; — %)", where the
x;,1 = 1,2,...,n, arep-dimensional column-vectorg,= %Zi x; IS the
sample mean andthe sample size. Both the determinant and the trace of
3 can be evaluated starting from its eigenvall}e?? =1,2,...,p; hence
the test-statistics simplifies to

1 —np/2
_ [ p&i=tl
A= ( = Z-) : 1)
V1lj=1Y
Mauchly provided the critical values of the test for= 2 and 3 while

other authors (Pillai and Nagarsenker, 1971; NagarsemkkP#lai, 1973;
Marques and Coelho, 2007) studied the sampling distribution

()

W = —=2log\ =nplog | ——=| . (2)

V ?:1 lj

The application of the Wilks theorem assures thHatconverges in dis-
tribution, asn increases, to a chi-square probability law with= (p —

1)(p + 2)/2 degrees of freedom.

In order to use the sphericity test to select the optimal remobprin-
cipal components, the null hypothesis has to be formulasddya [, =
lo =---=1,.1 =1, wherel;, j = 1,2,...,p, are the eigenvalues of
3. It can be shown thdy is the variance vaY;| of the population prin-
cipal component;, j = 1,2,...,p, while Zj = var[Y;-] is the variance
of the corresponding sampling version. WHenis not rejected then the
principal component analysis is not useful for dimensidypaeduction,
whereas if the null hypothesis is rejected at least one otllseretains
much more variability than the others. Given that> [, > --- > [, it
is more likely thatH, is rejected becaude > Iy = --- = 1,1 = [,. In
this case a second hypothesis is considét‘@d: ly = --- =1, where the
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first eigenvalué, is left out. Now ifHél) is not rejected the only principal
component retained in the analysigis corresponding to the first eigen-
valuel;. WhenHél) is rejected, the likely eventi > I3 = --- = [,
and the further hypothesi’slff) : I3 = --- = [, has to be tested. If we
setHéO) = H, and consider the integer paramettee 0,1,...,p — 2, to
each hypothesi%ié’“) i lgt1 = lgyo = -+ = l,_1 = [, corresponds the
test statistic:

_1 5P 7
W® =n-(p—k)-log (ZM>,

PV
that is asymptotically distributed as a chi-square randarrable with

g =(p-k+2)(p—k-1)/2 ©)

degrees of freedom. Fér= 0 we have the original test of sphericity.

In order to accelerate the convergence to the asymptotichdison
under the hypothesis that the population js@ariate Gaussian, Bartlett
(1937) suggested to replagey n — %. This modification introduced
by Bartlett does not change the degree of freedom of the asyimplis-
tribution. Through the paper we then consider the followteg} statistic:

l;
w® = (p—k) (n _ 1) log (M) ' (4)
[

6 p—k
j=k+1

When the population is not gaussian the significance levdiefedst
generally degenerates. As a matter of fact, the test statigt(®) for
the hypothesigt{, : ¥ = &I holds the nominal level of significance
only when the population is a multivariate random variabl®ge fourth
cumulants are zero as shown by Waternaux (1984). A part fnisrcase
the sphericity test is unreliable.

Data transformations are often considered in order to ptemor-
mality and/or to control large errors in the components a on more
observations. One of the non parametric transformatiotirrely applied
to multidimensional data consists in replacing each of theeovations of
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a variable with its position in the ordered set of values.sTdtheme of
rank transformation is labeled RT-2 by Conover and Iman (1981

The rank transformation (RT) is suggested by different atgthsome
of them propose the RT just as one of the possible choice aftdar-
sformations (Mardia et. al, 1979, pp. 235-; Jambu, 1989 26);while
some others provide justifications to adopt it (Jobson, 1p9387; Bax-
ter, 1995). In any case no study has been performed to cortipaedfect
of the application of the RT-2 to data matrix in the field of PG&hen
this transformation is adopted, only some information dlbloe original
probability law of the population can be restored from thead&lothing
of the original marginal probability law of the populatios preserved,
in fact the empirical distribution function of a RT observeatiable re-
duces to a straight line starting from 0 to 1 in the rafige:]. We will
refer to this consequence of the RT on a single variable dsrilag ef-
fect. Instead Borkowf (2002) has analytically prooved tlmnet Pearson
correlation index is underestimated by the Spearman ramklation co-
efficient, at least in the case of the bivariate Gaussianlptipn. For mul-
tivariate case no theoretical result is available, but tto®fpof Borkowf
supports the empirical evidence of a similar result in theecaf a mul-
tivariate Gaussian population. At the end only some infaimomaabout
the population is preserved in the covariance structuretf®reason no
automatic inferential procedure is allowed, although Cenand Iman
(1981) suggest to transform the data in ranks and then applgtandard
parametric analysis. In same cases this procedure canajiable re-
sults, as found by Nath and Pavur (1985) for MANOVA. Howevesad-
rick et al. (2001) show that in the framework of the multipégression
the inferential procedures fail when data are previoustk teansformed.
Thompson (1991) suggests that the inferential output ofgxtares ap-
plied to rank transformed data has to be used with extrentgocaunless
the distributional properties of the parametric tools aapto RT data are
investigated.

When a dataset is rank transformed according the RT-2 scheene,
will find (see section 3) that the asymptotic distributiontbé spheri-
city test statisticd¥(?) changes with respect to the degrees of freedom.
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Consequently thp-valueof the statistic (provided routinely by statistical
softwares) is misleading.

In this paper we recompute the degrees of freedom and stedyrth
perties of the test statistic by simulation. We will showtttiee spheri-
city test is reliable both when the data are from a multivar@aussian
and when the data matrix is previously RT-2, whenever thegmals of
the variable are correlated and the degrees of freedom ayrmptotic
sampling distribution are redefined. When the marginal ibistions are
independent, the sphericity test has a very low power. Thersgty test
applied to RT-2 data works fine when the population is not ainaxla-
te Gaussian. With respect to the selection of the principaimonents
when the data matrix is RT-2, we can affirm that the sequensialof the
sphericity test is unable to correctly select the compaent

This paper contains three more sections. In the next we neatam
the degree of freedom of the test statistic (4) taking intmaat that the
data are RT-2. In section 3 the design and the output of thelatians
are presented. Some concluding remarks are reported inrsdct

2. Theoretical and empirical remarks

In this section we show how the asymptotic distribution of {dr £ =
0, changes when the data are drawn from a multivariate Gauasdthen
transformed according to the RT-2 scheme. The literatues dot give
any theoretical support to this changing, but the result pfediminary
Montecarlo simulation is promising in this direction. Fdist purpose
10000 samples of 210 observations have been drawn from asidieva
Gaussian distribution, withh = 0, X = I. For each sample the values
of (4), for £ = 0, has been computed by estimating the eigenvalues of
3 both by using the raw data, and the RT-2 transformed datali5ay
andWxrro respectively. Finally 30 equally spaced quantiles, fro1Qo
0.99, are plotted against the theoretical ones from a alusgdistribution
with ¢ = 14 (see Figure 1). The triangles describe the agreement of
the empirical quantiles of the untransformed gaussian kEswath the
theoretical ones, while the squares are the empirical daanthen the
samples are RT-2 transformed. Both trends are linear buitieres are
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shifted below the case of the normal samples. This configuratiggests
that there is only a change in the degrees of freedom of theriealp
distribution of (4) when the data are RT-2.

20 25
>

15

Empirical quantiles

10
|

5 10 15 20 25 30

Theoretical quantiles

Figure 1. Empirical quantiles oWy, (triangles) andWWxr» (squares)
plotted versus the theoretical quantiles of a chi-squargritiution with
14 degrees of freedom.

The test statistics (2), as specified in the previous secisogiven
by the joint use of the generalized likelihood ratio methad the Wilks
theorem when the null hypothesisfg : ¥ = 21, the population is a
multivariate gaussian and then the degrees of freedom aidymmptotic
chi-square distribution of (2) are given by the differenegvieeen the to-
tal number of parameters to be estimated and the number afeders
under the null hypothesis. For the sphericity test therepgrarameters
corresponding to the means angh (p + 1) /2 for the variances and the
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covariances ir2. The dimension of the space of the parameters under
the null hypothesis ig + 1; since onlyp means and the varianeé are
estimated, givelX = oI.

When the data are rank transformed according to the RT-2 e¢elum
wise scheme, the number of parameters to be estimated chdhgeno
longer necessary to estimatbe mean of each variable because it is equal
to (n + 1) /2, while the variances are equal to* — 1) /12. It follows
that the degrees of freedom, in this case, decreaggto=p (p — 1) /2
that corresponds to the covariance&imut of the null hypothesis.

In order to use the sphericity test for selecting the priacgompo-
nents when data are R, has to be parameterized with respect to
k=0,1,...,p — 2, for testing the sequence of hypotheﬁg). After
some algebra, it can be shown that if the data are RT-2 transfh the
degrees of freedom of the asymptotic distribution of (4)dmee

Gty =(p—k) - (p—k—1) /2. (5)

3. Empirical investigation

In this section we present the Montecarlo simulations whrghuseful
to evaluate the reliability of the sphericity test.

The Montecarlo simulations we run share common factors. deite
matrix X has dimensiong:, p, with n = 15-¢(%), beingq® = (p—1)(p+
2)/2 the total number of the free parameters to be estimatedpaad
3,5,10,20,50. The values irK are drawn by a-normal distribution with
zero mean vector antl = I. Moreover the number of the replications
is M = 10000. For each observed data-matxx,,, m = 1,2,..., M,
the eigenvalues are computed before (dwe datacolumns) and after the
rank transformation (th&®T-2 datacolumns) and then used to compute
the sampling distribution of (4), fdr = 0. Table 1 shows:, the estimated
empirical level of significance of the sphericity test with= 0.05. The
a’s of theraw dataare computed with respect to a chi-square distribution
with ¢(© degrees of freedom. The other valuesja®r the RT-2 data

! Here we assume that raw data are drawn by a continuous randomeavisre no ties are
allowed.
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are instead evaluated with respect to a chi-square disbibwith qg}Q
degrees of freedom. The values of this, both for raw and RT2 data,
show that the theoretical level of significance holds (farteaf thea's,
the testH,, : a« = 0.05 is performed).

Furthermore, in Table 1 we report the estimated power of ¢isg t
7(+), evaluated with respect to three different alternativedtlypses,, :
Y # 0%, a = 1,2,3. The alternative hypotheses differ for the structure
of the matrixX and try to mirror frequent cases met in analyzing data
with principal components.

UnderH,, X is a diagonal matrix where:

3=08-p and X,;;,=02-p/(p—1), j=2,3,...p. (6)

In this case the marginals of the multivariate Gaussian arteiatly inde-
pendent. PCA is not addressed hence no dimensionality iedustpos-
sible when the original data came from an multivariate papoih with
uncorrelated marginals.

For the’H,, X is a non diagonal matrix with eigenvalues forced to be
equal to the diagonal elements;;, j = 2,3,...p, set underH;. The
matrix X is obtained by using the produ§I'Q¢, whereQ is a random
orthogonal matrix held fixed for all the runs of the simulati@andI" is
a diagonal matrix equal to the matr® defined in (6). With reference
to PCA, this is the case in which the variables are correlatedtaze first
principal component collects the most percentage of thality of the
data set.

Finally, underHs, a non diagonal matri¥, built according tdHs, is
still considered but its eigenvalues are now taken as tegéns from 1
top, i.e. T'j; = 3,7 = 1,2,...p. Thisis the case where the eigenva-
lues are linearly decreasing and the choice of the principadponents is
ambiguous.

As in the case of thé’s, the eigenvalues in (4), fdr = 0, are com-
puted for the raw and RT-2 data. From Table 1 we see that théass
the same empirical power both for the alternative®{, andH3, so that
no difference can be pointed out by the use of the rank tramsftoon
applied to the raw data. In this respect we recall that urfteRIT-2 data

columns the chi-square distribution h;{%2 degrees of freedom. As far
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it concerns the hypothesis,, the corresponding empirical powe(H; )
equals the empirical type | error probabilidywhen the data are RT-2.
This result is expected and it is due to the flattening effédhe rank
transformation. When a RT is applied to all marginals of aneolex
multivariate variable, the data matricXs drawn undefH, andH;, are
the same. It follows that the corresponding estimatés afe structurally
similar.

When PCA is applied to real data set, very often the hypothkais t
the data are generated from a multivariate gaussian randadable is not
satisfactory. For this reason it is important to explorergimbility of the
test when the distributional assumption about the poparias violated.
In other words we are going to explore the robustness of #te te

We adopt the same data generation schemes for all the mddEls o
underH,, H;, H, andH;z as illustrated for the previous set of simula-
tions, but we generate the first marginal of the multivardisgribution
from at-distribution with 3 degrees of freedom, divided k4B, so that
its theoretical variance is 1. The results are collectedaipld 2. As ex-
pected, looking at thé’s corresponding to the raw data, the test does not
recognize the shape of the covariance matrix urtdgbecause the data
are not from a multivariate normal distribution. On the cany, the RT-2
data preserve the nominal level of the test. The reason isahe we
gave as remark to the power undéy in the previous numerical experi-
ment. When we consider the powers-)’s, the results are the same for
the raw data and the RT-2 transformed. The results in theahlb-of the
raw data show that the test is unreliable when the data coone drnon
Gaussian multivariate population. Instead, it continwelsd reliable for
RT-2 data when the population has a non diagonal variancafiemce
matrix.

The last simulation concerns the use of the sphericity tesbtrectly
select the principal components. The population followsvariate Gaus-
sian distribution where the variance-covariance matriras diagonal
and its eigenvalues are set as Mg in (6). Under thisX-structure we
expect that the null hypotheskséo) 1l =1y =--- =1, isrejected, while
the hypothesiﬁf}l) tly =13 =--- =1[,is not rejected. In the frame-
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Table 1. Simulations results assuming a multivariate Norpaglulation.

~

«

raw data
7 (Hy) 7 (Ha)

7(Hs) | @

RT-2 data

T (H1)

T (Ha)

7 (H3)

N =
OOU'I(JJ'B

50

0.0472
0.0486
0.0497
0.0512
0.0475

1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000

0.96940.0510
1.0001.0482
1.0000.0495
1.000.0516
1.0000.0486

0.0502
0.0532
0.0459
0.0518
0.0477

1.0000
1.0000
1.0000
1.0000
1.0000

0.939
1.00d
1.00d
1.00d
1.00d

Table 2. Simulations results assuming non Normal population

o)

raw data
7 (Hy) 7 (Ha)

7 (H3) Q

RT-2
T (H1)

data
T (Hz)

T (H3)

N =
OOOU'IOO'"@

0.2636
0.3035
0.3022
0.2882
0.2504

1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000

0.9780.0530
1.00000.0513
1.000.0513
1.0000.0511
1.0000.0512

1.0000
1.0000
1.0000
1.0000
1.0000

1.0000
1.0000
1.0000
1.0000
1.0000

0.937
1.00d
1.00d
1.00d
1.00d

OO OO w

QO OO w
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work of the PCA this means that only the first linear combinatias to
be retained for interpretation, while the others are megess. The test
statistic forH(()O) is specified in (4) fok = 0, andq is the corresponding
empirical level of significance; for = 1, (4) corresponds to the hypothe-
sisHél) with empirical levela,. Theay, k = 0,1, for the RT-2 data are
computed by using th@g‘%2 as in (5). The empirical results are in Table
3. These estimates highlight that test-statistic (4) isatdé to correctly
select the first linear combination when data are rank toaunsdd.

Table 3. Empirical levels of significanég anda;, corresponding tCHéO)
and H(()l), when data are drawn from a multivariate Normal population.

raw data RT-2 data
Qo aq Qo ay
1.000 0.050 1.000 0.986
1.000 0.048 1.000 1.000
1.000 0.049 1.000 1.000
1.000 0.048 1.000 1.000
1.000 0.051 1.000 1.000

N =
OOOU'IOJ'B

4. Concluding remarks

This paper concerns the reliability of the sphericity teghwespect
to the Principal Component Analysis when the observed dataaark
transformed. It is in fact a common practice to routinelyngf@rm in
ranks a data matrix when, for example, some observationsaap be
very far from the bulk of the data; the transformed data aea tised as
input for a principal component analysis. The performanicéhe test
has been investigated under the assumption that data ave ¢ham a
multivariate Gaussian and when they are generated from daNioomal
multivariate random variable and then transformed in ranks

When the data matrix is RT according to the RT-2 scheme, it has
been given empirical evidence that the sampling distrdsutf the test-
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statistics is still in the family of the chi-square distrilmns, but the de-
grees of freedom decrease with respect to the case whengpiopuk a
multivariate Normal. For this reason we recomputed the ekEgof free-
dom.

The results from simulation study demonstrate that thersgtyetest
works as theoretically expected only when the populatidnrizkthe data
is a multivariate Gaussian. When rank transformation RT&bjglied to
the data, the test continues to be reliable only in case datecarelated
and the degrees of freedom are computed according to (5)pdwer of
the test remarkably decreases when the variables are indiepie How-
ever the use of RT when the population is not Gaussian maketegh
still reliable.

Finally, the sequential use of the sphericity test can ngéore ad-
vised when the data are RT-2 transformed. In fact, the eogpilevel of
significance for‘HéO) :ly =13 =--- = [, does not comply the theoretical
one.
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