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Estimation of ARIMA models  

under non-normality 
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E-mail: simona.pacillo@unisannio.it 
 
 
Summary: The present paper deals with the estimation of time series models under 
departures from normality. The use of flexible models is proposed. These models 
allow to cope with skewness and/or heavy tails in the distribution of the data while 
preserving the possibility to carry out inference based on the likelihood function. 
Normality testing is also discussed. The proposed methodology is applied to estimate 
an ARIMA model for the energy consumption time series in Queensland. 
 
Keywords: ARIMA models, Departures from normality, Forecasting energy con-
sumption. 
 
 
 
1. Introduction 
 

The analysis of real data often leads to reject the hypothesis that they 
have been generated by a normal distribution (Hill and Dixon, 1982; 
Azzalini, 1986; Hampel et al., 1986; Azzalini and Della Valle, 1996; 
Azzalini and Capitanio, 1999). In particular, deviations from normality 
are frequently observed in time series, where both heavy tails (Tsay, 
1986; Denby, 1979) and skewness are often encountered (Wecker, 
1981). Martin and Yohai (1985) consider robust methods to cope with 
non normality in time series data while Ledolter (1979) proposes the use 
of the symmetric exponential power distribution in ARIMA models for 
stock price data in order to deal with heavy tails. 

Here we are concerned with the possible occurrence of both 
skewness and leptokurtosis. This paper deals with time series modelling 
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under non-normality and proposes the use of flexible models in the 
estimation of autoregressive integrated moving average (ARIMA) 
models to cope with skewness and/or heavy tails. 

The flexible models, considered here, are the exponential power (EP) 
distribution (Subbotin, 1923), the skew exponential power (SEP) 
distribution (Azzalini, 1986), the Student t ( )gt  distribution, the skew 
normal (SN) distribution (Azzalini, 1985) and the skew t (St) 
distribution (Azzalini and Capitanio, 2003). These models are able to fit 
distributions of data which are in a neighbourhood of the normal one. 
Their main benefits are that they allow to carry out inference based on 
the likelihood function while dealing with departures from normality. 
Furthermore, the Gaussian assumption can be efficiently verified 
through a hypothesis test on few model parameters. 

Departures from normality are often encountered in electricity 
consumption time series (Juberias et al., 1999; Papalexopoulos and 
Hesterberg, 1990). Load forecasting is essential for an efficient planning 
of the electricity production as it avoids recourse to expensive 
production techniques to cope with unexpected peaks in demand 
(Andreotti et al., 2000). Although some regressors (like temperature, 
numbers of hours of light in the day, etc.) can be used to explain load 
forecasting, these variables are not always available or recorded with 
appropriate frequency, so that ARIMA models are widely used. The 
frequent occurrence of skewness or heavy tails, in the energy 
consumption time series, points out the need of adequate distributional 
assumptions. 

Section 2 introduces the flexible models, whereas section 3 deals 
with the estimation of ARIMA model and forecasting under non-
normality. Finally, the proposed methodology is applied to model the 
energy demand in Queensland (Australia), in section 4. Some 
concluding remarks end the paper. 
 
 
2. Some flexible models 
 

Consider the location-scale model X a bZ= + , where a  and b  are 
the location and scale parameter respectively, and Z  is a random 
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variable with density function given by one of the distributions 
considered in this section. 

A model, which can be adopted when the deviation from normality is 
caused by heavy tails, is the EP distribution (Subbotin, 1923). The 
density of X  is given by: 

1( ; , , ) ,  -  ,EP

x a
bf x a b exp x

bC

α

α

α
α

⎧ ⎫−⎪ ⎪
⎨ ⎬⎛ ⎞= − ∞ < < +∞⎪ ⎪⎜ ⎟ ⎩ ⎭⎝ ⎠

 (1) 

where 
1 1

2  (1/ )C α
α α α

−
= Γ  and 0α > . The parameter α  controls the 

thickness of the tails: for 2α =  the EP distribution reduces to a normal 
model, otherwise for (1,2)α ∈  it is leptokurtic. This model has been 
extensively studied by Box (1953), Turner (1960), Lunetta (1963), 
Mineo and Vianelli (1980), Chiodi (1995) and Capobianco (2000) 
among others.  

Alternatively, the distribution of data with heavy tails can be fitted 
by the density of a gt  random variable. Under this assumption, the 
density of X  is: 

1 2 21
1 2( ; , , ) 1 ,  -  .

( / 2)

g

t

g x a
bf x a b g x

b gg gπ

+
−

⎡ ⎤+ −⎛ ⎞ ⎛ ⎞Γ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥= + ∞ < < +∞

⎢ ⎥Γ ⎣ ⎦
         (2) 

The normal model is obtained as a limit case when the degrees of 
freedom g  go to infinity. 

If the deviation from normality is due to a lack of symmetry, a SN 
distribution (Azzalini, 1985) can be assumed for the data. In this case, 
the density of X  is given by: 

2( ; , , ) ,  -  ,SN
x a x af x a b x

b b b
λ φ λ− −⎛ ⎞ ⎛ ⎞= Φ ∞ < < +∞⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
                  (3) 

where ( )φ ⋅  and ( )Φ ⋅  are the normal density and distribution function 
respectively. The parameter λ  regulates the skewness: the normal 
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model is obtained when 0λ = , for 0λ >  the skewness is positive, 
otherwise it is negative. Estimation of the parameters of the skew 
normal model are discussed in Azzalini (1985), Azzalini and Capitanio 
(1999), Monti (2003), Chiogna (2005), Liseo and Loperfido (2006) and 
Sartori (2006).  

The SEP distribution (Azzalini, 1986) can be adopted when both 
skewness and heavy tails occur simultaneously. The density of X  is 
given by: 

2( ; , , , ) ( ) ; ,  -  ,SEP EP
x af x a b w f x

b b
λ α α−⎛ ⎞= Φ ∞ < < +∞⎜ ⎟

⎝ ⎠
          (4) 

where 
1/ 2 / 2

2
x a x aw sign

b b

αα λ
−− −⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
. In (4) the skewness is 

regulated by the parameter λ  and the kurtosis by the parameter α . The 
SEP distribution reduces to the EP distribution when 0λ = , to the SN 
distribution when 2α = , and to the normal distribution when 
( , ) (0,2)λ α = . Inference on the SEP model is considered by Di Ciccio 
and Monti (2004). 

Finally, another model, which is suitable to handle simultaneous lack 
of symmetry and kurtosis, is the univariate St (Azzalini and Capitanio 
2003). Its density is: 

2( ; , , , ) ;  ( ; 1),  -  ,St t
x af x a b g f g T w g x

b b
λ −⎛ ⎞= + ∞ < < +∞⎜ ⎟

⎝ ⎠
  (5) 

where ( )tf ⋅  and ( )T ⋅  are the density and distribution function, 
respectively, of a gt  random variable and  

( )
1/ 22

1 .x a x aw g g
bb

λ
⎧ ⎫⎡ ⎤− −⎪ ⎪⎛ ⎞ ⎛ ⎞= + +⎢ ⎥⎨ ⎬⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 (6) 

As in the previous case, the parameter λ  controls the skewness, 
whereas the tails are regulated by the degrees of freedom g . 

When the EP, SN and SEP models are adopted, the hypothesis of 
normality can be verified through a test on the parameters λ  and α . 
Furthermore symmetry in the SN and St distributions can be verified by 
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testing the hypothesis 0λ = . In order to verify normality, when a gt  or 
St distribution is assumed, it has been suggested by Azzalini to construct 
an asymptotic confidence interval for g through the likelihood ratio test. 
If the upper limit is unbounded, the hypothesis of normality cannot be 
rejected. For the gt  distribution we consider the profile-likelihood ratio 
given by: 

0
1

0
1

( ; ,.... )
( ) ,�( ; ,.... )

n
g g

n

sup L x x
g

L x x

ϑ
λ

ϑ
=∗ =                      (7) 

where ( , , )a b gϑ =  and �ϑ  is the maximum likelihood estimator. An 
asymptotic confidence interval, at level 1 α− , is given by 

{ } 2
0 0 1 ; 1: 2 ( )  I g ln g αλ χ∗

−
⎡ ⎤= − ≤⎣ ⎦ , where 2

1 ; 1 αχ −  is the 1 α−  quantile of 

the 2
1χ  distribution (Barndorff et al., 1994, 89-91). 

 
 
3. Estimation of ARIMA models and forecasting under non-normality 
 

Consider the seasonal ARIMA model 

0( ) ( ) ( ) ( ) ,s d D s
s t tB B Y B Bφ θ ε θΦ ∇ ∇ = Θ +  (8) 

where tε  is a Gaussian white noise and the polynomials ( )Bφ , ( )Bθ , 
( )sBΦ  and ( )sBΘ  are defined according to the standard notation (Box 

et al., 1994) and satisfy the usual uniqueness and admissibility 
conditions.  

Assume that the error term is t tbε η= , where ),(~ γηη ft , ( , )f η γ  
is the density function of one of the models considered in section 2 and 

'
0 1 1 1 1( , ,.., , ,.., , ,.., , ,..., , ) .p P q Q bγ θ φ φ θ θ= Φ Φ Θ Θ          (9) 

When tη  has a skew distribution, i.e. the corresponding model is SN, 
SEP or St, the expected value [ ]

ttE b b ηη μ=  can be different from zero. 
Thus (8) can also be written as: 
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 0( ) ( ) ( ) ( )( ),s d D s
s t tB B Y B B εφ θ θ ε μΦ ∇ ∇ = + Θ −%   (10) 

where 0 0 ( ) ( )sB B εθ θ θ μ= + Θ%  and [ ] 0tEεμ ε= ≠ . 
Since the Jacobian of the transformation from 1 2( , , , )nε ε εK  to 

1 2( , , , )nY Y YK  is equal to one (Box et al. 1994, 200-215), the log-
likelihood function is: 

 
1

( ; ) ( ; ).
n

t
t

l y  ln fγ η γ
=

=∑   (11) 

Thus, an estimate �γ  of γ  can be obtained by numerically 
maximizing (11) through optimisation routines currently available in 
many statistical packages (such as R or S-PLUS). 

A main purpose, in the construction of ARIMA models, is 
forecasting future observations. Let d D

t s tW Y= ∇ ∇ , by (8) we obtain:  

 1 1 1 1
0( )  ( ) ( ) ( ) (1) (1) .s s

t tW B B B Bφ θ ε φ θ− − − −= Φ Θ + Φ  (12) 
Let t n k= + , where n  is the current time period and 1k ≥ ; the 

forecast � ( )W k  of n kW +  is given by: 

 � ( ) ( ),n k nW k E W I+=    (13) 
where nI  is the information available at time t . 

The forecast is obtained by replacing the unknown parameters and 
the values of tε , for t n≤ , by the estimates and the residuals 
respectively. When ( , )f η γ  is symmetric, the values of n kε + , for 1k ≥ , 
can be replaced by their expected values, i.e. zero, whereas if ( , )f η γ  is 
a skewed density the values of n kε +  can be replaced by the estimate 
� � 

n k
b ημ +

of their conditional expectation [ ]n k n n kE I b Eε η+ +⎡ ⎤ =⎣ ⎦ . Finally, 
� ( )W k  can be used in the place of the future values n kW + . 
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4. An application to the study of the energy demand 
 

The internet site http://www.nemmco.com.au/data/market_data.htm 
(section Aggregate Price and Demand Data-Historical; QLD data) 
makes available the time series of the total energy demand in 
Queensland (Australia) recorded every 30 minutes. These data were 
used to build the series of the daily maximum energy demand since 
January 1, 1999 to February 28, 2001. Figure 1 shows the time series tY , 
for 1, 2, , 790t = K . 

 
Figure 1. Time series of daily maximum energy demand 
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Through the analysis of the autocorrelation and partial 
autocorrelation function, the following model was identified for 

7t tX Y= ∇ : 
3 7 7

1 3 7 7 0(1 )(1 ) (1 )( ) .t tB B B X B εφ φ ε μ θ− − −Φ = −Θ − +           (14) 
Furthermore, two dummy variables were introduced to model the 
calendar effects due to Christmas and New Year�s Day as innovations 
outliers. 

Under the normality assumption, the skewness and kurtosis of the 
residuals were 0.375−  and 8.924 respectively, so that the Bowman and 
Shenton test rejected the hypothesis of normality at the 5% significance 
level. The need of a model able to deal with skewness and heavy tails 
was indeed evident. 

Initially both the SEP and St distributions were considered for tη . 
The log-likelihood function was maximized through the nlminb routine 
available in S-PLUS. The constraint (1,2)α ∈  was imposed in the case 
of the SEP distribution.  

The estimates of the parameters, the log-likelihood function and the 
standard deviations of the error term, t tbε η= , are reported in Table 1. 
 

Table 1. Results for the Gaussian distribution and the flexible models 
 

Models 
1
�φ  3

�φ  7
�Φ  7

�Θ  �
tε

σ  Log- 
likelihood 

Gaussian 0.663 
(0.028)

0.104 
(0.029) 

0.163 
(0.036)

0.931 
(0.001)

151.863 - 4974.554 

SEP 0.693 
(0.010)

0.056 
(0.010) 

0.057 
(0.014)

0.943 
(0.058)

156.179 - 4913.466 

St 0.717 
(0.028)

0.058 
(0.026) 

0.050 
(0.035)

0.853 
(0.018)

157.118 - 4909.414 

EP 0.708 
(0.016)

0.051 
(0.014) 

0.077 
(0.022)

0.852 
(0.013)

156.047 - 4915.431 

gt  0.717 
(0.028)

0.059 
(0.026) 

0.053 
(0.035)

0.850 
(0.018)

156.536 - 4910.009 
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Since the SEP and St models have the same number of parameters, 
the value of the log-likelihood function at the estimated model can be 
used to compare the two distributional assumptions. As reported in 
Table 1 the difference between this two models was small and also the 
parameter estimates did not differ appreciably. However we preferred 
the St as it fitted slightly better. 

Since, under the St distribution, the estimate of the parameter λ  was 
close to zero ( � 0.082λ =  ( . .  = 0.018)s e ), we tested the hypothesis of 
symmetry, 0 : 0H λ = , through the likelihood ratio test. The statistic (7) 
took value 0.30 with corresponding p-value 0.59, so that a symmetric 
model appeared appropriate. Consequently the gt  and the EP were 
considered. 

By assuming a gt  distribution, the estimate of the degrees of freedom 
was �g  = 2.989 (s.e. = 0.370) and the value of the log-likelihood 
function was slightly higher than the value of the log-likelihood 
function under the EP distribution (see Table 1).  
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Figure 2. Histogram of the residuals from the Gaussian model and 
associated density 
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Figure 3. Histogram of the residuals from the gt  model and associated 
density 
 

Figures 2 and 3 show the histograms and the fitted density of the 
residuals from a Gaussian and a gt  model. The better fit provided by the 

gt  distribution is outstanding. 
In order to test the hypothesis of normality, a 95% confidence 

interval for the degrees of freedom g  was computed. The upper limit of 
the confidence interval took value 3.77 so that the hypothesis of 
normality was rejected. This result is consistent with the estimate of  the 
degrees of freedom which indicates a remarkable kurtosis in the data.  

In order to evaluate the adequacy of the gt  model, Table 2 compares 
the forecasts of future observations obtained by (13), when either 
Gaussian or a gt  model are adopted, with the actual values for the week 
since March 1 2001 to March 7. Especially for the first three days, the 
absolute forecast error appears quite small under the gt  model with 
respect to the one obtained under the normal model. 
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Table 2. Daily maximum in energy demand (actual and forecasted 
values) 
 

Forecasted values by 
Gaussian  model 

Forecasted values by  
gt  model 

day n kY +  
�
n kY +  
 

�
*100n k n k

n k

Y Y
Y

+ +

+

− �
n kY +  
 

�
*100n k n k

n k

Y Y
Y

+ +

+

−  

1 6348.81 6233.94 1.81 6451.3 1.61 
2 6047.49 6070.59 0.38 6086.31 0.64 
3 5346.21 5536.51 3.56 5409.46 1.18 
4 5326.19 5488.61 3.05 5455.53 2.43 
5 5854.85 6034.00 3.06 6194.36 5.80 
6 5902.34 6124.95 3.77 6374.23 7.99 
7 6032.34 6025.79 0.11 6010.94 0.35 

 
Since we are comparing the fitting of different models for forecasting 

purposes, it is important to check how the distributional assumptions 
about the white noise process modify the forecast functions of each of 
them. This may be accomplished in the time or the spectral domain. 

In the time domain, for instance, it is possible to compute the AR 
metric, proposed by Piccolo (1984, 1990), which compares the 
structural dissimilarities among the estimated models by the Euclidean 
distance of the corresponding forecast functions. In this way, we would 
be able to assess if the modification induced by a different error 
distribution affects significantly the predictions. 

Alternatively, by exploiting the linearity of the ARMA operators, we 
could analyse the parameter spectra of the estimated models in order to 
compare their similarity/dissimilarity over the angular frequency range. 
To be specific, we define the parametric spectrum for an admissible 
ARMA process, given by ( ) ( )t tA B Z C B ε= , as the function: 

( )
( )
( )

2 22
1 2

2 22
1 2

1  1 ,  0 ,
2 1  

Z

C e c e c e
g

a e a eA e

ιω ιω ιω

ιω ιωιω
ω ω π

π

− − −

− −−

− − −
∝ = < <

− − −

L

L
     (15) 
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where the proportionality constant is the variance of the white noise 
process tε . 

Figure 4 shows the spectra derived from the three fitted models 
(Gaussian, St and gt ) whose estimated parameters, corresponding to the 
operators in (15), are reported in the following Table: 
 

Models 
1 1

�a φ= 3 3
�a φ=  7 7

�a = Φ 8 1 7
� �a φ= − Φ 10 3 7

� �a φ= − Φ 7 7
�c = Θ  

Gaussian 0.663 0.104 0.163 - 0.108 - 0.017 0.931 
St 0.717 0.058 0.050 - 0.036 - 0.003 0.853 

gt  0.717 0.059 0.053 - 0.038 - 0.003 0.850 
 

Although the spectra should be normalized for a more accurate 
comparison, we can add few comments to their plots, mainly based on 
the observed spectral shapes: 

 
i) the parametric spectra are quite similar confirming that different 

distributional hypotheses on the errors do not change 
dramatically the structural components of the estimated models. 
In particular, the two fitted models obtained under the St and the 

gt  distributional assumption are almost indistinguishable. This 
result is consistent with the outcome of the test on the hypothesis 
of symmetry; 

 
ii) most of the variability of the stationary component of the 

process is explained by an inertial component placed around the 
fundamental peak (3-4 weeks). This result is consistent with 
similar result in meteorological and related time series; 

 
iii) the model we prefer in the forecasting experiment (implied by a 

gt  distribution) has a peak at 23 days instead of a peak at about 
28 days which is obtained with the Gaussian model; thus, it 
gives somewhat more relevance to a shorter period component 
and should be more sensitive to medium term variations. 
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Figure 4. Parametric spectra estimated from the ARMA models 

 
 
5. Concluding remarks 
 

This paper shows the use of flexible models in time series estimation 
aimed to cope with skewness and/or heavy tails, and applies the 
proposed methodology in order to fit an ARIMA model to the energy 
demand in Queensland.  

The flexible models considered here -  the EP, SEP, Student t and 
Skew t distribution - are especially appealing since they allow to carry 
out inference based on the likelihood function while dealing with 
departures from normality. 

            Gaussian 
-------   St 
�.....    t 
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Special attention is paid to the forecasting of future observations and 
to the selection of the distribution of the white noise. 

Future research may compare the adoption of flexible models with 
alternative techniques such as the use of Box and Cox data 
transformations and robust techniques for parameters estimation. 
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