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Summary: In Item Response Theory (IRT), the Item Category Response Function (ICRF),
deÞning the relation between ability and probability of choosing a particular option for a
test item, and the Item Response Function (IRF), describing the relation between ability
and probability of obtaining a particular score for an item, are both of crucial importance.
In analogy with the standard statistical methodology, these functions may be estimated
by using both parametric and nonparametric approaches. Here, the performance of the
well-known nonparametric kernel estimator is investigated in the polytomous case giv-
ing a description of the cross-validation approach to estimate the smoothing parameter,
and providing pointwise conÞdence intervals for IRFs. Moreover, based on the consis-
tency of this approach, a kernel-based minimum distance estimator of parametric IRT
functions is proposed and evaluated by a Monte Carlo simulation study.
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1. Introduction

In psychometrics and educational testing the analysis of the relation
between latent continuous variables and observed categorical variables �
which can be dichotomous or (nominal/ordinal) polytomous � is known
as Item Response Theory (IRT). In applications it is very common to have
data that are ordinal polytomous, above all with 3 or 4 categories (e.g., in
aptitude testing, the response is often classiÞed in one of the following
ordinal categories: �wrong�, �partially correct�, �fully correct�). Masters
(1988) and Bejar (1977) note that the purpose of using more than two
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categories per item is to try to obtain more information about the trait
level ϑ, generically referred to as �ability�, of the people being measured.
Conversely, Cohen (1983) demonstrates that reducing polytomous data to
the dichotomous level leads to a systematic loss of measurement informa-
tion. For these considerations, the discussion will be here concentrated on
polytomous IRT models for items with ordered categories.

The framework that will be considered in the present paper is the fol-
lowing. Consider the responses of a n-dimensional set S = {S1, . . . , Sv,
. . . , Sn} of subjects to a k-dimensional sequence I = {I1, . . . , Ii, . . . , Ik}
of items. Each subject may respond to item Ii in m + 1 (m ≥ 1) ordered
categories, C0, C1, . . . , Cm; the generalization of this with regard to situ-
ations in which items have different numbers mi +1, i = 1, . . . , k, of cat-
egories is straightforward, but would lead to more cumbersome notation.
The score is chosen to be h in correspondence to Ch, h = 0, 1, . . . , m.
The actual response of Sv to Ii can be so represented as a selection vector
yvi = (yvi0, yvi1, . . . , yvim)′, where yvi is an observation from the ran-
dom variable Y vi and yvih = 1 if the response is in category Ch, and 0
otherwise. Let yvi be a single element in the n × k data matrix y. From
now on it will be assumed that, for each item, the subject chooses one and
only one of the m + 1 categories; consequently, incomplete designs will
be excluded from the analysis. Moreover, let

xvi = max
h∈{0,1,...,m}

hyvih =
m∑

h=0

hyvih (1)

be the score obtained by Sv to Ii. Naturally, xvi ∈ {0, 1, . . . , m}. Finally,
let x = (xvi) be the score matrix. It is to be noted that there is a one-
to-one correspondence between the 3-dimensional data matrix y and the
2-dimensional score matrix x.

Analyzing such data, with respect to dichotomous data, requires the
use of a model that can adequately handle the additional information that
is supplied by the greater number of response categories (for a survey
of polytomous IRT models see, e.g., Ostini and Nering, 2006, van der
Linden and Hambleton, 1997, or Tuerlinckx and Wang, 2004). SpeciÞ-
cally, with reference to a single item, a model is usually a mathematical
function used to describe the probability of responding in a category as
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function of ϑ (the discussion is restricted to models for items that measure
one continuous latent variable, i.e., unidimensional latent trait models).
According to Chang and Mazzeo (1994), and Weiss and Yoes (1990), this
function will be referred to as Item Category Response Function (ICRF)
in order to reßect its speciÞc item category role, and it will be denoted
with

pih (ϑ) = P (Yih = 1 |ϑ) = P (Xi = h |ϑ) , (2)

i = 1, . . . , k, h = 0, 1, . . . , m.
In analogy with the dichotomous case, and starting from (2), in order

to obtain a single function for each item in I it is possible to deÞne the
expected value of the score Xi, conditionally at a given value of ϑ, as
follows

ei (ϑ) = E (Xi |ϑ) =
m∑

h=0

hpih (ϑ) , (3)

i = 1, . . . , k, that takes values in [0,mk]. The function ei (ϑ) is com-
monly known as Item Response Function (IRF) for a polytomously-scored
item and it can be viewed as a regression of the item score Xi onto the
ϑ scale (Lord, 1980). Naturally, for dichotomous IRT models, the IRF
coincides with the ICRF referred to C1.

Functions (2) and (3) are both of crucial importance in IRT; conse-
quently, an adequate model speciÞcation is a preeminent problem. In
such circumstances, at least two routes are possible. The Þrst is the para-
metric one, in which a simple parametric structure is assumed so that the
estimation of an ICRF is reduced to the estimation of a vector param-
eter ξi, of dimension varying from model to model, for each item in I.
This vector is usually considered to be of direct interest and its estimate is
often used as a summary statistic to describe items (difÞculty, discrimina-
tion, and so on; Lord, 1980). In order to estimate ξi, Marginal Maximum
Likelihood (MML) procedures can be considered (see, e.g., Bock and
Aitkin, 1981). MML estimation assumes that persons are randomly sam-
pled from a population in which ability is distributed according to some
proper prior density function f (ϑ) � usually a N (0, 1) is considered �
with distribution function F (ϑ). The second route is the nonparamet-
ric one, in which estimation is made directly on y without assuming any
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mathematical form for the ICRF, in order to obtain more ßexible esti-
mates. In this context, kernel smoothing is a good, and most commonly
used choice because of its practical and theoretical properties. In anal-
ogy with the MML estimation procedure, and in order to make the model
identiÞable, a standard normal is often considered as prior ability distri-
bution. In Section 2 this approach is retraced and pointwise conÞdence
intervals for IRFs are deÞned. Cross-validation estimation of the smooth-
ing parameter is also described. In Section 3, based on the consistency of
this approach, a kernel-based minimum distance estimator of a paramet-
ric model is presented. Finally, in Section 4, a Monte Carlo simulation
study is carried out in order to evaluate the performance of this estimator,
with respect to both MML and kernel smoothing, in possible situations of
departure from the assumption ϑ ∼ N (0, 1) in the population.

2. The kernel smoothing approach

Nonparametric estimation of ICRFs have been popularized by propos-
ing nonparametric regression methods, based on kernel smoothing ap-
proaches, which are implemented in TestGraf program (Ramsay, 1991,
1997, 2000). The basic idea of kernel smoothing is to obtain a nonpara-
metric estimate of the ICRF by taking a (local) weighted average:

p̂ker
ih (ϑ) =

n∑
v=1

wv (ϑ) Yvih, (4)

at each evaluation point, where the weights wv (ϑ) are deÞned so as to
be maximal when ϑ = ϑv and to be smoothly non-increasing as |ϑ − ϑv|
increases (Altman, 1992; Eubank, 1988; Härdle, 1990, 1991; Simonoff,
1996). The need to keep p̂ker

ih (ϑ) ∈ [0, 1], for each ϑ ∈ IR, argues for
the additional constraints wv (ϑ) ≥ 0 and

∑n
v=1 wv (ϑ) = 1, and as a

consequence, it is preferable to use Nadaraya-Watson weights (Nadaraya,
1964; Watson, 1964):
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wv (ϑ) =

K

(
ϑ − ϑv

λi

)
n∑

v=1

K

(
ϑ − ϑv

λi

) , (5)

where:

• λi > 0 is the so-called smoothing parameter controlling the amount
of smoothness. It is chosen to obtain a desirable trade-off between
the bias and the variance of estimation (see, e.g., Härdle, 1990).
As λi decreases, the bias will decrease and the variance of the es-
timated function at each evaluation point will increase. If λi in-
creases, the reverse is true. Naturally, λi can vary from item to
item, and this is underlined by the subscript �i�. Ordinarily this
trade-off is stated in terms of Mean Squared Error (MSE) of the
estimator

MSE
[
p̂ker

ih (ϑ)
]

= E

{[
p̂ker

ih (ϑ) − pih (ϑ)
]2
}

=
{
Bias

[
p̂ker

ih (ϑ)
]}2

+ Var
[
p̂ker

ih (ϑ)
]
,

where pih (ϑ) is the real but unknown ICRF, and λi is chosen min-
imizing this quantity. As suggested by Ramsay (2000), it turns out
that MSE is minimized in a wide range of situations by letting λi

be proportional to n−1/5. Nevertheless, in Subsection 2.1, a simple
�objective� risk-based method to select the best value for λi will be
described.

• K is the so-called kernel function, a nonnegative, continuous (p̂ker
ih

inherits the continuity from K) and usually symmetric function that
is non-increasing as its argument moves further from zero. Since
the performance of (5) largely depends on the choice of λi, rather
than on the kernel function, a simple Gaussian kernel K (u) =
exp (−u2/2) is often preferred.
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Consequently, the ICRF smoothing estimate becomes

p̂ker
ih (ϑ) =

n∑
v=1

K

(
ϑ − ϑv

λi

)
Yvih

n∑
v=1

K

(
ϑ − ϑv

λi

) . (6)

In (6), unlike the standard kernel regression estimators, the dependent
variable is a binary variable Yih and the independent one is the latent
ability variable ϑv. Unfortunately, ϑv cannot be directly observed. Kernel
smoothing can still be used, but each ϑv in (6) must be replaced with a
reasonable estimate ϑ̂v (Ramsay, 1991), resulting in an estimate of the
form:

p̂ker
ih (ϑ) =

n∑
v=1

ŵv (ϑ) Yvih, (7)

where

ŵv (ϑ) =

K

(
ϑ − ϑ̂v

λi

)
n∑

v=1

K

(
ϑ − ϑ̂v

λi

) .

However, it is critical to deal with ability estimation when nonparametric
assumptions are made concerning the form of the ICRFs because, in this
situation, a test cannot yield anything more than rank order information
about examinees. To see this, consider any strictly monotonic transfor-
mation τ = g (ϑ) of the ability continuum. Then

pih (ϑ) = pih

{
g−1 [g (ϑ)]

}
= pih

[
g−1 (τ)

]
= p∗ih (τ) , (8)

where the function p∗ih = pih ◦ g−1 is the equivalent ICRF relative to the
new ability continuum τ ; thus, the choice of scale becomes perfectly ar-
bitrary. This lack of identiÞability, implicitly recognized in the MML es-
timation procedure, implies that what is being estimated are the values of
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the functions pih (ϑ), which are invariant with respect to monotone trans-
formations of their domain. Consequently, as far as the n ability value
estimates are concerned, only rank order considerations make sense. In
particular, as suggested by Ramsay (1991, 2000, p. 102), to determine the
estimates ϑ̂v one could:

1. estimate the rank rv of the v-th examinee by ranking the values Tv

of some statistic T , v = 1, . . . , n. The total score of an examinee is
the most obvious and used statistic for ranking examinees;

2. sort examinee response patterns according to the estimated ability
ranking;

3. replace the rank rv by the �rv-th quantile� ϑ̂v of some distribution
function F that is seen to be appropriate to the contemplated ap-
plication. The rv-th quantile is such that F

(
ϑ̂v

)
= rv/ (n + 1),

where the denominator n + 1 is chosen in order to avoid an inÞnity
value for the biggest ϑ̂v. Thus, the estimated ability value for Sv

becomes ϑ̂v = F−1 [rv/ (n + 1)].
The choice of F is equivalent to the choice of the ϑ metric. His-
torically, the standard normal distribution F = Φ has been heavily
used even because it is one of the most used in applications of the
parametric models to which the kernel model is often compared.
Logically, other distributions are not excluded. For example, users
who think of ability as percentages may prefer a distribution on
[0, 1] such as the Beta; a Beta(2.5, 2.5) looks very much like a stan-
dard normal.

Since latent ability estimates are based on ranked total scores, they are
usually referred to as ordinal ability estimates.

A further remark should be noted. The denominator of equation (7)
is in effect (proportional to) a Rosenblatt-Parzen kernel estimator (see,
e.g., Silverman, 1986) of the ability density function f (ϑ). Although this
density is already known, in the sense of being determined by the choice
of the quantile distribution F , and consequently could be replaced by
the actual density, this substitution is not recommended because it might
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result in occasional values of p̂ker
ih slightly outside of the natural interval

[0, 1].
Finally note that, starting from (3), it is straightforward to deÞne the

kernel IRF estimator as follows

êker
i (ϑ) =

m∑
h=0

hp̂ker
ih (ϑ) =

m∑
h=0

h

n∑
v=1

ŵv (ϑ) Yvih =
n∑

v=1

ŵv (ϑ)
m∑

h=0

hYvih.

(9)

2.1. Choosing the smoothing parameter

The choice of the smoothing parameter λi is important. Although
it is informative to choose the smoothing parameter by trial and error,
and although, as previously said, Ramsay (1991, 2000) suggests using a
value proportional to n−1/5 (in TestGraf the value 1.1n−1/5 is used by
default), it is also convenient to have an objective, risk-based method for
selecting the best value for λi. The literature on data-driven methods for
selecting the optimal value for the smoothing parameter is vast. Cross-
validation (Stone, 1974) is without doubt commonly used and simple to
understand. Here, a description of cross-validation in the context of the
kernel smoothing approach in IRT will be presented.

Before going on, let yi = (y1i, . . . ,yvi, . . . ,yni) be the (m + 1) × n
selection matrix, referred to Ii, in which the v-th column contains the
selection vector yvi. Moreover, let

p̂
ker
i (ϑ) =

(
p̂ker

i0 (ϑ) , p̂ker
i1 (ϑ) , . . . , p̂ker

im (ϑ)
)′

be the (m + 1)-dimensional vector of kernel-estimated probabilities, for
item Ii, at the evaluation point ϑ. The probability kernel estimator evalu-
ated in ϑ, for Ii, can thus be rewritten in the following form

p̂
ker
i (ϑ) =

n∑
v=1

ŵv (ϑ) yvi = yiŵ (ϑ) ,

where ŵ (ϑ) =
(
ŵ1 (ϑ) , . . . , ŵv (ϑ) , . . . , ŵn (ϑ)

)′.
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In detail, cross-validation simultaneously Þts and smooths the data
contained in yi by removing one �data point� yvi at a time, estimating
the value of pi at the correspondent ordinal ability estimate ϑ̂v, and then
comparing the estimate to the omitted, observed value. So the cross-
validation statistic or score, CV (λi), is

CV (λi) =
1

n

n∑
v=1

(
yvi − p̂

ker,(−v)
i

(
ϑ̂v

))′(
yvi − p̂

ker,(−v)
i

(
ϑ̂v

))
, (10)

where

p̂
ker,(−v)
i

(
ϑ̂v

)
=

n∑
u=1
u �=v

K

(
ϑ̂v − ϑ̂u

λi

)
yui

n∑
u=1
u �=v

K

(
ϑ̂v − ϑ̂u

λi

)

is the estimated vector of probabilities at ϑ̂v computed by removing the
observed selection vector yvi. The value of λi that minimizes CV (λi)

is referred to as the cross-validation smoothing parameter, λ̂i

CV
, and it is

possible to Þnd it by systematically searching across a suitable smoothing
parameter region.

2.2. Pointwise conÞdence intervals

In visual inspection, and graphical interpretation, of the estimated ker-
nel curves, pointwise conÞdence intervals at the evaluation points ϑ ∈ IR
provide relevant information because they indicate the extent to which the
kernel ICRFs and IRFs are well deÞned across the range of ϑ considered.
Moreover, they are useful when nonparametric models are compared with
respect to parametric models. Here, the conÞdence limits provided by
Ramsay (1991) for the ICRFs will be extended also to the IRFs.
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Pointwise conÞdence intervals for ICRFs

Since p̂ker
ih (ϑ) is a linear function of the data, as can be easily seen

from (7), and being Yvih ∼ Ber
[
pih

(
ϑ̂v

)]
,

Var
[
p̂ker

ih (ϑ)
]

=
n∑

v=1

[ŵv (ϑ)]2 Var (Yvih)

=
n∑

v=1

[ŵv (ϑ)]2 pih

(
ϑ̂v

) [
1 − pih

(
ϑ̂v

)]
,

holding if independence of the Yvihs is assumed and possible error vari-
ation in the arguments, ϑ̂v, are ignored. Substituting pih with p̂ker

ih yields
the (1 − α) · 100% pointwise conÞdence intervals

p̂ker
ih (ϑ) ∓ z1−α

2

√√√√ n∑
v=1

[ŵv (ϑ)]2 p̂ker
ih

(
ϑ̂v

) [
1 − p̂ker

ih

(
ϑ̂v

)]
, (11)

where z1−α

2
is such that Φ

[
z1−α

2

]
= 1 − α

2
.

Pointwise conÞdence intervals for IRFs

Consider the IRF function deÞned in (9). In analogy with the previous
case, the (1 − α) · 100% pointwise conÞdence interval for the IRF êker

i is
given by

êker
ih (ϑ) ∓ z1−α

2

√
̂

Var
[
êker

i (ϑ)
]
, (12)

where, since YihYit ≡ 0 for h �= t, one has

Var
[
êker

i (ϑ)
]

=
n∑

v=1

[ŵv (ϑ)]2 Var

(
m∑

h=0

hYvih

)
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Substituting pih with p̂ker
ih in Var

[
êker

i (ϑ)
]
, one obtains ̂

Var
[
êker

i (ϑ)
]
, quan-

tity that has to be inserted in (12).
Really, intervals in (11) and (12) are, respectively, strictly speaking in-

tervals for E
[
p̂ker

ih (ϑ)
]

and E
[
êker

i (ϑ)
]
, rather than for pih (ϑ) and eih (ϑ).

Because of this, they share the bias present in p̂ker
ih and êker

i , respectively
(for the ICRF case, cfr. Ramsay, 1991).

3. A kernel-based minimum distance estimator

Douglas (1997), in the dichotomous case, shows that although any
p̂ker

i1 (ϑ) is an empirical regression estimate of Yi1 on a total score trans-
formation, it can consistently estimate the true pi1 (ϑ). The author argues
that this asymptotic result can easily be extended to the polytomous case.
Moreover, Douglas (2001) proves that, for long tests, there is only one
correct IRT model for a given choice of F , and nonparametric methods
(including the kernel estimation approach) can consistently estimate it.
Thus, following the idea of Douglas and Cohen (2001), if nonparametric
estimated curves are meaningfully different from parametric ones, this
parametric model � deÞned on the particular scale determined by F � is
an uncorrected model for the data. In order to make valid this compari-
son, it is fundamental that the same F be used for both nonparametric and
parametric curves. For example, if MML (that typically assumes a normal
distribution for ϑ) is selected to Þt a parametric model, kernel estimates
represented on this same distribution can be compared to it.

=
n∑

v=1

[ŵv (ϑ)]2
[

m∑
h=0

h2
Var (Yvih) +

m∑
h=0

∑
t�=h

htCov (Yvih, Yvit)

]

=
n∑

v=1

[ŵv (ϑ)]2
[

m∑
h=0

h2
Var (Yvih) −

m∑
h=0

∑
t�=h

htE (Yvih) E (Yvit)

]

=
n∑

v=1

[ŵv (ϑ)]2
{

m∑
h=0

h2pih

(
ϑ̂v

) [
1 − pih

(
ϑ̂v

)]
−

m∑
h=0

∑
t�=h

htpih

(
ϑ̂v

)
pit

(
ϑ̂v

)}
.
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Here the above mentioned idea is adopted in most general polyto-
mous frame and in slightly different way: p̂ker

ih (ϑ), h = 0, 1, . . . , m, are
estimated and parametric ICRFs are computed by Þnding the nearest ap-
proximation to the kernel ICRFs within the parametric family that is seen
to be appropriate to the application. In the choice of the parametric fam-
ily, visual inspections of the estimated kernel curves can be useful.

In detail, let ξ̂
ker
i be the parameter vector that minimizes an opportune

�global� distance measure between kernel-estimated ICRFs, p̂ker
ih (ϑ), and

theoretical parametric ICRFs, pih (ϑ; ξi), h = 1, . . . ,m, over all values of
ξi in the parameter space Ξ. Let pih

(
ϑ; ξ̂

ker
i

)
be the resulting parametric

approximation to p̂ker
ih (ϑ). Among the possible choices for this �global�

measure of distance, the Mean Root Integrated Squared Error (MRISE) is
used here. For a generic item Ii ∈ I, MRISE is deÞned as follows:

MRISEi =
1

m

m∑
h=1

√∫
IR

[
p̂ker

ih (ϑ) − pih (ϑ; ξi)
]2

f (ϑ) dϑ. (13)

The weighting of squared error by f (ϑ) permits the measure to be most
sensitive to departures for values of ϑ that are most commonly observed.
MRISE is simple to compute and can be considered as a natural poly-
tomous generalization of the RISE deÞnable in the dichotomous case
(cfr. Douglas and Cohen, 2001). Because of this natural generalization,
MRISE values can be compared with RISE ones. The vector ξ̂

ker
i can be

obtained by minimizing the MRISEi, that is:

ξ̂
ker
i = argmin

ξ
i
∈Ξ

MRISEi. (14)

For computational convenience, MRISEi can be minimized by discretiz-
ing the integral in (13) over some Þnite grid ϑ∗

1, . . . , ϑ
∗
q, . . . , ϑ

∗
s of ϑ val-

ues, considering:

MRISEi =
1

m

m∑
h=1

√√√√√√√√√
s∑

q=1

[
p̂ker

ih

(
ϑ∗

q

)
− pih

(
ϑ∗

q; ξi

)]2
f
(
ϑ∗

q

)
s∑

q=1

f
(
ϑ∗

q

) . (15)
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The Newton-Raphson algorithm, implemented in many environments such
as, for example, Mathematica, can be applied to minimize (15) over pa-
rameters.

4. Simulation study

A Monte Carlo simulation study, under various conditions on the
number of categories (m = 2, 3), on the number of items (k = 15 if
m = 2, and k = 12 if m = 3), and on the ability distribution F in
the population (normal distributions N (0, σ) with different values of σ,
and uniform distributions U (a, b) deÞned on different intervals [a, b]),
was performed. The aim was twofold: Þrstly, to investigate the perfor-
mance of the kernel approach in estimating ICRFs and IRFs; secondly,
to compare this approach with respect to both the kernel-based minimum
distance estimator and the standard MML one. The simulation factors
m and k were selected to reßect practical testing conditions, while the
different distributions F were chosen to emulate situations in which the
assumption ϑ ∼ N (0, 1) may be untenable.

In detail, as data generator, a ßexible parametric Generalized Partial
Credit Model (GPCM; Muraki, 1992):

pih (ϑ; ξi) =

exp

[
h∑

l=0

(αiϑ − δil)

]
m∑

t=0

exp

[
t∑

l=0

(αiϑ − δil)

] , (16)

was considered, where αi and δih are respectively referred to slope and
item-category parameters for item Ii ∈ I; for notational convenience,
δi0 = 0. Thus, the parameter vector becomes ξi = (αi, δi1, . . . , δim)′.
Although the range of the slope parameters αi is in principle the real line
IR, they are usually positive and the values seen in practice are typically
less than 2.5; for this reason αi, i = 1, . . . , k, were randomly drawn from
a U (0.5, 2.5). An N (0, 1) was instead used to generate item-category
parameters δih, i = 1, . . . , k, h = 1, . . . , m.
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Several distributions � three normal distributions N (0, 1), N (0, 0.5)
and N (0, 2), and two uniform distributions U (−1, 1) and U (−2, 2) �
were considered to randomly generate the true ability values ϑv, referred
to n = 800 subjects. A (selection) response pattern yvi was thus gener-
ated by sampling from a multinomial distribution with parameters:

pi0 (ϑv; ξi) , pi1 (ϑv; ξi) , . . . , pim (ϑv; ξi) .

Starting from y, and based on (1), the score matrix x was easily obtained.
This process was replicated M = 1000 times in order to obtain a sufÞcient
number of Monte Carlo samples.

These simulated data were Þrstly analyzed as indicated in Section 2:
the 800 total scores were calculated, and the rows of the 800 × k score
matrix x were then sorted by these total scores. Thus, the total scores
were replaced by the 800 quantiles of the standard normal distribution Φ,
and for each item, kernel ICRF estimates, with a Gaussian kernel, were
Þtted using the cross-validation approach described in Subsection 2.1.
The R program necessary to implement these estimates is available from
the author upon request. The performance evaluation was at Þrst made by
a graphical comparison between underlying true curves in (16) and kernel
smoothing estimated curves. In order to make �valid� such a comparison,
95% conÞdence intervals, deÞned in (11) and (12), were computed at the
evaluation points and superimposed on the kernel-estimated curves. In
all the displays and computations these evaluation points were s = 101
values equally-spaced between the ordinal ability estimates ϑ̂1 and ϑ̂n

inclusive.
For the case m = 2 and k = 15, with reference to a generic item,

some exemplary ICRF kernel estimates, along with the true underlying
parametric ICRFs, are displayed in Figure 1(a); 95% pointwise conÞ-
dence intervals, computed using (11), are also shown in Figure 1(b)-1(d)
for each single ICRF. In Figure 2(a), starting from data used for graphics
in Figure 1, the real and the kernel-estimated IRFs are together plotted
along with 95% pointwise conÞdence intervals computed on the basis of
equation (12). In Figure 2(b) each kernel-estimated triple of probabilities:

p̂
ker
i

(
ϑ̂v

)
=

(
p̂ker

i0

(
ϑ̂v

)
, p̂ker

i1

(
ϑ̂v

)
, p̂ker

i2

(
ϑ̂v

))′

,
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at varying of v = 1, . . . , 800, is plotted as a point in the probability sim-
plex along with the 800 true underlying triples of probabilities:(

pi0 (ϑv; ξi) , pi1 (ϑv; ξi) , pi2 (ϑv; ξi)
)′

,

for more details on this kind of representation, see Aitchison (2003, pp. 5�
9). It is to be noted that the �apparent� low number of kernel-estimated
points, in the probability simplex, reßects the great number of ties be-
tween total scores (in this experiment the total score can only assume

−2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

abi l i ty   θ

IC
R
Fs

real  curves
kernel − estimated  curves

(a) Curves referred to all categories

−2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

abi l i ty   θ
IC
R
F

real  curve
kernel − estimated  curve
95%  pointwise  confidence  intervals

(b) Curve referred to C0

−2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

abi l i ty   θ

IC
R
F

real  curve
kernel − estimated  curve
95%  pointwise  confidence  intervals

(c) Curve referred to C1

−2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

abi l i ty   θ

IC
R
F

real  curve
kernel − estimated  curve
95%  pointwise  confidence  intervals
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Figure 1. Kernel ICRF estimates (bold line), true underlying parametric
ICRFs (dotted line), and 95% pointwise conÞdence intervals (dashed thin
lines)
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Figure 2. On the left, kernel IRF estimate (bold line), true underlying
parametric IRF (dotted line), and 95% pointwise conÞdence intervals
(dashed thin line), are plotted. On the right, the solid circles represent the
true location in the probability simplex (equilateral triangle with unitary
height) whereas the open circles indicate the kernel-estimated locations
of 800 examinees

integer values ranging from 0 to 30) and, consequently, between ordinal
ability estimates referred to different subjects.

For the case m = 3 and k = 12, always with reference to a generic
item, some exemplary ICRF and IRF kernel estimates, compared with the
true underlying parametric ICRFs and IRF, respectively, are presented
in Figure 3 along with 95% pointwise conÞdence intervals. In analogy
with the previous case, in Figure 4 each 4-dimensional kernel-estimated
probability vector:

p̂
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, p̂ker

i1

(
ϑ̂v
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,

along with each true underlying probability vector:(
pi0 (ϑv; ξi) , pi1 (ϑv; ξi) , pi2 (ϑv; ξi) , pi3 (ϑv; ξi)

)′
,

v = 1, . . . , 800, is represented as a point in the probability simplex using
the 3-dimensional representation suggested by Aitchison (2003, p. 9).
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(d) Curve of the category C2
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(e) Curve of the category C3
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Figure 3. Kernel-estimated curves (bold line), true underlying parametric
curves (dotted line), and 95% pointwise conÞdence intervals (dashed thin
lines)
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Summarizing, in all simulations carried out, even if the entire set of
graphical representations is obviously omitted, the conÞdence intervals
and in general the agreement between real and estimated functions, sug-
gests that the estimated curves were reasonably precise, above all when
the ability values were drawn from an N (0, 1). However, although the
phenomenon is not noticed in the displayed plots, conÞdence intervals
could be somewhat wider at the ends of the curves, near to ϑ̂1 and ϑ̂n,
when F arises from a unimodal density with a high variance and the prob-
ability is still substantially different from 0 and 1. This is due to the metric
induced by this kind of distribution function that generates sparse ordinal
ability estimates in the tails.

The same simulated data were also analyzed by two other methods;
indeed, considering the GPCM in (16), both MML and kernel-based min-
imum distance estimation approaches were applied to estimate ξi. MML
parameter estimates ξ̂

MML
i were obtained by the R package gpcm (John-

son, 2007). The kernel-based minimum distance estimates ξ̂
ker
i were in-

stead obtained in Mathematica minimizing, through an opportune im-
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3

0
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3

Figure 4. Two different angles of the 3-dimensional probability simplex
(tetrahedron with unitary height). The true (small points) and the kernel-
estimated (big points) location of 800 examinees are represented
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plemented function, the discretized MRISEi in (15). MRISEi was also
used as numerical index of estimation precision between the underly-
ing true ICRFs and three estimated ICRFs, pih

(
ϑ; ξ̂

MML
i

)
, p̂ker

ih (ϑ), and

pih

(
ϑ; ξ̂

ker
i

)
, h = 1, . . . ,m, referred to Ii. To allow these comparisons,

and in order to conform with the usual applications, a prior standard nor-
mal ability distribution Φ was also considered in the MML estimation
procedure. The global results of this study are shown in Table 1. Rough
comparisons of performance between adopted estimation techniques were
assessed by the following quantity

MRISE =
k∑

i=1

MRISEi.

The averages of these values, across the M = 1000 Monte Carlo repli-
cations, are reported in the Þfth column of Table 1. The values shown
in roman bold underline the best results for each combination of simu-
lation factors. In the sixth column, standard deviations of these values,
always with respect to the M = 1000 Monte Carlo replications, are also
displayed. Other global information is reported in the last three columns
of Table 1.

The results in Table 1 can thus be summarized. When abilities were
randomly generated from an N (0, 1), MML behaved slightly better than
the other two considered estimation procedures in terms of the average
of the M = 1000 MRISE-values; conversely, kernel estimation was the
worst. The latter result is not surprising: unlike MML and kernel-based
minimum distance estimation methods, the kernel approach did not use
the additional information about the true underlying model in (16). On the
other hand, when abilities were not randomly generated from an N (0, 1),
the considerations change. First of all, not surprisingly, the average values
of MRISE for the three considered estimation methods were worse with
respect to the previous ones. Moreover, the performance of the kernel-
based minimum distance estimator, in terms of MRISE, was always better
than the two other estimators. This improvement in efÞciency is substan-
tial in the case m = 2 with true ability distribution N (0, 2).
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Table 1. Global comparison, based on MRISE, between MML ICRFs,
kernel ICRFs, and kernel-based minimum distance ICRFs. Various simu-
lation factors are considered.

Simulation factors MRISE

Number of
categories

Number of
items

True underlying
ability distribution

ICRF Estimation
methods Average Stand.

Dev. Min Max Range

3 15

N (0, 1)
MML 0.017238 0.007102 0.002281 0.037456 0.035175
Kernel 0.018192 0.007843 0.004805 0.039889 0.035084

Minimum distance 0.017889 0.007114 0.003625 0.038506 0.034881

N (0, 0.5)
MML 0.097101 0.026981 0.078772 0.122054 0.043282
Kernel 0.098858 0.029780 0.078122 0.122244 0.044122

Minimum distance 0.093443 0.027881 0.074955 0.120088 0.045125

N (0, 2)
MML 0.111212 0.040011 0.090789 0.134933 0.044144
Kernel 0.098853 0.032913 0.079981 0.122507 0.042526

Minimum distance 0.094078 0.031944 0.072344 0.114522 0.042178

U (−1, 1)
MML 0.065868 0.019735 0.051009 0.082395 0.031386
Kernel 0.070779 0.020411 0.054982 0.085858 0.030876

Minimum distance 0.063010 0.018681 0.044241 0.084686 0.040445

U (−2, 2)
MML 0.040555 0.015826 0.026942 0.058062 0.031120
Kernel 0.043017 0.014119 0.028004 0.060704 0.032700

Minimum distance 0.038188 0.013117 0.019288 0.052189 0.032901

4 12

N (0, 1)
MML 0.014115 0.009991 0.003804 0.029862 0.026058
Kernel 0.016121 0.010408 0.012148 0.044000 0.031852

Minimum distance 0.014880 0.010169 0.008724 0.041188 0.032464

N (0, 0.5)
MML 0.082654 0.029939 0.058411 0.104408 0.045997
Kernel 0.084002 0.031000 0.063571 0.105811 0.042240

Minimum distance 0.079812 0.030799 0.060917 0.099600 0.038683

N (0, 2)
MML 0.070199 0.020999 0.054799 0.088972 0.034173
Kernel 0.065998 0.021488 0.051144 0.081811 0.030667

Minimum distance 0.062455 0.021326 0.050811 0.078327 0.027516

U (−1, 1)
MML 0.064588 0.027616 0.042277 0.073521 0.031244
Kernel 0.066881 0.028009 0.053744 0.080901 0.027157

Minimum distance 0.062308 0.028444 0.050608 0.075277 0.024669

U (−2, 2)
MML 0.052334 0.014008 0.037081 0.070988 0.033907
Kernel 0.046808 0.012854 0.028881 0.060914 0.032033

Minimum distance 0.042588 0.013111 0.028211 0.058123 0.029912

5. Concluding remarks

In the literature a lot of works deal with the kernel smoothing ap-
proach in IRT; attention is often given to dichotomously-scored items
even if, from a practical point of view, it is very common to have data that
are polytomous, above all with 3 or 4 categories. Thus, in this paper, the
kernel approach is discussed for polytomously-scored items describing
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a cross-validation approach to estimate the smoothing parameter. More-
over, based on Ramsay (1991), pointwise conÞdence intervals for IRFs
are provided.

Motivated by the consideration that, if no a priori information is avail-
able, but a parametric model is however preferred, a preliminary nonpara-
metric analysis could give valuable indication of features useful either
in suggesting simple parametric formulations or, vice versa, in reject-
ing any �rigid� parametric speciÞcation, a kernel-based minimum dis-
tance estimator of parametric IRT models was also proposed. This pro-
posal was justiÞed by the consistency of the kernel method (Douglas,
1997).Through a Monte Carlo simulation study, a comparison with the
standard MML approach was also accomplished. In order to make this
valid, a standard normal distribution � as usual � was assumed in both
methods as a prior for the ability distribution in the population. From this
study it appears that the proposed kernel-based minimum distance esti-
mator behaves better in situations of departure from the assumption of
standard normality, while MML behaves slightly better otherwise.

Acknowledgements: The author would like to thank the anonymous referee for his/her
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