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Summary: In this work, a combined use of different methods is proposed in order to
evaluate mathematics students’ achievement within the Italian lower secondary school.
Despite the increasing need for an objective assessment of student performance, a uni-
vocal approach still does not exist. By using data from the INVALSI standardized test
administered in 2008 to Italian lower secondary school students, a joint approach of test
score, latent trait and latent class analysis is proposed which correctly highlights both
item features and student differences. The methods show an effective capability of dif-
ferentiating the examinees into three performance groups on the basis of the response
patterns.

Keywords: latent variable models, mathematics assessment, student evaluation.

1. Introduction

In the Italian educational system, the requirement for a rigorous frame-
work to assess formative outcomes is increasingly important. In this con-
text, the evaluation of learning achievement is one of the most relevant
aspects required in order to understand strengths and isolate weaknesses.
The evaluation of student learning and competence, i.e. the capability
of combining knowledge and ability elements in a specific context effec-
tively, can be typically verified by administering a questionnaire whose
items are related to target skills. This process involves a number of
methodological tools as regards data collection, test design compatibil-
ity and statistical analysis application.
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The National Evaluation Institute for the School System (INVALSI)
regularly carries out large-scale national evaluations to identify patterns
and trends in the achieved competence of pupils attending both primary
and lower secondary schools. In the scholastic year 2007-2008, in addi-
tion to the traditional final written and oral examination, a standardized
test for evaluating competency in mathematics, reading comprehension
and Italian grammar was administered to all Italian students in the lower
secondary school for the first time.

The present study has both an empirical and a methodological aim.
The empirical aim is to find an objective criterium for judging pupils.
This involves the assignment of a score indicating the performance level
of each student, and successively the choice of one or more thresholds
for classifying the outcomes. The methodological aim is to discuss the
techniques of analysis which satisfy the empirical research questions. To
this end we compare three different approaches: the first based on the
summed test score in the context of classical test theory and the remain-
ing two developed in the latent variable model framework. In particu-
lar, item response theory models and latent class analysis are considered
(Bartholomew and Knott, 1999). Starting from the preliminary work of
Matteucci, Mignani, and Ricci (2009), we suggest a joint use of the three
approaches for identifying a classification rule which is both reliable and
flexible in order to discern relevant differences in learning achievement.

The paper is organized in the following way. In Section 2, the IN-
VALSI test concerning mathematics is presented and some descriptive
indicators on item responses are reported. Section 3 describes the es-
sential methodological facets of the analyses and highlights the results
obtained within each approach. Finally, Section 4 shows our innovative
proposal for the classification of respondents.

2. Data and descriptives

The data used in our study come from the INVALSI test taken at the
end of the scholastic year 2007-2008. The test was designed in such
a way that questions, administering conditions, scoring procedures and
interpretations were consistent for all the Italian schools. Approximately
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560,000 students in 5,923 different schools received the questionnaire.
In the current work, we consider a random sample obtained through a
three-way stratification sampling (school, class, student) with reference to
five Italian geographic areas: North-East, North-West, Center, South and
Islands. In order to work with a homogeneous sample of students under
equivalent testing conditions, disabled students were excluded because
they had more time to complete the test. The sample size is of 4,881 test-
takers. The sample is used mainly to reduce the computational efforts due
to the large size of the population and also to analyze the achievement
results more in detail. An empirical and feasible classification rule which
can be extended to the whole population of students is developed.

The test includes two sections: the first one assessing reading com-
prehension and Italian grammar competence, and the second one evaluat-
ing mathematical skills. In this paper, we focus on the mathematics test
which consists of twenty-two items concerning common topics taught
in the lower secondary school. These topics were consistent with those
used in large-scale international assessment programs such as PISA and
TIMSS and included some national specificities.

In detail, the item domains deal with number (N), geometry (G), func-
tions and relationships (FR), measurement and data (MD). The last do-
main includes statistical and probability questions. Several types of items
are designed: multiple-choice with four alternatives with only one correct
answer, true-false and open-ended items that ask students to give both
a numeric answer and the adopted procedure. For binary and multiple
choice items a score equal to one is assigned if the answer is correct and
zero otherwise, while for open-ended items a graded score is assigned (2
= both correct answer and procedure, 1 = incorrect answer but correct
procedure, 0 = both incorrect answer and procedure). The correction grid
assumes that the same distance between the graded scores holds. This
assumption is quite strong and can be overcome by using a probabilis-
tic model which estimates the item properties after the response patterns
have been observed (see Section 3.2).

A preliminary classical analysis of the item responses is carried out.
The Cronbach Alpha is equal to 0.79 indicating a high level of test re-
liability. The relative frequencies of correct responses for each item are



94 M. Matteucci et al.

reported in Table 1. The test results concerning the whole population of
candidates can be found in Matteucci and Mignani (2009).

Table 1. Relative frequencies of correct response for each item

Item Prop. correct Item Prop. correct
1N 0.780 3MD 0.551
5N 0.180 7MD 0.710
8N 0.386 19aMD 0.632

10N 0.082∗ 19bMD 0.054∗

0.279 0.173
14N 0.507 21MD 0.089∗

15N 0.431 0.405
17N 0.731

12FR 0.734
2G 0.661 18FR 0.823
4G 0.719 20FR 0.739
6G 0.717
9G 0.590

11G 0.274
13G 0.671
16G 0.847

∗ denotes a partially correct response.

As we can expect from a well calibrated test, the frequencies are quite
different, ranging from 0.173 to 0.847. Item 16 on geometry obtains the
highest number of correct answers while item 19b in the measurement
and data domain shows the worst performance. This particular item re-
quires the computation of the arithmetic mean in a frequency distribution.
It should be noted that, within each domain, items show different perfor-
mances, except for the three function and relationship items that show
similar response frequencies. At first sight, these descriptives suggest the
need for further analysis which takes into account the item properties.
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3. Student evaluation: methods and analyses

To date, various methods have been developed and introduced in order
to assess students’ performances. One of the more practical and intuitive
ways of evaluating test results is by assigning a score based on the number
of correct responses or on the steps taken to reach a solution. Within this
approach, a useful indicator is the total test score (TTS), which assigns a
raw score to each individual. Another possible solution for student eval-
uation can be found in latent variable models (Bartholomew and Knott,
1999), which assume the existence of a single or multiple unobserved
variables, called abilities, which account for the covariation among the
item responses. Depending on the assumption on the latent variables,
item response theory (IRT) models or latent class analysis (LCA) can be
considered. The main difference between IRT (Lord and Novick, 1968)
and LCA (Lazarsfeld and Henry, 1968) is in the assumption of ability
distribution, which is continuous in the former while concentrated in a
small number of discrete points in the latter. In practice, IRT allows for
the individual scoring based on a particular model, while LCA is used in
order to assign students to a particular group.

3.1. Total test score

In the common practice of student evaluation, one of the most widely
employed measures is undoubtedly the total test score. The idea of using
TTS in educational measurement was developed within the classical test
theory (CTT) founded on the concept of true score (Novick, 1966; Lord
and Novick, 1968). The true score is defined as the expected value of the
observed scores over an infinite run of independent repeated observations
and the fundamental equation of CTT expresses the observed score as the
sum of the true score and a random error.

Given a set of k binary items in a test, the TTS for person i, with
i = 1, ..., n, is simply the sum of correct responses, as follows
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TTSi =
k∑

j=1

Yij, (1)

where Yij is the response variable of examinee i to item j, with j = 1, ..., k
items, taking value 1 for a correct response and value 0 for an incorrect
response. More generally, the total test score is the sum of the individual
item scores, depending on how the responses have been scored.

In our case study, the mathematics items have been scored as 0, 1 or
2 depending on the correction grid. Therefore, the variable Yij in Equa-
tion (1) may take integers in the range [0;2]. Because the test consists of
twenty-two items and three of them are graded, the TTS has a minimum
value of 0 and a maximum of 25, as shown in Figure 1.
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Figure 1. Percentage distribution of total test score

The mean value reported for TTS is 13.62 while the median is equal
to 14, with a standard deviation of 4.99. In particular, only two students
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answered all items incorrectly, while forty-five students completed the
entire test successfully. By using the total test score, only a raw score
is assigned to each examinee, which does not take into account the item
characteristics, such as the item difficulty, but only the item number and
the score given in the correction grid. In order to include the item features
in the assignment of individual scores, we can resort to item response
theory models both for the item analysis and the student evaluation.

3.2. IRT-based scoring

In order to take into account the item properties in the assessment of
performances, an item response theory model is considered. IRT is some-
times assimilated to latent trait analysis (LTA), denoting that categorical
responses are treated by using continuous latent variables. IRT models
allow the simultaneous estimation of the item characteristics (e.g. diffi-
culty and discrimination) and individual abilities. In particular, because
the test consists of binary and graded items, a general model for ordered
responses is needed. Under the assumption of unidimensionality, i.e. a
single latent variable θ underlying the response process, the graded re-
sponse model (GRM) due to Samejima (1969) properly fits the data.

According to the GRM, the probability of a response in category s,
with s = 1, ..., mj response categories for item j and j = 1, ..., k items, is
given by

P (Yj = s|θ) = P ∗
js(θ) − P ∗

j(s+1)(θ), (2)

where P ∗
js(θ) is called operating characteristic curve (Embretson and

Reise, 2000) and describes the probability of a response in category s
or higher as

P ∗
js = P (Yj ≥ s|θ) =

exp[αj(θ − βj(s−1))]

1 + exp[αj(θ − βjs)]
. (3)

In Equation (3), αj is the discrimination parameter, which gives a mea-
sure of the capability of the item to differentiate between the examinees,
and βj is the threshold (or difficulty) parameter representing the difficulty
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of the item steps (e.g. βj(s−1) is the level of ability required to have 50%
probability to score s or higher). For each item, one discrimination pa-
rameter and mj − 1 threshold parameters are estimated. The GRM is
a “two-step” model, because the computation of the category response
curves in (2) requires first the computation of the mj − 1 operating char-
acteristic curves in (3) and then, by difference, the response probabilities
according to (2). The model is widely employed when dealing with or-
dered polytomous items, and is able to handle binary items as a special
case. In fact, the GRM has been developed as a generalization of the
two-parameter logistic (2PL) model (Birnbaum, 1968). The model is es-
timated, under the assumption of local independence, by using marginal
maximum likelihood via EM algorithm, choosing a standard normal dis-
tribution as a prior for θ.

Table 2 shows the item parameter estimates according to the GRM for
the mathematics test.

Table 2. Item parameter estimates according to the GRM (standard errors
in brackets)

Item α̂ β̂ Item α̂ β̂

1N 0.796 (0.05) -1.792 (0.10) 3MD 0.718 (0.05) -0.319 (0.05)
5N 0.769 (0.05) 2.198 (0.12) 7MD 1.446 (0.06) -0.857 (0.04)
8N 1.083 (0.05) 0.523 (0.04) 19aMD 1.289 (0.06) -0.559 (0.03)

10N 1.476 (0.06) 0.535 (0.03) 19bMD 1.403 (0.06) 1.161 (0.04)
0.889 (0.13) 1.478 (0.35)

14N 0.714 (0.04) -0.045 (0.05) 21MD 1.298 (0.05) 0.014 (0.02)
15N 0.870 (0.04) 0.365 (0.04) 0.382 (0.06)
17N 1.355 (0.06) -0.989 (0.04)

12FR 0.867 (0.05) -1.353 (0.07)
2G 0.848 (0.04) -0.913 (0.05) 18FR 1.032 (0.06) -1.783 (0.08)
4G 0.713 (0.04) -1.461 (0.09) 20FR 0.666 (0.04) -1.710 (0.11)
6G 1.572 (0.07) -0.851 (0.03)
9G 1.041 (0.05) -0.433 (0.04)

11G 0.992 (0.05) 1.172 (0.06)
13G 0.982 (0.05) -0.872 (0.05)
16G 0.795 (0.05) -2.403 (0.14)
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For items recoded as binary, one discrimination parameter and one
difficulty parameter are estimated, while for the graded items (10, 19b,
21) one discrimination parameter and two thresholds are estimated. It
can be seen that the discrimination parameter estimates are all positive
and moderately high (above 0.7), denoting a proper capability of the
items to differentiate between the examinees. In particular, for the open
constructed-response items, the discrimination estimates are all observed
to be rather high, suggesting that this item type is particularly adept to
catch differences in ability. As regards the difficulty parameters β, the
estimates cover a wide range of values in the ability scale, from -2.403
(item 16) to 2.198 (item 5), denoting items with different levels of diffi-
culty. In particular, item 16 on geometry is estimated the easiest while
item 5 on numeracy is the most difficult.

In order to characterize the examinees’ abilities, different scoring meth-
ods may be applied adopting a frequentist or a Bayesian approach (for a
review see Baker and Kim, 2004). One of the most common choices in
practice is to adopt the Bayes expected a posteriori (EAP) estimator, as
follows

E(θ|yi) =

∫
Θ

θP (θ|yi)dθ, (4)

where yi is the vector of item responses for person i. The EAP estimator
finds the mean of the posterior distribution of ability, given the observed
response pattern, by using Gaussian quadrature.

The popularity of this estimator is motivated by the fact that, as dis-
cussed in Bock and Mislevy (1982), the EAP estimator has minimum
square error over the population of ability and it is the most accurate
on average. Moreover, the estimator does not require iterative proce-
dures and it is defined for perfect response patterns. EAP ability scores
have been estimated for each respondent and the percentage distribution
is given in Figure 2. Typically, due to the standard normal assumption for
the ability prior distribution, the estimated scores are included in the range
[-3;3] but values in the extremities are estimated with less precision. For
the respondents to the mathematics test, the minimum estimated score is
-2.77 while the maximum is 2.31. The mean value is 0.00 while the me-
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Figure 2. Percentage distribution of EAP scores

dian is 0.01 with a standard deviation of 0.90. The 25th percentile is -0.63
while the 75th is 0.60 so that the distribution is balanced.

Unlike the total test score, which is simply an aggregation of the item
responses, IRT scores are based on the item characteristics which means
that respondents with the same summed score but different response pat-
tern may have different estimated ability (van der Linden and Hambleton,
1997).

3.3. Latent class analysis

Within the framework of latent variable models, latent class analysis
(Lazarsfeld and Henry, 1968), has been developed in order to find latent
groups in which individuals could be allocated. Unlike IRT, which as-
sumes continuous latent variables, latent class analysis is based on the ex-
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istence of categorical latent variables, consisting of discrete points. Anal-
ogously to Section 3.2, a single latent ability is assumed, but taking dis-
crete values θ = c, with c = 1, ..., C latent classes. LCA is founded on the
assumption of conditionally independence, which implies that responses
are stochastically independent, given the class membership.

Given the item response variable Yij taking values s = 1, ..., mj , the
focus of LCA is on the conditional response probabilities to item j given
membership in class c, πsc = P (Yj = s|θ = c), and on the prior prob-
abilities of belonging to class c, ηc = P (θ = c). Therefore, the basic
unrestricted model for LCA is

P (Yi = s) =
C∑

c=1

P (θ = c)
k∏

j=1

P (Yij = s|θ). (5)

The estimation of latent class models does not require assumptions on
the prior distribution of the latent variable and can be conducted by using
maximum likelihood via EM algorithm. In practice, only the number of
classes should be specified. Usually, the rule is to start from two classes
and gradually increase the number of classes until is possible to find the
point at which the model fits the data better.

In our case study, sparse data (response patterns with low observed
frequencies) represent a serious obstacle in order to check the model fit.
In fact, on a sample of 4,881 students, we have 4,363 different response
patterns. Solutions of up to 7 classes were estimated, but global fit in-
dexes as Pearson χ2 or Likelihood-ratio could not be used. An alterna-
tive was to choose the model associated to the minimum value for in-
formation indexes such as the Akaike information criterion (AIC) or the
Bayesian information criterion (BIC). Unfortunately, increasing the num-
ber of classes decreased both information criteria, although not consider-
ably. Therefore, we have decided to take into account a three-class so-
lution, which guarantees an high interpretability and implies a minimum
decrease in information indexes. Table 3 reports the estimated conditional
response probabilities for each item and response category. For items re-
coded as binary, only the probability of a correct response is reported,
conditionally to each latent class, while for graded items, the first condi-
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tional probability refers to a partially correct response and the second one
to a correct response.

Table 3. Estimated conditional response probabilities (standard errors in
brackets)

Item π̂s1 π̂s2 π̂s3 Item π̂s1 π̂s2 π̂s3

1N 0.93 (0.01) 0.81 (0.01) 0.60 (0.02) 3MD 0.81 (0.02) 0.55 (0.01) 0.35 (0.02)
5N 0.42 (0.02) 0.13 (0.01) 0.10 (0.01) 7MD 0.97 (0.01) 0.78 (0.01) 0.37 (0.02)
8N 0.77 (0.02) 0.36 (0.02) 0.15 (0.01) 19aMD 0.92 (0.01) 0.70 (0.02) 0.28 (0.02)

10N 0.11 (0.01) 0.10 (0.01) 0.02 (0.01) 19bMD 0.08 (0.01) 0.06 (0.01) 0.02 (0.01)
0.67 (0.02) 0.26 (0.01) 0.03 (0.01) 0.52 (0.03) 0.12 (0.01) 0.01 (0.00)

14N 0.79 (0.02) 0.49 (0.01) 0.32 (0.02) 21MD 0.06 (0.01) 0.12 (0.01) 0.06 (0.01)
15N 0.74 (0.02) 0.43 (0.01) 0.20 (0.01) 0.79 (0.02) 0.41 (0.02) 0.09 (0.01)
17N 0.97 (0.01) 0.80 (0.01) 0.41 (0.02)

12FR 0.93 (0.01) 0.77 (0.01) 0.51 (0.02)
2G 0.88 (0.01) 0.70 (0.01) 0.42 (0.02) 18FR 0.98 (0.01) 0.87 (0.01) 0.62 (0.02)
4G 0.88 (0.01) 0.76 (0.01) 0.52 (0.02) 20FR 0.90 (0.01) 0.76 (0.01) 0.57 (0.02)
6G 0.97 (0.01) 0.81 (0.01) 0.34 (0.02)
9G 0.90 (0.01) 0.62 (0.02) 0.30 (0.02)

11G 0.57 (0.02) 0.26 (0.01) 0.08 (0.01)
13G 0.91 (0.01) 0.71 (0.01) 0.40 (0.02)
16G 0.96 (0.01) 0.87 (0.01) 0.71 (0.02)

As shown in Table 3, the three latent groups highlight different rele-
vant behaviors in the test responses. In particular, the first class denotes
the students with the best performances, i.e. with the highest probabili-
ties of giving a correct answer to all the items. In contrast, the third class
represents the students with the weakest results while the second group
shows an intermediate level of performance. The prior probabilities are
estimated as η1 = 0.20, η2 = 0.54 and η3 = 0.26. Once the conditional
probabilities have been estimated, individuals can be classified through
the computation of the posterior probabilities of belonging to a specific
class, given the response pattern P (θ = c|Y1, ..., Yk).

The results show that as well as being used for the allocation of indi-
viduals, LCA is also a power instrument for investigating the test structure
in terms of item characteristics. Unlike IRT-based scoring which provides
each individual with a score on the real line, LCA has been used to assign
each test-taker to a latent group. LCA assumes a lower level of detail in
the performance of the candidate but is a more straightforward classifica-
tion instrument.
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4. A proposal of student classification

In order to define an empirical criterion for classifying students, the
scoring results of the three approaches in Section 3 have been analysed
simultaneously. Figure 3 displays the scatter plot of estimated ability and
total score for each student.
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Figure 3. Scatter plot of EAP score vs. total test score

As expected, ability and total score have a similar behaviour, never-
theless students with equal summed score can have different estimated
ability, depending on the particular response pattern. As is well-known,
the information obtained by the total test score is partial while IRT scor-
ing allows a more detailed graduation in the different performances of
respondents. As regards the estimated latent classes, the arrows indicate
the range of ability values estimated within each class. As can be seen, the
overlapping between the arrows is very small, denoting a rather precise
classification. Considering TTS, EAP scores and latent classes jointly, we
can summarize the results in Table 4.

It can be noted that the results are overlapped partially. In particular,
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Table 4. Score estimates within each class
Class TTS range EAP score range

1 17 - 25 0.61 - 2.31
2 9 - 19 -0.74 - 0.93
3 0 - 11 -2.77 - -0.45

with the intention to assign students to the most favourable latent class,
we have found out that 443 students with a TTS between 17 and 19 belong
to class 2 instead of class 1, while 444 students with a score between 9
and 11 belong to class 3 instead of class 2. As regards EAP score, an
overlapped set of 219 students with score between 0.61 and 0.93 is in
class 2 rather than class 1 while 215 students with a score between -0.74
and -0.45 are in class 3 instead of class 2.

In consequence of these results, we propose different steps for classi-
fying students. First, we suggest applying latent class in order to identify
a wide-ranging classification. In such a way students with similar perfor-
mances are grouped together, as in our case study, where the three groups
represent pupils with the worst, medium and best outcomes. Second, es-
timating the EAP scores we can differentiate more in detail the behaviour
of students in the same group and performances can be graduated assign-
ing a proper score to all respondents. Considering the results jointly and
analyzing the students overlapping, respondents should be assigned to the
most favourable class.

To sum up, our solution seems to be flexible for taking into account
several aims of learning assessment and obtaining a rigorous criterion
with no computational efforts. This approach may be extended to other
standardized tests (e.g. the reading comprehension test). Nevertheless,
further insights are needed in order to verify this strategy both from a
methodological and an empirical point of view. In particular, the strate-
gies of student classification always depend on the goals of the examiner.
For this reason, our statistical analysis should be compared to educational
expert opinion. Finally, an interesting research question is related to the
effect of the item type and the item domain on the student classification.
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