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Summary: A relevant issue for validating models is the assessment of goodness-of-Þt
and related measures of predictive ability. When data are nominal, and speciÞcally
ordinal, the main problem is the absence of a standard paradigm as in the regression
framework for residual variability; in fact, several measures have been proposed. In this
contribution we explore Þtting measures for ordinal data when these are modelled by a
mixture distribution. Some new indexes are evaluated and a comparison with previous
proposals is performed by means of simulated and real data sets.
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1. Introduction

In several contexts sampling data are collected for acquiring knowl-
edge about perception, feeling, evaluation, concern, ability with regard to
people, sentences, objects, rules, services, and so on. Such information
are conveyed by choosing comparative qualitative assessments, gener-
ally graduated on some Likert-type scale and expressed as ordinal values.
Conventionally, we rename these categories as the Þrst m integers: this
parameterization acts as a convenient tool for both simplifying discussion
and introducing random variable theory in a qualitative framework.

Exploratory analysis is pursued with ordinal data by several approaches
but the main interest of researcher is generally devoted to build efÞcient
models given sampled data in order to relate expressed responses to sub-
jects� covariates.

For such data, statisticians introduced the Generalized Linear Models
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(GLM) framework as fully discussed by McCullagh (1980), McCullagh
and Nelder (1989). A different approach has been proposed by Piccolo
(2003), D�Elia and Piccolo (2005a), Iannario and Piccolo (2009a) leading
to a class of models of increasing complexity, denoted as CUB. In both
cases, the estimation and validation steps are discussed and explored by
exploiting maximum likelihood (ML) theory.

However, more consideration is necessary when we deal with Þtting
and prediction issues given the nature of ordinal data. This stems from
the circumstance that �while the models predict probabilities, they must
be tested on observed events� (Hauser, 1978, 407); that is, we validate
a whole probability distribution whereas, for each sampled subject, we
only observe a single realization of his/her choice and not the whole as-
sessment of his/her probability distribution.

In this context, from the vast literature (both statistical and economet-
ric one) we select only measures which seem more relevant for a simple
and effective use in a class of models for ordinal data. SpeciÞcally, we
only mention Þtting measures which we consider as fundamental for suc-
cessive approaches. We quote, for example, the probit and logit proposals
by Haglie and Mitchell (1992), Veall and Zimmermann (1990a) and the
indexes for Tobit models as in Veall and Zimmermann (1990b) and Laitila
(1993). Similarly, we refer to the literature for Þtting measures when
data are generated by counts, and Poisson distributions are involved, as
in Cameron and Windmeijer (1996). In any case, in this work we do not
discuss generalized residuals, as in Franses and Paap, (2001), 123 and
Hübler (1997), and the prospect of comparison of model-based predic-
tions and realizations by association tables and related indexes, as listed
by Bishop et al. (1977), Veall and Zimmermann (1992, 1996), Meinel
(2009), for instance.

This paper is aimed at exploring Þtting measures by Þrst principles,
statistical indexes and empirical analysis within a class of model for ordi-
nal data. It is organized as follows: after establishing basic notation, we
discuss in section 3 some preliminary statements on the joint problems
of Þtting and prediction for ordinal data. Then, in sections 4-5 we con-
sider the main indexes proposed in the literature by selecting those more
relevant to our purposes, while section 6 is devoted to a comparative as-
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sessment among them. In sections 7 and 8, respectively, we synthesize
empirical evidence by extensive simulations and a real case study. Some
concluding remarks end the paper.

2. Basic notation for ordinal models

Responses given to rating and evaluation surveys are generally qual-
itative ranging from �extremely satisÞed� to �extremely dissatisÞed�, or
�complete agreement� to �complete disagreement�, and so on. The num-
ber of admissible categories - denoted by m - varies from as low as 3 to
more than 10. The choice of an optimal value of m is a statistical prob-
lem per se which deserves attention but, in this paper, we assume that m
is given and known in advance. In this respect, we subscribe the require-
ment advocated by McCullagh and Nelder (1989), 151: �the nature of the
conclusions should not be affected by the number or choice of response
categories� and the pragmatic consideration that the selected paradigm
should �work well in practice�.

In order to deÞne a statistical experiment for rating surveys it is con-
venient to map the (ordinal) manifest expressions of the interviewees
into the Þrst integers number set. As a consequence, we assume that
the response R of a subject is a discrete random variable fully speci-
Þed by a well deÞned probability mass function pr(θ) on the support
Sm = {1, 2, . . . , m}, characterized by a vector of parameters θ ∈ Ω(θ).

Then, survey data are an observed sample r = (r1, r2, . . . , rn)′, which
is a realization of the random sample (R1, R2, . . . , Rn). We denote by X

a n × (k + 1) matrix of observed k covariates related to n subjects; then,
the row xi = (x0i, x1i, . . . , xki) contains the measurements of k variables
on the i-th subjects, for i = 1, 2, . . . , n. The convention: x0i ≡ 1, ∀i =
1, 2, . . . , n simpliÞes the notation. Afterwards, this matrix may be splitted
as Y and/or W matrices, if convenient.

In the following, L(θ) and �(θ) = log(L(θ)) will denote likelihood
and log-likehood functions, respectively. Then, we introduce a dummy
variable related to the i-th respondent when he/she chooses the r-th cate-
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gory:

dir =

{
1, if yi = r ;
0, otherwise .

Thus, given the sample data r, the general log-likelihood function is:

�(θ; r) = �(θ) =
n∑

i=1

m∑
r=1

dir log(P r (Ri = r | xi)) .

When covariates are present, the corresponding parameter vectors will be
denoted by β and/or γ, as convenient.

This basic notation may be converted when we deÞne ordinal struc-
tures (as GLM or CUB models, for example).

3. Fitting, prediction and information content

Fitting concerns the validation of observed data with reference to an
hypothesis (a postulated model) whereas prediction concerns the valida-
tion of data postulated by the model with respect to future or different
situations (assuming the truth of an estimated model). These aspects are
logically connected if one adheres to the axiom of model persistency: by
exploiting within-sample (out-of-sample) data we check the validity of
the model to reproduce observed (new) data. We assume in any case a
model stability over space, time and occasions, although we do not (and
never will) know the data generating process. Thus, previous statements
should be considered in terms of informational content of both model and
data:

• structural viewpoint: it may happen that phenomenon at hand is
a totally random experiment and data are genuine realizations of
an unpredictable random variable. In this situation the best model
which a statistician should Þt is correctly the worst predictive tool
both within- and out-of-sample horizons.

• statistical viewpoint: it may happen that phenomenon at hand is
generated by a very complex mechanism and thus the entertained
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model is just a Þrst step that requires further improvements. The
achieved model should be checked by Þtting and prediction mea-
sures and a statistician should look for better modelling schemes
by maintaining parsimony and efÞciency criteria.

• interpretative viewpoint: it may happen that phenomenon at hand
is to be interpreted as generated by a formal mechanism involving
exogenous covariates whose relevance has to be tested within the
Þtting and predictive paradigm.

If we translate these viewpoints in terms of ordinal data, the totally
random experiment is a discrete Uniform random variable deÞned on the
support of m categories. In a sense, the Uniform distribution is the equiv-
alent of a regression model with only intercept since it has no parameters
(m is given). Thus, any validation test should take this benchmark into
account as the extreme unsatisfactory situation when performing a statis-
tical analysis on categorical ordinal data.

As a consequence, in proposing indexes one should consider three
sequential steps:

• Uniformness: it measures how far the estimated model is from a
completely unpredictable situation. If sample size is adequate, this
measure is a consistent proxy for the information content of the
model as supported by data.

• Standard Features: it measures how a parametric model within a
predeÞned class (without covariates) is able to improve Þtting to
data by including parameters in a parsimonious manner.

• SigniÞcant Covariates: it measures how large is the additional con-
tribution of covariates with respect to previous models. In the re-
gression context, this aspect is achieved by comparing estimated
models with covariates to models with only intercept.

In the following, we will mostly deepen the Þrst two steps and we brießy
mention some proposal for the third.
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4. Overview of Þtting measures for ordinal data models

In this section, we brießy overview the main approaches suggested
for introducing adequate measures of Þtting: generally, they are Þrst pro-
posed for binary responses and then generalized to polytomous data, espe-
cially in ordinal contexts. We observe that R2 is a standard benchmark as
a measure of �proportion of the total variability explained by the model�;
thus, most proposals mimic its deÞnition, reproduce properties and allow
similar interpretations.

Although there is great overlapping among the different approaches,
we will distinguish among testing, latent variables, likelihood frameworks
and AIC-type measures.

4.1. Testing approach

The Þrst attempt to recover deÞnition and properties of Þtting mea-
sures in general models stems by Dhrymes (1986) from the relationship
between R2 and F -test. Indeed, in classical regression model the statistic:

F =
R2/k

R2/(n − k − 1)

allows testing the null hypothesis of no joint relevance of included covari-
ates. Thus, the starting point for generating R2 measures from a testing
perspective is the inverse relationship:

R2 =
k F

n − 1 − k(1 − F )
.

This line of reasoning uses likelihood ratio test (LRT) as a test mea-
sure; indeed, a plethora of proposals with several variants have been re-
leased. This strong relationship has been emphasized by Pudney (1989),
109, whereas Vandaele (1981) and Magee (1990) analyse the connections
among R2, F and Wald tests.
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4.2. Latent variables approach

As already noted, in ordinal data analysis, we derive an estimated
probability distribution for each i-th subject whereas we possess only an
observed values yi to be compared with. As a consequence, in GLM liter-
ature, to avoid such situation and emulate regression model characteristics
several measures have been proposed by introducing standard indexes for
latent variables.

For instance, McKelvey and Zavoina (1975) consider regression mod-
els on latent variables y∗

i estimated by data and introduce a pseudo-R2

measure deÞned by:

R2
MZ =

∑n
i=1 (ŷ∗

i − y∗)2∑n
i=1 (ŷ∗

i − y∗)2 + nσ2
=

[
1 +

σ2∑n
i=1 (ŷ∗

i − y∗)2 /n

]−1

,

where σ2 = 1 or σ2 = π2/3 according to standard Gaussian or logistic
distribution for the random errors εi, respectively. This index derives from
the standard decomposition yi = ŷ∗

i + εi, where the latent variables ŷ∗
i =

xiβ̂ are estimated by using observed covariates (Windmeijer, 1995).
Simulation experiments support the conclusion that R2

MZ is a good
proxy for an R2-type index if one knew the (unobservable) latent vari-
ables: Hagle and Mitchell (1992), Veall and Zimmermann (1996). In ad-
dition, the measure has been generalized to multivariate models by Spiess
and Keller (1999) and further analyzed by Spiess and Tutz (2004) and
Meinel (2009).

For dichotomous data, Lave (1970) compared observations with their
distribution function by the measure:

R2
LA = 1 −

∑n
i=1 (yi − F (yi))

2∑n
i=1 (yi − y)2

,

and similar measures have been advocated by Efron (1978) in the context
of standard regression and analysis of variance.
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4.3. Likelihood-based measures

Since likelihood function is a sufÞcient statistic for sampled data given
a postulated model, it is reasonable to relate data and model by means
of this quantity (and corresponding log-likelihood function). A common
feature is the property that by adding covariates likelihood functions never
decrease. Sometimes, these measures are called pseudo-R2 and we men-
tion several of them, although they are strongly related each other. Specif-
ically, a relevant issue is the derivation of log-likelihood functions of null,
estimated and saturated models obtained when only a constant, parsimo-
nious structures and as many parameters as data are Þtted, respectively.

A simple starting point is the quantity LRT = 2(�(θ̂)− �(θ̂0)) whose
maximum LRTmax = 2(0 − �(θ̂0)) = −2 �(θ̂0) may be introduced for a
normalized version, as in the next McFadden�s proposal. Similar indexes,
as those by Aldrich and Nelson (1984) normalized by Veall and Zimmer-
mann (1992), obey the same logic and are not discussed hereafter.

For qualitative data models, one of the oldest proposal has been cred-
ited to McFadden (1974) who introduced a pseudo-R2 index (denoted
also as likelihood ratio index):

R2
MF = 1 −

�(θ̂)

�(θ̂0)
,

where �(θ̂) and �(θ̂0) are the log-likelihood functions evaluated with ML
estimates θ̂ with the proposed model and only with a constant (intercept)
θ̂0 model, respectively. Its range is [0, 1] although unity is reached only if
at least one explanatory covariate explodes to ±∞.

McFadden�s index is regularly applied for its simplicity although some
Authors criticize the absence of any substantive interpretation. Hauser
(1978) tackles this problem within information theory framework: how
much covariates does reduce entropy (that is, uncertainty) of the system?
His paper concludes that R2

MF has an information-theoretic interpreta-
tion as the proportion of uncertainty explained by data: this approach has
been deepened also in Judge et al. (1985), 773-777 by using entropy and
divergence concepts1.

1 Within the divergence paradigm, we mention the likelihood ratio for testing a multinomial
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Cameron and Windmeijer (1997) support R2 measures derived by
considering the Kullback-Leibler (KL) divergence for densities param-
eterized only by their mean values; thus, their consideration could be not
translate in CUB paradigm where different links are eligible. In fact,
their study is applied to exponential family regression models (where the
scale parameter is known or absent) and it is based upon the following
deÞnition of KL divergence (factor 2 is for distributional convenience):

KL(y , θ̂) = 2[�(θsat) − �(θ̂)]

where �(θsat) is the log-likelihood for a saturated model with as many pa-
rameters as observations. Since deviance is �twice the difference between
the maximum achievable log-likehood function and that attained under
the Þtted model� (McCullagh and Nelder, 1989, 33; 118), it turns out that
the KL-divergence is nothing else that the deviance (Hastie, 1987).

Now, the order relationship among log-likelihood functions of null,
estimated and saturated model is:

�(θ̂0) ≤ �(θ̂) ≤ �(θ̂sat) .

and thus we may derive the following deviance decomposition (suggested
by Cameron and Windmeijer, 1993):

�(θ̂sat) − �(θ̂0)︸ ︷︷ ︸
Total Deviance

= [�(θ̂) − �(θ̂0)]︸ ︷︷ ︸
Explained Deviance

+ [�(θ̂sat) − �(θ̂)]︸ ︷︷ ︸
Unexplained Deviance

where in the brackets we put the explained and unexplained quantities of
the log-likelihood gains.

distribution. It is proportional to the corresponding divergence KL(f , p̂) between the vector of
observed relative frequencies f and probabilities p̂ = pr(θ̂) according to the well known G2

index:

G2 = 2 n
mX

r=1

fr log
fr

pr(θ̂)

!
= n KL(f , p̂) � X2 ,

where we denoted by X2 the standard Pearson Þtting measure. Since both G2 and X2 are not
normalized and are also criticized for moderate or large n (as their signiÞcance is extreme in these
cases even for acceptable Þtting), the study of such measures will not be pursued hereafter.
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Finally, according to the R2 paradigm, these Authors advanced a pro-
posal for any model speciÞcation:

R2
KL =

�(θ̂) − �(θ̂0)

�(θ̂sat) − �(θ̂0)
.

A possible interpretation is that: �R2
KL measures the proportionate reduc-

tion in recoverable information due to the inclusion of regressors, where
information is measured by the estimated Kullback-Leibler divergence�
(Cameron and Windmeijer, 1997, 333). Of course, last deÞnition of R2

KL

is a sensible one if �(θ̂sat) is easily computable for the given model.
Kent (1983) and Maddala (1983) introduced for binary models a mea-

sure related to coefÞcient of determination arguing that if likelihood is the
criterion of Þtting, its reduction should be a convenient measure; more-
over, when the model is a classical linear regression, a consistent proposal
should at least coincides with traditional R2.

Thus, both Cox and Snell (1989, 208-209) and Magee (1990) pro-
posed the following index:

R2 = 1 −

(
L(θ̂0)

L(θ̂)

)2/n

where θ̂0 and θ̂ are ML estimates of �null� and estimated model, respec-
tively. Its rationale stems from the circumstance that in a linear regres-
sion model with Gaussian errors previous deÞnition is just the formula
connecting R2 to likelihood ratio.

In discrete random variables, this quantity should be normalized since
the maximum is by far less than 1 (it happens when all observations col-
lapse at a single category) and it is 1 − L(θ̂0)

2/n. Then, a better measure
referred to Cragg and Uhler (1970), 400 and Maddala (1983), 39 is:

R2
CU =

1 −

(
L(θ̂0)

L(θ̂)

)2/n

1 − L(θ̂0)2/n
.
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Several properties of this measure are discussed by Nagelkerke (1991)
who shows its consistency with standard properties of R2 measures.

A further proposal has been advanced by Estrella (1998) for mod-
els with dichotomous dependent variables by adding to standard require-
ments of a Þtting measure the need of adequate interpretation of interme-
diate values. After solving a differential equation, it turns out that such
index is deÞned by:

φ0 = 1 −

(
�(θ̂)

�(θ̂0)

)−( 2

n
) �(θ̂0)

= 1 −
(
1 − R2

MF

)−( 2

n
) �(θ̂0) ,

where the second formulation relates φ0 to McFadden�s proposal. As no-
ticed by Estrella (1998), 200, the applicability of φ0 extends beyond the
dichotomous case since the requirements upon which it has been derived
are also valid for polytomous models; then, we will use it in the compar-
ative analysis performed in section 6.

4.4. AIC-type indexes

A more general approach derived from likelihood function (not re-
stricted to the comparison of nested models) leads to AIC-type measures,
that is:

AIC = −2 �(θ̂) + 2(k + 1)

where (k + 1) is the number of parameters for estimating β. In the likeli-
hood estimation of different models on the same sampled data, AIC acts
as a mixing between a not-decreasing function (that is: −2 �(θ̂)) and an
increasing linear function of the number of parameters (that is: 2(k +1)).
Thus, a model with a minimum AIC is derived from a compromise be-
tween efÞciency and parsimony.

Since AIC tends to overparameterize the preferred model, some cor-
rections have been introduced for reducing this effect. Generally, it is bet-
ter to use the Schwarz information criterion deÞned as BIC (=Bayesian
Information Criterion), that is:

BIC = −2 �(θ̂) + (k + 1) log(n)
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Of course, BIC = AIC +(k +1) (log(n)−2) and BIC > AIC as long
as n > 7; then, in any relevant applications, it limits the overparameteri-
zation effect of AIC.

With obvious notations, it is immediate to derive:

R2
MF = 1 −

AIC(θ̂) − 2(k + 1)

AIC(θ̂0) − 2
.

Finally, in this area, we mention the AIC-type proposal by Estrella
(1998), 203, aimed at modifying φ0 in order to take also the number of
parameters into account.

5. Fitting measures for CUB models

We remember that parameters of CUB models are usually denoted
by θ = (π, ξ)′ and belong to the open-left parametric space:

θ ∈ Ω(π, ξ) = {(π, ξ) : 0 < π ≤ 1, 0 ≤ ξ ≤ 1} .

Moreover, identiÞability requires m > 3, as shown by Iannario (2009a).
In this regard, we will discuss how previous proposals may be trans-

lated in the CUB model framework and introduce some new ones as
convenient. The Þrst point to notice is the circumstance that uncertainty
is a starting point in statistical modelling of ordinal models, and thus the
Þrst benchmark is to measure how estimated models are able to improve
it. In addition, one should consider that CUB models logically assume
the existence of latent variables for both components but they never con-
sider their estimates; as a consequence, we could not apply the measures
of subsection 4.2.

5.1. Uniformness measures

The amount of uncertainty in data and model is mostly related to het-
erogeneity and does not coincide with the common concept of variability.
As a matter of fact, while a discrete Uniform random variable maximizes
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entropy on a Þnite discrete support, the maximum variability over a dis-
crete support, given expectation, is achieved by a random variable whose
probability mass is halved at categories 1 and m, respectively (for any
m > 2).

Among the heterogeneity measures computed for the estimated prob-
ability p̂r = pr(θ̂), we remember Gini (1912), Frosini (1981, 2003) and
Laakso and Taagepera (1979) indexes. In the normalized formulations,
they are deÞned, respectively, by:

G∗ =
m

m − 1

(
1 −

m∑
r=1

p̂
2
r

)
; F∗ = 1 −

√
1 − G∗; A∗ =

G∗

m − G∗(m − 1)
.

For more discussion on this topic and related concepts, see: Haberman
(1982), Patil and Taillie (1982), Leti (1983), Grilli and Rampichini (2002)
and quoted references.

As heterogeneity is a complementary concept with respect to uncer-
tainty, we will introduce direct (and normalized) measures of uncertainty:

G =
m

∑m
r=1 p̂ 2

r − 1

m − 1
; F =

√
G; A =

mG

1 + (m − 1)G
,

Þrstly adopted for CUB models by D�Elia and Piccolo (2005a). All of
them depend on the Gini index (indeed, they are direct function of the
sum of squared probabilities) and thus, given its simplicity, we will work
with G as a starting point for further investigations.

Instead, a likelihood-based measure is the ICON index (=Information
CONtent) introduced for CUB models (Iannario, 2008; Piccolo, 2008)
and currently computed in the implemented software; it compares the
log-likelihood function at the maximum given the data and at the null
model �0 = −n log(m), that is for a discrete Uniform distribution (which
possesses maximum entropy). Thus, we get the measure:

ICON = 1 +
�(θ̂)/n

log(m)
.

Notice that ICON belongs to McFadden�s family and it is a normal-
ized index varying between 0 (when data support a Uniform distribution)
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and 1 (when data collapse to a degenerate distribution at R = 0 or R = 1,
in standard CUB model, or at R = c ∈ {1, 2, . . . , m} in extended mod-
els with a shelter effect; see: Iannario, 2009b). It should be added that
a long experience on this index conÞrms that for real data sets it gener-
ally assumes quite small values; thus, it is of limited help for effective
discrimination among models.

5.2. Standard features measures

For a given m > 3, information contained in the sample (r1, r2, . . . , rn)′

are strictly equivalent to that contained in the frequencies (n1, n2, . . . , nm)′

of ordered categories or the relative frequencies f = (f1, f2, . . . , fm)′,
where fr = nr/n, r = 1, 2, . . . , m.

Thus, the log-likelihood for the saturated CUB model (without co-
variates) is obtained as:

�sat = −n log(n) +
m∑

r=1

nr log(nr) = −n E(f) .

where

E(f) = −

m∑
r=1

fr log(fr) ,

is the empirical entropy computed on the frequency distribution. This
consideration is correct if and only if no further information (covariates)
are available about subjects and thus we are using the maximum number
of admissible parameters, given the data.

Then, a normalized measure of Þtting (analogous to R2
KL of section

4.3) is:

I =
�(θ̂) − �0

�sat − �0

=

m∑
r=1

fr log(p̂r) + log(m)

m∑
r=1

fr log(fr) + log(m)

,

The last expression conÞrms that I compares entropies of (observed) rel-
ative frequencies and (estimated) CUB probabilities with respect to the
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extreme one (that is, discrete Uniform). This index tends to 0 if and only
if the estimated probability converges to the Uniform distribution and it
is 1 if and only if a perfect Þtting is achieved.

5.3. SigniÞcant covariates measures

We will brießy discuss the modiÞcations induced in the previous mea-
sures when we are interested in the improvement of model gained by in-
troducing covariates. Shortly, this is equivalent to consider a CUB model
without covariates as the new �null� model to compare with estimated and
saturated.

If we denote as δ = (β,γ)′ the parameter vector of covariates in a
CUB model, a measure of the Þtting achieved by adding these covariates
is based on:

I(δ) =
�(β̂, γ̂) − �(θ̂)

�sat − �(θ̂)
,

where the log-likelihood functions are properly deÞned.
Its rationale stems from an extended deviance decomposition (similar

to that discussed in subsection 4.3). The precise deÞnition of �sat depends
on the desired comparison. The latter speciÞcation seems difÞcult to as-
sess in general unless covariates are discrete as we elaborate in the next
subsection.

5.4. SigniÞcant covariates measures in discrete subgroups

Suppose that a signiÞcant covariate, denoted by Y , is splitted into J
categories by its very nature (as it happens for: gender, education, region,
. . . ) or by convention (as it happens for: income, age, distance, . . . ) and
suppose that we cluster the ordinal responses distributions in such a way
that relevant quantities are shown in Table 1. SpeciÞcally, we consider the
observed (absolute and relative) frequency distributions of the j-th cluster
(consisting of nj subjects, for j = 1, 2, . . . , J).

Then, we denote by �sat(j) the log-likelihood function of the saturated
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Table 1. Observed (relative) frequency distributions of a subgroup.
Categories 1 2 . . . r . . . m Total
Absolute Frequencies n1j n2j . . . nrj . . . nmj nj

Relative Frequencies f1j f2j . . . frj . . . fmj 1

model for the j-th cluster:

�sat(j) = −nj log(nj) +
m∑

r=1

nrj log(nrj) = −nj E(fj) ,

where fj = (f1j, f2j, . . . , fmj)
′ is the vector of relative frequencies of

the j-th subgroup.
Since clusters are independent with respect to responses given the co-

variates, the log-likelihood function of the saturated model will be:

�sat∗ =
J∑

j=1

�sat(j) = −
J∑

j=1

nj E(fj) .

In this way, previous indexes may be easily computed and referred to a
saturated model when a covariate is intrinsically dichotomous or polyto-
mous.

For continuous covariates, we Þrst suggest to check a coarse subdivi-
sion of their range and then to split data into Þner and Þner intervals in
order to verify if, by increasing the number of subdivisions, there is some
convergence in �sat measures. Of course, this proposal requires samples
of adequate sizes in order to obtain sensible clusters.

5.5. A normalized Þtting index

Given the inability of common X2 index to detect adequacy of the
Þtted models in several case studies (D�Elia and Piccolo, 2005a), new
measures based on the comparison among observed relative frequencies
and estimated probabilities have been introduced for CUB models with-
out covariates.
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Then, a normalized Þtting measure F2 is deÞned by:

F2 = 1 − Diss = 1 −
1

2

m∑
r=1

| fr − pr(θ̂) | .

where the dissimilarity index Diss measures the fraction of respondents
that should change selection in order to achieve a perfect Þt (Leti, 1983;
Simonoff, 2003) and it is often computed as a benchmark for judging the
adequacy of the model: values of F2 ≥ 0.90 are considered as compatible
with an acceptable Þtting.

In other contexts, Diss has been used for measuring the relevance of a
shelter effect in extended CUB model, as advocated by Iannario (2009b)
and Corduas et al. (2009). Some modiÞcations are necessary for adopting
this measure when signiÞcant covariates are present.

5.6. A new likelihood-based proposal

A model-dependent measure of dissimilarity is currently computed in
the released version 2.0 of the software for CUB model inference (Ian-
nario and Piccolo, 2009a). It relies on the ML estimates and it is strictly
dependent upon the correctness of this formalization.

SpeciÞcally, the log-likelihood function �(θ) = �(π, ξ) for a CUB
model without covariates, is given by:

�(θ) =
n∑

i=1

ri log(pr(θ)) = n
m∑

r=1

fr log(pr(θ))

= n

m∑
r=1

fr log

[
π

(
br(ξ) −

1

m

)
+

1

m

]
.

Then, it is easily found that:

0 =
∂�(π, ξ)

∂π
= n

m∑
r=1

fr

br(ξ) −
1
m

pr(π, ξ)
= n

1

π

m∑
r=1

fr

(
1 −

1

mpr(π, ξ)

)
.
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As π > 0, from the last constraint, we deduce that ML estimates of
CUB model parameters must obey the relationship:

1

m

m∑
r=1

fr

pr(π̂, ξ̂)
= 1 .

This is a noticeable result as it assesses that the average of ratio between
observed relative frequencies and ML estimated probabilities ßuctuates
around 1: this property is analogous to the OLS constraint on residuals
when intercept is present in a regression model.

Of course, large ßuctuations imply bad Þtting whereas a perfect Þt
requires fr ≡ pr(π̂, ξ̂), ∀r = 1, 2, . . . , m. Then, the variance of the ratios(

fr

pr(π̂, ξ̂)

)
is a measure of dissimilarity and we denote it as:

D̃2 =
1

m

m∑
r=1

(
fr

pr(π̂, ξ̂)
− 1

)2

=
1

m

m∑
r=1

(
fr − pr(π̂, ξ̂)

)2

p2
r(π̂, ξ̂)

=
1

m

m∑
r=1

(
fr

pr(π̂, ξ̂)

)2

− 1 .

The last formula is correct if and only if probabilities are exactly com-
puted with ML estimates at convergence point; thus, we prefer the Þrst
expression to avoid numerical inconsistencies.

Notice the close relationship between D̃2 and X2 Pearson�s index:

X2 = n

m∑
r=1

(
fr − pr(π̂, ξ̂)

)2

pr(π̂, ξ̂)
.

In fact, both of them are generated by a unique class of indexes aimed at
measuring a Euclidean distance among relative frequencies and estimated
probabilities described by:

m∑
r=1

wr

(
fr − pr(π̂, ξ̂)

)2

,
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where the weights are wr = n/pr and wr = 1/(mp2
r) for X2 and D̃2,

respectively (see: von Mises (1994), 447-452, and also Cramér (1946),
Read and Cressie (1988), Cressie and Read (1989), Greenwood and
Nikulin (1996) for the statistical motivations leading to the class of X2

measures). These considerations shows that D̃2 is more sensible to small
probabilities with respect to X2.

Finally, since 0 ≤ D̃2 ≤ D2
max → ∞, a direct normalized Þtting

measure is:

L2 = 1 −
D̃2

1 + D̃2
=

⎡⎣1 +
1

m

m∑
r=1

(
fr

pr(π̂, ξ̂)
− 1

)2
⎤⎦−1

.

It may be shown some connection of L2 with Laakso and Taagepera
(1979) index of heterogeneity, introduced in ordinal models by D�Elia
and Piccolo (2005b).

6. A comparative discussion of Þtting measures

Previous discussion may be summarized by listing the measures we
think useful for ascertaining goodness of Þt for CUB models. Some
of them have been originated as dissimilarity and discrepancy measures
and then transformed into direct measures of goodness of Þt. Table 2
summarizes such results in a compact formulation.

As a consequence, the benchmark of uniformness implies that θ0

arises from a discrete Uniform distribution. Thus, we get:

L(θ̂0) = L(θ0) = m−n; �(θ̂0) = �(θ0) = −n log(m) .

A simple screening shows that some indexes discussed in section 5
are strongly interrelated, in some cases by algebraic formula and in some
other by logical arguments; in fact, all of them are functions of f , p̂ and
�(θ̂).
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Table 2. Information content and goodness-of-fit indexes.
• Information content indexes

G =

m

m�

r=1

p̂ 2
r
− 1

m − 1

ICON2 = 1 −
�

ℓ(θ̂)/n

log(m)

�2 log(m)

• Goodness-of-fit indexes

F2 = 1 − 1

2

m�

r=1

| fr − pr(θ̂) |

L2 =



1 +
1

m

m�

r=1

�

fr

pr(π̂, ξ̂)
− 1

�2




−1

I =

m�

r=1

fr log(p̂r) + log(m)

m�

r=1

fr log(fr) + log(m)

,

For instance, we remark that Estrella’s measure φ0 when computed
for uniformness becomes a monotone transformation of ICON index,
and we will denote it as ICON2; in fact, after some algebra:

ICON2 = 1 −
�

ℓ(θ̂)/n

log(m)

�2 log(m)

= 1 − (1 − ICON)2 log(m) .

In addition, if ICON < 1 − (2 log(m))−1/[2 log(m)−1] small variations in
ICON are more evident in ICON2 (for this reason we prefer to consider
the latter).

For medium and large sample size, asymptotic expansions would dis-
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Figure 1. Plot of ICON2 and R2 as functions of �(θ̂), when m = 7

cover further results for ICON2 index:

ICON2 = 1 − (1 − ICON)2 log(m)

� 2 log(m)

[
1 +

�(θ̂)/n

log(m)

]
= n−1 2

(
�(θ̂) − �(0)

)
,

which is n−1 times the likelihood ratio test for rejecting the estimated
model against the discrete Uniform hypothesis. Then, n ICON2 may be
used as an approximate test of signiÞcance of uniformness.

Finally, Cragg and Uhler�s R2
CU index (introduced in 4.3) will be de-

noted by R2 when referred to uniformness and it simpliÞes to:

R2 = 1 +
1 − exp

(
− 2

n
�(θ̂)

)
m2 − 1

Now, both ICON2 and R2 are monotone functions of the average log-
likelihood n−1 �(θ̂) ∈ [− log(m), 0], and Figure 1 shows how much these
indexes are virtually coincident. Hereafter, we will refer only to ICON2.
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7. Simulation experiment

The objective of the simulation experiment consists in simulating data
from CUB models, estimating parameters by ML methods and studying
empirical distributions of indexes for goodness of Þt indexes listed in Fig-
ure 2.
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Figure 2. Probability distributions of the selected CUB models

We preliminarily choose m = 7, n = 200 and we select 16 CUB
models by uniformly spanning the parametric space in order to cover
both positive and negative skewed distributions and also with low and
high proportion of uncertainty. These models are shown in Figure 2 for
reference.

Each run of generating data and ML estimation has been performed for
nsimul = 1000 times; as an example, Figure 3 reproduces indexes for
a CUB model when π = 0.9, ξ = 0.7 (that is, the 15th model listed in
Figure 2).
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Figure 3. Scatter plots of simulated indexes for a CUB model

Simulations conÞrms the usefulness of a substantial reduction of sev-
eral indexes and the choice to retain indexes with a joint low correlation
and interesting interpretation as F2 and L2, for instance. Among other
features, we notice the positive correlation of G and ICON2 indexes.

Instead, we found that sampling distributions of these indexes change
their shape in proportion with the relevance of uncertainty in the model.
This effect is generated by the greater variability of ML estimators (that
increases as long as π → 0) which induces similar variability in the com-
puted indexes.

Moreover, to provide evidence of the simulated distributions, we per-
formed 5000 simulations of random samples of size n = 200. Firstly,
Figure 4 shows histograms and estimated kernel densities for a CUB
model with π = 0.15 and ξ = 0.70 (the 3rd among those listed in Figure
2), that is a structure with high uncertainty.
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With similar sizes, we generate the sampling distributions for a CUB
model with π = 0.90 and ξ = 0.70 (the 15th model of the list), that is a
structure with a quite small uncertainty (Figure 5).

More extended simulations, here not reported for brevity, where both
sample sizes and number of categories changes, support this initial screen-
ing. Thus, we register how the distribution of I varies from a substan-
tial ßatness to a deÞnite skewness; similarly, we found a strong negative
skewness for L2 and I, and a moderate Gaussianity of F2. Instead, G and
ICON2 have parallel behaviour and support positive skewness which re-
duces with symmetry of CUB model and reduction of uncertainty.

Figure 4. Simulated indexes distributions of a CUB model: (π =
0.15, ξ = 0.70)
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Figure 5. Simulated indexes distributions of a CUB model: (π =
0.90, ξ = 0.70)

7.1. A case study with dummy covariates

We examine faked data generated by simulating a CUB model with
m = 7 and a dummy covariate Di = 0, 1 for explaining uncertainty.
Sample data consist of n = 2000 observations by assuming that ξ = 0.3
and half of them are generated by π = π0 = 0.2, the others by π = π1 =
0.9. In the left panel of Figure 6 we show the maintained model (circles
and dots refer to Di = 0 and Di = 1, respectively) while in the right panel
we present the relative frequency distributions of the sampled subgroups
(gray and black bars refer to Di = 0 and Di = 1, respectively).

The main reason we are discussing this artiÞcial data set is that the
detection of different behaviour in subgroups it is not so evident if one
examines the whole sample without the information of subgroups exis-
tence. Indeed, as shown in Figure 7, we obtain a very good Þtting with a
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Figure 6. Probability and observed distributions for faked data

CUB model without covariates; speciÞcally, the ML parameter estimates
π̂ = 0.615 and ξ̂ = 0.297 are both highly signiÞcant. In addition, the
noticeable performance of the model is conÞrmed by Diss = 0.017 and
X2 = 5.441, with a p-value= 0.245.

Moving to the measures discussed in sections 5-6, for this estimated
model we get:

�(θ0) = −3891.8; �(θ̂) = −3610.8; �sat = −3608.0;

and thus

G = 0.214; ICON2 = 0.253; F2 = 0.983; L2 = 0.994; I = 0.990 .

These values conÞrm that F2, L2 and I express the exceptional Þtting
between data and postulated model (even with reference to the maximum
achievable, given data); instead, the indexes G and ICON2 measure how
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Figure 7. Observed and estimated CUB distributions of aggregated sam-
ple data

far is the distance from uniformness compared to a situation of degener-
acy, and thus they are mostly related to the predictive ability of the esti-
mated model given data. Notice the strong similarity between the values
of G and ICON2.

Instead, when a dummy covariate for π is included, discrimination
performs in a sharp manner: signiÞcant ML estimates of ξ̂ = 0.298;
β0 = −1.078; β1 = 4.103, are obtained and thus:

π̂0 =
1

1 + exp(1.078 − 4.103 × 0)
= 0.254;

π̂1 =
1

1 + exp(1.078 − 4.103 × 1)
= 0.954 .

These data conÞrm that the presence of dummy covariates for the uncer-
tainty component is generally detected with high power.

Then, the measures of subsection 5.3 are shown in Table 3 for a sam-
ple consisting of two subgroups of 1000 observations.
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Table 3. Sampling information given a dichotomous dummy.
Subgroups Relative frequencies Saturated �(.)
(Di = 0) (0.115, 0.084, 0.128, 0.165, 0.176, 0.180, 0.152)′ −1918.0
(Di = 1) (0.007, 0.018, 0.060, 0.178, 0.318, 0.306, 0.113)′ −1556.1
All (0.061, 0.051, 0.094, 0.171, 0.247, 0.243, 0.133)′ −3608.0

Since �sat∗ = �sat(0) + �sat(1) = −3474.1 > −3608.0 = �sat, there is
evidence that the consideration of subgroups is worth of interest.

SpeciÞcally, if we consider that log-likelihood functions for models
without, with covariates and saturated are:

�(π̂, ξ̂) = −3610.8; �(ξ̂, β̂) = �(δ̂) = −3480.1; �sat∗ = −3474.1;

respectively, we get:

I(δ) =
−3480.1 − (−3610.8)

−3474.1 − (−3610.8)
= 0.956 .

Table 4 summarizes the results obtained on this data set in terms of
improvement with respect to uniformness (and these are related to the
ability to predict) and data Þtting with a dummy covariate (and these are
related to the ability of a more elaborate model to reproduce patterns in
observations).

Table 4. Improvements obtained by Þtting nested CUB models.

Estimated Models Log-likelihood functions
Uniformness �(0) = −3891.8

CUB(0, 0) �(θ̂) = −3610.8
Saturated (no-covariates) �sat = −3608.0

CUB(1, 0)-Dummy �(δ̂) = −3480.1
Saturated (Dummy subgroups) �sat∗ = −3474.1

As a Þnal consideration, it should be added that although the per-
centage reduction of log-likelihood functions may be considered as mod-
erate (between 3% and 11%), nevertheless these variations are signiÞ-
cant. For instance, the introduction of a dummy covariate in the previous
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CUB(0, 0) model (which causes a reduction in log-likelihood of only
3.62%) produces a likelihood ratio test of: 2(�(δ̂)−�(θ̂)) = 261.4, which
is highly signiÞcant when compared with the percentile χ2

(0.05;g=1) =
3.841.

8. A real case study

In this section, we discuss a real data set concerning an ordinal re-
sponse (ranged in a 7-point Likert-type scale) and registered on a sample
of n = 20184 subjects. To be speciÞc, we Þtted CUB models to the per-
ception of subjective survival probabilities to age 75; then, we checked the
age of respondents as a relevant covariate for explaining the ordinal re-
sponse (it is related to the cohort of the subject; further details in: Iannario
and Piccolo, 2009b). It turns out that age of respondents is signiÞcant
for explaining both uncertainty and perception parameters; in addition,
statistical considerations suggest to transform it by logging, considering
deviations from the average and squaring (for taking reversion effects into
account).

With this data set, a model without covariates produces the following
measures:

G = 0.323; ICON2 = 0.632; F2 = 0.914; L2 = 0.927; I = 0.954 .

and, moreover, �0 = −39276 and �(θ̂) = −30383;

Table 5 shows the log-likelihood functions of (nested) Þtted CUB
models in order to assess the step-by-step improvements obtained by
enlarging the set of explanatory covariates and introducing age (trans-
formed). For reference, �sat = −29952 for a model without covariates.

In this case study, we Þnd that the range between uniformness and
saturation is largely covered by a CUB model without covariates (this
denotes a good Þtting of the mixture) but the addition of the age covariate
(for explaining both uncertainty and feeling) is helpful since this inclusion
moves log-likelihood functions towards the upper bound.
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Table 5. Improvements obtained by Þtting more elaborated CUB models.

Models # parameters Log-likelihood functions BIC
Uniformness 0 �(0) = −39276 78552

CUB(0, 0) 2 �(θ̂) = −30383 60786

CUB(2, 0) 4 �(β̂, ξ) = −30289 60618
CUB(0, 2) 4 �(π, γ̂) = −30310 60660

CUB(2, 2) 6 �(β̂, γ̂) = −30221 60501

9. Concluding remarks

In this paper we discussed the role of several measures of Þtting and
emphasized the need of characterizing them as indexes of predictive abil-
ity or effective Þtting measures. Concepts related to uniformness of data
and information content have deepened and some measures have been
suggested when the objective is to Þt a speciÞc class of models.

Among the open issues, we quote the problem of developping some
distribution theory for the indexes previously discussed; the topic is rel-
evant for decision making and generally it may be convenient to relate
them to likelihood ratio theory. In this regard, the introduction of gen-
eralized residuals may be of some interest, as in Di Iorio and Piccolo
(2009).

More research seems necessary when covariates are present, mainly
for exploiting the several contributions of the literature where the associa-
tion among ordinal and nominal/ordinal covariates are measured: Agresti
(1981, 1986), Goodman (1984), Agresti and Natarajan (2001), Piccarreta
(2001), Rampichini et al. (2004), among the others.

A further problem under scrutiny is the study of measures related to
the realization/prediction table and speciÞcally aimed at predicting ability
of data as generated by estimated models.
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Gini C. (1912), Variabilità e mutabilità, Studi economico-giuridici della Fa-
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