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Summary: Motivated by the need of interpolating spatial data containing strong disconti-
nuities, this paper develops robust nonparametric smoothers. Classical methods (kernel
and local regression) are flexible tools, but they are not able to track sudden changes in
the surfaces. Their robust version, with non-monotone score functions, are better in this
respect because they enhance local properties. On the other hand, statistical analysis
shows that such estimators may be non-consistent even in situations of continuous and
smooth regions.
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1. Introduction

Interpolation of spatial data is present in many empirical contexts,
such as mining surveys, laser scanning reliefs, environmental monitoring,
and so on. In all of these cases, the underlying surfaces may present
discontinuities and jumps that are difficult to “track” with conventional
smoothers.

The method of kernel regression (Hérdle, 1991) is suitable for recon-
structing complex surfaces, because is flexible and reduces the assump-
tions at the minimum. Moreover, its robust version (Hall and Jones,
1990) is useful for discontinuities because treats observations beyond
jumps as outliers, and therefore local properties of estimates are enhanced.

Robust kernel smoothers are mostly used in image processing, where
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they provide the basis for jump detection tests and edge preserving de-
noising filters (Chu et al., 1998; Polzehl et al., 2000; Qiu, 2002; Hwang,
2004; and references therein). In this context, they exploit the fact that
data are available on regular lattices, which simplifies computation and
analysis. The proposed filters have worked well; however, they are sub-
ject to the strong competition of numerical methods of computer vision
engineering (Starck et al., 2003).

In the case of point spatial data, there are only few alternative to non-
parametric methods, including kriging, wavelets and their robust versions.
However, not all of the robust approaches are useful in tracking jumps,
because only non-monotone score functions enables adaptivity. This
excludes, for example, the Huber’s preferred solution, which generally
enables the consistency to estimators in smooth regions. The trade-off
between adaptivity and consistency is well known in time-varying coeffi-
cient methods (Grillenzoni, 1994); in the present context, it is the price to
be paid for allowing the jump tracking ability to smoothers.

The aim of this article is to adapt robust smoothers of image process-
ing to the interpolation of stochastic 3D point data. This involves modi-
fications of estimators due to the fact that the second problem deals with
missing data. Further, there are methodological aspects related to band-
width design and conditions of convergence that have not been adequately
treated in aforementioned papers. We develop these points starting from
basic aspects of robust smoothing and with the support of a running ex-
ample.

The plan of the work is as follows: Section 2 introduces kernel meth-
ods and provide a heuristic robust modification. Section 3 discusses ker-
nel M-type smoothers and develops iterative weighted algorithms. Throu-
ghout these sections, an extended numerical application on laser scanner
data is carried out to test and compare the methods. Finally, Section 4
discusses some statistical properties of kernel M-estimators.

1.2 Aerial Laser Scanner Data

Light detection and ranging (LDR), namely airborne laser scanning,
is a relatively new technology for obtaining 3D spatial data with high
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density and high positional accuracy of the earth surface. The system
is placed on an aircraft and includes a laser scanner, a GPS receiver and
a computer. It works by computing the distance to the target point by
emitting a laser pulse and measuring the round trip time. Contrary to
passive sensors (such as the optical one), the system can work by night,
it is not sensitive to shadows and is able to provide the buildings height.
Resulting data have a punctual nature, and for each i-th point, the time
t, the latitude y, the longitude z, the height z, and the reflectance w, are
available: {t;, s;, w;}.

Latitude 50 o

Longitude

Figure 1. Representation of LDR data; sample size N=8369.

Focusing on spatial coordinates s; = [z;,¥;, Z;|' LDR data can be
used to obtain 3D representation of houses, cities and landscapes. To
this end a common problem is interpolation, because observations are not
available on regular grids, they are subject to several random effects and
the resolution required for the output may be very accurate. As an exam-
ple, we consider a subset of the data studied in Wang and Tseng (2004)
concerning the city of Hsinchu (Taiwan) and generated by Leica ALS40
instrument. Original data cover a square area of 1/2 Km?, while our sub-
set regards an area of 70x50 m, containing N=8369 points. Figure 1
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provides 3D representation: one can note that data are very dense and
spatial coordinates are subject to random fluctuations. This data-set will
be used in the paper to test and compare the various interpolation meth-
ods. These consist of linear kernel regression, robust kernel smoothing,
nonlinear M-estimation and adaptive weighted regression.

2. Kernel regression estimates

Nonparametric smoothers (Hérdle, 1991) can be very useful to deal
with LDR data because the underlying surfaces are very complex and they
do not assume specific mathematical forms for them. Moreover, they can
be easily extended to multiple dimensions; consider the bivariate regres-
sion model

Zi=g(xi,yi) +&i, e ~1D(0,02); 1=1,2...N

where ¢(-) is a nonlinear determinist function and ¢ is a noise process, a
typical tool for estimating g(-) is the kernel (K) regression

N
gx(z,y) = vi(z,y) Zi (D
=1

7

Ky (5= ) /M| Ko (i = ) /e
S K65 = 2)/0] Ko (v~ )/

where (z,y) € R? are real variables, {x;, y;, Z;} are observations, K(-), h =
1,2 are symmetric density functions and 0 < A\, < oo, h = 1,2 are
smoothing coefficients.

Optimal design of such coefficients can be obtained with cross-validation
techniques, by minimizing the loss function

'Ui(xa y) =

@Qn (A2, Ag) = i [Zj - QKj(Xj’Yj)r

j=1

where gk _;(+) are estimates as in (1) obtained by omitting the j-th obser-
vation. Applying this method to the data of Figure 1, under the choice of
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Gaussian kernels, provided 5\1=0.05 and 5\2=1.32. However, these coeffi-
cients produce estimates which tend to follow the “stripes” of the aircraft.
On the contrary, constraining on A\j=Xy=)], yields 5\:0.6, which generates
regular estimates in Figure 2.

Latitude 0 o

Longitude

Figure 2. Kernel regression estimates of the data in Figure 1, obtained
with algorithm (1), Gaussian kernels, and A\ = X = 0.6.

Despite of their flexibility, classical nonparametric estimators have
major problems when surfaces present discontinuities, just because they
smooth the data. This can be checked in Figure 2 by noting that build-
ing walls are not as sharp as should be expected (Figure 1), and large
disturbances occur in correspondence of the jumps. A better visual per-
formance is allowed by a smaller bandwidth, but this slightly improves
the situation and cannot be obtained with minimax approach. In fact
miny max; |Z; — gx—;(x;, ;)| yields A=1.05.

Analysis of the disturbances is an important diagnostic step. Here,
one should distinguish prediction errors &; = [Z; — gi_;(x;,y;)] from
residuals of regression €; = [ Zi— ok (x5, yz)} . In the case of linear models,
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it can be shown that the estimator 52 = N~=' SV (&) is unbiased
(Grillenzoni, 1994), but is sensitive to outliers. A robust alternative is the
median (med) absolute deviation (MAD)

Gt = medi{| & — medj(éj)|} /0.6745

where the constant 0.6745 allows consistency in the Gaussian case.

On the basis of these formulas we obtained the estimates 6.=3.24,
0.=2.57, 0.=2.91 and ¢7=0.25, which are somewhat different from the
others and reveal the presence of non-normality. Kernel densities fK (¢)
of prediction errors and residuals confirm this hypothesis. They were
computed with the sub-optimal bandwidth 6. /N'/°=0.53 (Hirdle, 1991,
p.91), which is very similar to the cross-validation estimate A=0.6. These
densities are displayed in Figure 3, showing very heavy tails; these are
produced by gross errors in correspondence of jumps.

(a) - Kernel Densities (b) - Log of Densities
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Figure 3. Kernel densities of prediction errors (solid line) and residuals

(dashed line) of the kernel regression in Figure 2.

2.1 Robust kernel regression

A possible solution to the poor fitting of the kernel regression can be
obtained by filtering large residuals. Indeed, these are the effect and the
cause of surface oversmoothing at the jumps. The matter is typically pur-
sued in robust estimation (Huber, 1981), where residuals are controlled
by modifying the loss function. Now, because the estimator (1) mini-
mizes the “local” quadratic functional 3% | v;(z,y) (Z; — g)? its “ro-
bustification” can be achieved by introducing local weights even for the
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7 variable, by means of a suitable kernel function K (-). The loss to be
minimized thus becomes

1 N

Py(g) = N Z vi(,y) K<Zi - 9) (Zi — 9)? (2)

i=1

where the metric [ K (¢) - €% |, which replaces the quadratic distance (Z —
g)?, is uniformly bounded; therefore, it belongs to the class of robust loss
functions (Hampel et al., 1986).

Minimization of (2) does not lead to an explicit (closed form) so-
lution; however, using the previous estimate gk (-) inside K(-), one can
obtain the robust (R) algorithm

N

gr(z,y) = wi(z,y)Zi (3)

i=1

K| = 2)/M | Ka[(vi = )/ Do Ks| (%= (@) /o]

Wi\T,Y) =
) iy Ki [(Xz’ - 33)/)\1} Ky [(yz‘ = 3/)//\2} K3 [(Zz - 9k (=, y))/)\a‘}
This two-step estimator has a loose connection with the sigma filter of
image denoising (Chu et al., 1998). Its performance can be improved
through iteration, namely by replacing gk (-) with gg(-), within K3(-), in
the third step, and so on.

In the presence of large amount of data, it is useful to combine the
iteration process with data subsampling and averaging of estimates. In
practice, the original data-set is split into m > 10 disjoint random subsets
of size n = N/m (rounded). The k-th subset is used in the k-th iteration

of the smoother (3), and the resulting estimate gl(f )() is averaged to the

previous ones, as ggc ) = 1 ZfL:l ggL ), Finally, this mean value is used
in the (k+1)-th iteration within K3(-), forallk = 1,...m.

Design of smoothing coefficients could be carried out with the cross-
validation method, by minimizing the functional:

Qn(A1, Ao, As) = 8 12— grej (35, 75) 1
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where:

N

) < — x.

gr—j(x5,y;) E K1( 1)\1 J
i#£j

i — Vi Zi — gx—i(Xi, ¥
K (YY) g, 9x—5(%;,¥5) Z,
o A3

Optimization of Qy(-) is computationally demanding, and attempts to
simplify it by substituting gx—;(x;,y;) with Z; would create numerical
problems. Even the solution A3=o., which is sensible in the case of Kj(-)
Gaussian, is problematic because previous kernel estimates of o, ranged
between (0.25, 2.91).

Application of the cross-validation method to the smoother (3) con-
verged only under the constraint of single bandwidth, providing A = 0.56.
Instability A3 — oo originates from the flatness of () in the direction
of A3, which reveals a problem of parametric identifiability with respect
to this coefficient (Hall and Jones, 1990, p.1717). In practice, increasing
the sharpness of estimates in correspondence of the jumps, which is de-
termined by K3(-), only has a weak correspondence in terms of reduction
of the prediction errors variance. This is due to the fact that discontinu-
ity edges have area zero in the plane, and the number of observations in
correspondence of the jumps is too small to influence ) . Therefore, we
decided to keep fixed the (stable) kernel estimate 5\1 = A\»=0.6 and inves-
tigating the graphical/numerical effects of varying A3. Now, for A3 < 0.3
the estimates gr(-) became unstable, whereas for A3 > 0.9 they became
smooth like the kernel ones. As a consequence, we selected the midpoint
A3=0.6 and turn to investigate the effects of data subsampling under this
design.

Here, we found that n (the subsample size) outside the range (100,500)
produces similar effects as those of A3 outside (0.3, 0.9). Thus, we ten-
tatively selected n=300, which implies N/n =~ 28 iterations. Smoothers
implemented with sequential processing of sub-samples enjoy a better
jump-preserving ability because, at each iteration, the probability to have
multiple observations within the same “pixels” is drastically reduced.
This is particularly useful for the pixels placed on the edges because it
avoids averaging data placed on different heights, which causes smooth-
ing of jumps. Resulting estimates, obtained with Gaussian kernels, are
displayed in Figure 4. Compared with Figure 2, they enjoy better jump
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tracking properties, both in situations of large and small scale variability.

N 10
Latitude 0 o Longitude

Figure 4. Robust regression estimates generated with the smoother (3),
with Gaussian kernels, and the coefficient \y = Ao = A3 = 0.6.

3. Robust nonlinear smoothers

In this section we discuss robust nonparametric smoothers by link-
ing kernel regression and M-estimation methods. This approach was de-
veloped by Hirdle and Gasser (1984) and Hall and Jones (1990), with
regard to one-dimensional problems with fixed and random designs re-
spectively. Usefulness of robust methods in dealing with discontinuous
surfaces raises from the fact that they treat data beyond the jumps as out-
liers. Such data are then implicitly ignored by robust smoothers and local
properties of estimates result enhanced.

We refer to the same model Z = g(x,y) + ¢ in Section 2, but with
the specification that the regression function g(-) is discontinuous deter-
ministic, with jumps located at unknown points. For example, one may



88 C. Grillenzoni

have
9@.y) =(@,y) + 8- B{(0,9): y= [p@) +0- L 2 %)} @

where (+) is a continuous function, d; » are jumps and I; »(-) are indicator
functions. Notice that in the above scheme, the discontinuity edge of g(-)
follows the relationship y = ¢(x), which also has a jump at the point xq.

3.1 M-type Estimation

Given the data {x;,y;, Z;}}¥,, the kernel M-estimator (KM) is the so-
lution of the locally weighted maximum likelihood type problem

1 N
am(z,y) = argm;n [PN(Q) = ; vi(w,y)p@i — g)} (5)

where the weights {v;} are defined as in (1), and p(-) is a loss function
which controls the robustness (namely the resistance to outliers).

To this end the loss p(z) must not grow too rapidly as |z| — oo; or,
more precisely, the score 1)(z) = dp(z)/0z must be uniformly bounded.
In this context there are two philosophies: Huber (1981) states that ¢(z)
must be monotone and must achieve its maximum value asymptotically,
because outliers may contain useful information. On the contrary, Ham-
pel et al. (1986) claim that it must be redescending, namely |1 (z)| — 0,
because outliers are usually extraneous to the models. These approaches
have opposite consequences in terms of convergence and adaptivity of the
estimates.

Most common robust loss functions are given as follows:

a) pa(z) = 2°/2, 2| <o
= alz|-a?/2, |z|>a
b m(z) = 2/2, |z[<a (6)
/2, |z] >«
) pe(z) = —exp(—z°/2)

d) pa(z) = 2 exp(—2*/2)



Robust Object Detection 89

p(z) Functions w(z)=dp(z)/dz 0((z)=y(z)/z

Figure 5. Display of the robust functions in (6) with o = 1.

where 0 < a < oo is a design constant that must be selected accord-
ing to the rate of outlier contamination. Typically, under the assump-
tion of Gaussian disturbances one can choose & = 20.. Loss function
(a) is the preferred one of Huber, while (b) corresponds to the trimmed
method. The other two are smoothed solutions and provide redescending
t-functions; the last, in particular, combines (a) and (c¢) and coincides
with the heuristic method in (2). Graphical behavior of the criteria in (6),
and of their corresponding -functions, is shown in Figure 5.

Usefulness of the KM-smoother (5) in estimating discontinuous re-
gression functions, raises from the fact that it has better local properties
with respect to classical nonparametric estimators. This is particularly
true in the case of redescending v-functions, because they create local
weighting also in the direction of the dependent variable Z. To appreci-
ate this feature, consider the solution (6,c), namely assume that —p(z) is
Gaussian. In this case, the minimization problem (5) does coincide with
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the maximization of the kernel density function

p 1 ul X; — T Vi— Y Z, — Z
fx(z,y,Z) = s NV 121 K1<)\—1) K2< ™ ) K3< " )

G
for any pair (z,y), the estimate gy(-) is the highest value of fx(z,y, Z)
in the Z-direction. This relationship demonstrates the close connection
between KM-smoothing and the modal regression approach discussed in
Scott (1992, p.157).

Because kernel densities have multiple maxima, redescending KM-
estimators usually have difficulty to converge to the global optimum point.
However, it is the very nature of jumping between the local maxima of
fx () that determines the jump tracking ability of §y(-) with respect to
discontinuous surfaces. The computation of (5), for every point (z,y),
typically proceeds by nonlinear algorithms, such as the steepest descent
one

N
. (K Atk i
@) = o) +an D ) v (5 - i @)
=1

where {ay} is a positive and summable sequence that controls the conver-
gence and the initial value may be selected as gﬁ)(-) = gk(-). However,
the direct minimization of (5) is computationally demanding, and is suit-
able only if the grid of values for (x,y) and/or the sample size N, are

small.

3.2 W-type estimation

An alternative approach, which leads to a “quasi” linear solution of
(5), may be obtained from the weighted form of M-estimates (Hampel
et al., 1986, p.115). This follows by the definition of the residual weight
function w(z) = ¥(z)/z, which implies

N

vi(z,y)Y(Z; — g) = Z vi(z,y)w(Zi — g) (Z; — g) =0

1=

7
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thus, solving for g, in iterative form, provides the weighted (W) local
algorithm

N N

=1 =

To appreciate the advantage of this structure consider the solution (6,c¢).
It implies that w(z) = exp(—22/2), which is a Gaussian kernel. With
this, the smoother gw (-) becomes equivalent to the heuristic robust esti-
mator gr(-) in (3). The equivalence is also confirmed by the closeness of
the w-functions (¢, d) in Figure 5. Therefore, resorting to weighted form
of M-estimators provides robust pseudolinear smoothers which can be
managed with non-gradient procedures of Section 2.

Let us now apply this approach to the trimmed (T) specification (6,b).
Based on the initial kernel estimator gk (), the two-step version becomes
similar to (3), with K3(-) replaced by the indicator function I(-)=w(-).
Moreover, the iterative version, integrated with data subsampling and se-
quential averaging, becomes

) k—1 o 1.
g(Tk)(fc,y)zTg(Tk D(%?/HEQ(T'“)(%?/) (8)

Nk
A(k+1) Xgi — T Yki — Y (k) '
97 (w,y)oc;Iﬁ( )\1 )K2< )\2 )I<‘Zk1_gT (x,y)‘ < )\3) Zkz

where {Xy;, Vi, Zi } are random subsamples of size ny, and ), ny = N.
The formula (8) has a recursive nature, in that the average values are
updated with the estimate obtained with the current subsample.

Design of smoothing coefficients of (8) was pursued as in Section 2.
Namely, conditioned on the value 5\1 = )y = 0.6, of the kernel esti-
mation, we evaluated the effect of A3 on the graphical behavior of gr(-).
Now, values of A3 < 4 generate numerical instability, whereas A3 > 6
produce smoothing effect; therefore, optimal value may be A3=5, which
is very similar to 2 o, of the kernel estimation. Iterative estimates of g (-),
computed with moderate subsampling n = N/20, are reported in Figure
6. With respect to Figure 4, one may note that details on the building
roofs are much less clear.
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Figure 6. Robust regression estimates generated with the algorithm (8)
and the coefficients Ay = Ay = 0.6 and \3 = 5.

As a conclusion, one can state that redescending KM-smoothers are
preferable to those with truncated score function. Further experiments
have also shown that the Huber solution (6,a) provides estimates which
are just intermediate to those in Figure 2 and 6; this means that monotone
1-functions have weak tracking ability. Finally, it is possible to show that
KM-estimates obtained by nonlinear minimization of (5) are very similar
to the pseudolinear ones in Figure 4 and 6.

3.3 S-type estimation

Although previous estimators are satisfactory in tracking big jumps,
they exhibit some weakness in small variability contexts, such as on the
ground or on the building roofs. A way of improving this aspect, consists
of simplifying the algorithms, starting from their underlying objective
functions. For instance, in (2) one can drop the local weights v;(-), by
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including the kernel estimates in K ()

Pn(g) ~ % i Ky [Zi - QK(%?J)] (Zi — 9)°

i=1

in fact, gk (-) already incorporates the weights themselves. Furthermore,
by noting that Z; = g(x;,y;) + &, one could also approximate Z; ~ 7Z; =
Jx (X4, y;), obtaining

Pn(g) =~ % Z K, [QK(Xz’,yz‘) - QK(JC,Q)] (Z; — g)°

Finally, minimizing the above with respect to g, and iterating the resulting
solution, one can obtain the simplified (S) algorithm

£, | (axtev) - 8@ 2] 2
£, & (acte w0 - 300 1A

~(k
9 (@, y) =

)

Fundamentally, this is a classical (non-local) weighted algorithm, where
the weights w(z) are specifically suitable in the case of piecewise constant
surfaces. Indeed, by modeling K(-) as the indicator function I(-), (9)
just provides local sample means of the data Z;. Moreover, as the value

‘ Ik (%5, yi) — gs(z, y)‘ becomes large compared to A, then the two points

are almost classified in different regions.

At the implementation level, even the calculation of the component
Jx (X4, y;) of (9) could be iterated; however, this has shown worsening of
the jump tracking performance. The above algorithm is very fast and does
not need data subsampling; moreover, it is stable and relatively insensitive
to the design of \. Suitable range for such coefficient now is (0.2, 1), and
Figure 7 exhibits estimates (9) obtained with A=0.6 and k=15 iterations.
As one can see, small objects and constant components of the surface
are significantly enhanced; on the other hand, smooth regions tend to be
segmented as a staircase. This problem cannot be solved by increasing A,
because this only cause erasing of small objects on the roof.
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Figure 7. Regression estimates generated with the algorithm (9), with
Gaussian kernels and the coefficient A = 0.6.

4. Statistical properties

In the previous sections we have discussed several kinds of robust
kernel estimators, showing their algebraical connections. In particular,
we have proved that nonlinear (5) and pseudolinear (3),(8) smoothers are
equivalent if they are fully iterated. The bridge between the two classes
of estimators is provided by the weighted average form of M-estimates
(Hampel et al., 1986, p. 115). Applications to laser data have also shown
that bounded loss functions (6,b — d), are suitable for tracking discontinu-
ities in regression surfaces. For smooth regions, however, this feature may
rise lack of convergence because they involve non-monotone score func-
tions which involve multiple solutions of the equation ) ", v;(z, y) ¥(Z; —
g9) =0.

This problem is well known in classical (parametric) M-estimation,
where specific assumptions are needed to establish the consistency of
algorithms with redescending score functions. For example, Freedman
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and Diaconis (1982) show that uniqueness of the global minimum is not
enough, and symmetry and monotonicity, on (—oco, 0), of the underly-
ing probability density are necessary. What emerges in these studies is
that the non-monotone nature of (z), by allowing for multiple local
solutions, conflicts with the possible multi-modality of f(Z). Now, if
v;(z,y) are strictly positive weights, this conclusion can be extended to
KM-smoothers, yielding that their convergence strongly depends on the
shape of the noise density. In particular, if f(&) has saddle points, then
consistency is not guaranteed.

In the following we outline the proof of the consistency of KM-smooth-
ers at the points of continuity of a regression surface. For monotone
1-functions, such as the Huber solution (6,a), the result was proved by
Hall and Jones (1990); they also showed that the asymptotic variance is
proportional to E[t)?(¢)]/E?[¢(¢)], as in parametric M-estimation. For
redescending score functions, however, more specific assumptions for
model (4) and estimator (5) are needed:

Al. The {e;} are independent and identically distributed, with mean
zero and finite variance. The density f(¢) is strongly unimodal in
0, and has continuous and bounded derivative f'(e).

A2. The loss function p(z) is a negative kernel, namely [ —p(z)dz
= 1, with continuous and bounded derivative 1(z). The common
bandwidth A — 0 in such a way that NA\3 — oo as N — 0.

Under the stated assumptions, p(e) is of type (6,c) and —Py(g) in
(5) behaves asymptotically like a kernel density estimator for {¢;}. Thus,
given the assumption of continuity, as (A, N~') — 0 the derivative Py (g)
converges in probability to f’(e). More specifically, using the same argu-
ments as Parzen (1962), one can show that the sequence of expectations
E[P}(g)] converges uniformly, namely

sup |E[Py(9)] — £'(Z —9)| = O(A, W) )
g9
From this it follows the uniform stochastic convergence of Py (g)

lim lim P<Sup‘PI'V(g) — f'(Z —g) ‘ < 77) =1
g

N—o0 A—=0
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for any constant 7 > 0 and for all the points of continuity. Notice that,
until now, we have just exploited the equivalence between KM-smoothing
and modal regression as defined on the basis of (7).

Finally, because f(Z — g) has no saddle points and just one local
maximum, one can show that the estimator gy(-), solution of the equation
Py (g) = 0, converges in probability to the unique zero of f'(Z — g),
namely

lim lim P<sup ‘ am(z,y) —g(z,y) ‘ < 77) =1
N—500 A0 g

for any point (z,y) where g(-) si continuous, and provided that \*N —
oo. It should be noted that the condition of strong unimodality of f(¢) is
necessary; thus, when it is not assumed (as in Chu et al., 1998) consis-
tency is not guaranteed.

From the computational point of view, problems of convergence of
redescending KM-smoothers are apparent if one use Newton type algo-
rithms. In this case, the minimization of Py(g) would involve the Hes-
sian matrix of second derivatives of p(z), namely first derivative of 1(z).
Thus, if 1/(2) is non-monotone, its derivative may be negative, or does not
exist, and so the numerical convergence fails. To avoid these problems it
is advisable to solve (5) with direct search methods, or, iteratively, with
pseudolinear algorithms described in Section 2.

Until now we have considered the behavior of KM-smoothers at points
of continuity of g(-). At the jumps non-consistency should always be
expected. Indeed, Chu et al. (1998) have shown that asymptotic bias (AB)
and variance (AV) depend on the jump size §, and resemble the moments
of a Bernoulli probability function

|AB| 271'55, AV:7T5(1—7T5) 62, with T = f(g) de
§/2

where f(¢) is assumed symmetric and v (z) redescending. Therefore, as
far as the jump signal is large compared to the noise variance, then sta-
tistical quality of KM-estimates improves. This means that consistency
cannot be excluded at jump points provided that f (&) has a bounded sup-
port, with range less than 6.
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Finally, let us discuss the property of robustness: It is known that
monotone KM-estimators are robust against outliers (Hérdle and Gasser,
1984), but we have checked they are not jump preserving. Thus, one
may wonder if the two properties are incompatible, and conclude that
redescending KM-smoothers could be non-robust. In reality, jumps in
regression surfaces are typically represented by step-functions, whereas
outliers correspond to pulses, and these are difficult to track. Now, if
the bandwidth A3 is different from zero, then isolated pulses are ignored
and robustness holds even for non-monotone -functions. On the other
hand, it should be noted that presence of outliers may hinder consistency,
because KM-estimators asymptotically (A3, N~! — 0) are maximizer for
the noise density, but contaminated f(¢) could not respect the hypothesis
of unimodality in A1.
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