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Summary: The purpose of this paper is the study of dependence for r×s tables in the 
class of all bivariate tables with given margins.  First of all, a dependence partial 
ordering will be defined, based on the signs and the absolute values of  r×s 
contingencies. Then, to increase the number of couples of comparable tables, a new 
partial ordering, called intensity dependence ordering and based only on the absolute 
value of contingencies, is introduced. To allow the comparison of all pairs of tables, a 
dependence total ordering is needed, therefore a broad class of functions - able to 
induce total synthetic dependence orderings – is introduced,  their arguments being the 
absolute values of relative contingencies. Among them, Mortara’s and Pearson’s 
indexes can be identified. 
Finally, the dependence degree of a given table can be expressed by its relative 
position in a chosen dependence ordering of all the tables in the same class. This 
methodology is applied, as an example, to four classes of tables. 
 
Keywords: Dependence ordering, Directional dependence ordering, Intensity 
dependence ordering, Synthetic dependence ordering. 

1. Introduction 
The relevant work of distinguished scholars, such as K.Pearson, 

Benini and Mortara, forged the study of dependence between two 
 

∗ This note is the result of a close collaboration, even if, more specifically, the 
Introduction and Section 3 are due to M. Zenga, the other sections to F. Greselin. 
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qualitative variables, during the period from the last decades of the 19th 
century to the first decades of the 20th century. Benini introduced 
attraction and rejection indexes, for each cell in a two-way table 
(Benini, 1901). Mortara introduced the mean absolute contingency 
index (Mortara, 1922), an association measure defined as the weighted 
arithmetic mean of the absolute value of relative contingencies, with the 
independence frequencies as weights. Pearson’s coefficient of 
contingency (Pearson, 1904) is similarly based on the weighted 
quadratic mean of the same quantities. 

To measure dependence, Gini proposed a new approach (Gini, 1954-
55), based on the following two steps: first of all evaluating all the 
dissimilarity indexes between each conditional distribution and the 
corresponding marginal distribution, and successively synthesizing 
these indexes by a mean. In this way he obtained the so-called indici di 
connessione totale. Later on, Castellano coined the term indici di 
connessione globale, to designate the mean value of the dissimilarity 
indexes between all conditional distributions (Castellano, 1960). 

Since earlier association studies, the distinction concerning the pre-
existence of marginal frequencies with respect to joint frequencies 
(Castellano, 1962; Zenga, 1964) deserved a great deal of attention. 
Theoretical aspects related to the hypothesis for which both marginal 
distributions are fixed appeared to be very attractive. Fréchet introduced 
the class of all bivariate tables having the same marginal data (Fréchet,   
1951). Leti, by supposing that each unit of a population is a pair, 
developed the concept of distribution of all tables with given marginals 
(Leti, 1970); moreover, he proved that the independence frequency of 
every cell coincides with the arithmetic mean of the frequencies of the 
same cell in all tables of the Fréchet class. A careful analysis concerning 
the ‘nature’ of marginal data, particularly for the characterization of 
maximum dependence situations, was carried out in Zanella’s 
monograph on dependence (Zanella, 1988). 

Usually, scholars distinguish between two extreme situations in 
dependence studies: distributive independence and maximum 
dependence. In order to measure the degree of dependence of a table 
where none of these situations exists, they turn to the evaluation of 
standardized indexes, usually assuming values in the range [0,1] and 
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attaining their endpoints in the two extreme cases (Bonferroni, 1941; 
Faleschini, 1948). While distributive independence is uniquely 
characterized, maximum dependence needs some further specifications: 
it may be complete or absolute1 (unilateral or bilateral, respectively, in 
the Italian literature: see Leti, 1983; Zanella, 1988; Zenga, 1988). In the 
case of fixed marginal frequencies, the identification of maximum 
dependence is not straightforward (Zanella, 1988). 

 
A great improvement of many topics in statistics (concentration, 

variability, kurtosis, etc.) came from the introduction of partial ordering 
relations (concentration ordering, variability ordering, etc.) between 
variables and from the definition of suitable transformations of variables 
on these partial orderings (Van Zwet, 1964). The introduction of a 
partial ordering relation implies that a good statistical index has to be 
coherent with such ordering.  

 

The aim of this work is to propose new partial orderings in the study 
of dependence of two categorical variables. While for quantitative and 
for ordinal variables a vast assortment of bivariate dependence 
orderings appears in literature, only few works deal with nominal 
categorical variables. They will be briefly recalled in the beginning of  
Section 3. The definition of a suitable transfer involving two 
frequencies in a two-way table that can decrease (increase) dependence 
- without modifying marginal frequencies - is the main topic of Section 
3. According to these transfers, a partial ordering relation, called 
‘directional dependence ordering’ and denoted by ≺DD (DD-ordering), 
can be introduced among the tables with given margins (the reference 
class). In the DD-ordering both the sign of each contingency and its 
absolute value are considered. In Section 4 some numerical examples, 
showing how the DD-ordering works, are provided.  

To increase the number of pairs of comparable tables one can 
weaken the relation ≺DD, by considering only the absolute value of each 
 

1 The above definitions are briefly recalled here: “Considering a population classified 
according to the presence or absence of two attributes A and B, we shall say that association is 
complete if all A’s are B’s. Absolute association arises when all A’s are B’s and all B’s are 
A’s.” (Kendall and Stuart, 1979, p. 560) 
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contingency. Hence, in Section 5, a new partial ordering, called 
‘intensity dependence ordering’ and denoted by ≺ID (ID-ordering) is 
defined.  

To compare all pairs of tables, the definition of a total ordering 
relation is needed. Hence, in Section 6, the notion of ‘synthetic 
dependence total ordering’, denoted by ≺SD, is given.  Therefore a class 
of functions - able to induce an SD-ordering – is introduced,  their 
arguments being the absolute values of relative contingencies. Among 
them, Mortara’s and Pearson’s indexes can be identified. The 
hierarchical structure of the orderings ≺DD ≺ID and ≺SD is then 
remarked. Finally, given a table T in the reference class, some useful 
information about its degree of dependence can be achieved by 
observing how many tables, among all those comparable with T, are 
dominated by T (in a partial or a total dependence ordering). In this way 
a meaningful measure of dependence can be defined.  

2. Terminology 
Let n statistical units of a given population be classified according to 

the qualitative variables A and B, both with nominal scale, with a finite 
number of unordered categories, denoted by a1,...,aj,...,ar and 
b1,...,bi,...,bs respectively. As usual, the joint frequency n(ai,bj) of the 
pair of modalities ai and bj is denoted by nij, while marginal frequencies 
are denoted by ni• = n(ai), i = 1,2,…,r for variable A and n•j = n(bj), j = 
1,2,…,s, for variable B. Bivariate statistical data are usually represented 
in a table with r rows and s columns:  

 

A\B b1 bj bs Total
a1 n11 … n1j … n1s n1• 
… … … … …
ai ni1 … nij … nis ni• 
… … … … …
ar nr1 … nrj … nrs nr• 

Total n•1 n•j n•s n 
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Henceforth, let: 

 n
nnn ji

ij
•• ⋅=ˆ (1) 

be the value of the generic joint frequency, in the hypothesis of 
independence.  

In association studies, the contingencies: 
 s)jr;(innc ijijij 1,2,...,1,2,..,ˆ ==−= (2) 
play a fundamental role. To evaluate deviation from independence, one 
can also employ the relative contingencies: 

 .ˆ
ˆ

ij

ijij
ij n

nnρ −
= (3) 

 
Three distinct possibilities, reflecting the typology of statistical data, 

arise in the study of dependence between variables A and B (Kendall 
and Stuart, 1979; Leti, 1983; Zanella, 1988): 

a) both sets of  marginal frequencies are fixed; 
b) the marginal frequencies of one variable are considered fixed; 
c) the total population size n is fixed.  

In this work we refer to case a), in which both margins are fixed in 
advance. 
Definition 1: The reference class (Fréchet, 1951, p. 53) 

The class T (ni• ; n•j) is the collection of all r×s contingency tables, 
with integer entries nij, whose row sums ni• and column totals n•j are 
considered fixed. 
Remarks:  

i) Depending on the specific values of these marginal frequencies 
and the grand total n = n1• +…+nr• = n•1 +…+ n•s, the independence 
table T{ ijn̂ } with entries ijn̂ may not belong to T (ni• ; n•j). 

ii) All the tables T∈ T (ni• ; n•j) share the same independence 
frequencies ijn̂ .

iii) T (ni• ; n•j) is a finite set of tables: to locate and single out all the 
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tables T{nij}∈T (ni• ; n•j) see, among others (Leti, 1970; Greselin, 2003). 

3. Frequency transfers and directional dependence 
The study of partial orderings relations for contingency tables arises, 

in literature, in the context of majorization orderings (Marshall and 
Olkin, 1979): see the works of Joe, Forcina and Giovagnoli, and 
Scarsini, whose contributions are briefly recalled here, as an important 
reference. 

In order to compare the relative degree of dependence of two tables T
and T’ in T (ni• ; n•j ) Joe proposes to compare the column vectors  
vec(T) and vec(T’), respectively obtained by piling up the entries of T
and T’, and to consider their ordering, based on the Lorenz curve (Joe, 
1985).  

In (Scarsini, 1990) a related approach is proposed, it is based on the 
partial ordering of the concentration curves obtained by the ratios ρ ij* =
nij/ ijn̂ i=1,...,r and j=1,...,s, weighted by the independence frequencies 

ijn̂ .
As it is well known, in case of independence all conditional 

distributions are similar to the marginal, so that a measure of 
concentration of the joint frequencies (or of the ratios ρ ij*) appears to be 
appropriate to measure the deviation from independence. Anyway, the 
nij arrangement (and the ρ ij* too) in non-decreasing order may lead to 
compare a cell in T1 with a different cell in T2. This is not meaningful in 
the study of dependence, where a pair (i,j) corresponds to a specific 
choice of the i-th category of A and the j-th category of B, so that nij  and 
ρ ij* are conceptually related to this couple of indexes. Our approach to 
dependence orderings tries to overcome this problem. 

The partial orderings introduced in (Forcina and Giovagnoli, 1987) 
are based on linear transformations on the tables, hence leading to the 
modification of one margin (or both): this proposal can not be useful in 
the chosen context of comparing tables in the class T (ni• ; n•j ). 

In this work a new approach is presented: first a frequency transfer 
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among the cells of a two-way table which generates a decrease in 
dependence is introduced, successively a partial ordering that obey to 
these transfers is defined.  

Let us consider tables T1, T2 and T3, sharing the same marginal 
frequencies:  

 
T1:

Frequencies nij 
before transfers 

 
A\B b1 b2 b3
a1 4 2 6 12 
a2 3 6 ←15      24 
a3 5 16→ 15 36 

12 24 36 72 

T2:
Frequencies 

A\B b1 b2 b3
a1 2 4 6 12
a2 4 8 12 24
a3 6 12 18 36

12 24 36 72

T3:
Frequencies n’ij  
after transfers 

 
A\B b1 b2 b3
a1 4 2 6 12 
a2 3 7 14 24 
a3 5 15 16 36 

12 24 36 72 

ijn̂

T2 coincides with T{ ijn̂ }. T3 is obtained from T1 by transferring, as 
indicated by the arrows, one frequency from the cell in position (3,2) to 
the cell (3,3) and from (2,3) to (2,2). In the following graph the table 
cells are listed on the X-axis, while frequencies are on the Y axis: 

The two transfers involve four cells and leave marginal data 
unchanged. Moreover, the two cells loosing a unit frequency, namely 

0
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(2,3) and (3,2), are such that nij > ijn̂ . On the contrary, the two cells 
gaining a unit, i.e. (2,2) and (3,3), are such that  nij < ijn̂ . As a result of 
these transfers, as one can also realize from the graph, the modified 
frequencies n’ij lay in an intermediate position between the initial nij 
and those of independency ijn̂ . Furthermore,  the signs of contingencies 
do not change, while their absolute values decrease. In other words, 
these transfers draw the table closer to the situation of independence, i.e. 
they decrease the ‘directional dependence’. The qualifier directional 
emphasizes that contingency signs do not change. 

 
The transfers from table T1 to T3 can be characterized also by 

evaluating the contingencies cij in T1 and  c’ij in T3:

Contingencies cij 
(before transfers) 
 

A\B b1 b2 b3
a1 +2 −2 0
a2 −1 −2 +3 
a3 −1 +4 −3

Contingencies c’ij 
(after transfers) 

 
A\B b1 b2 b3
a1 +2 −2 0
a2 −1 −1 +2 
a3 −1 +3 −2

Obviously, one may consider T1 as the transformation of T3, obtained 
by two transfers (opposite to the previous ones), increasing directional 
dependence. Let us resume these considerations in a general definition: 
Definition 2: Frequency transfers that decrease the directional 
dependence2

Let T be a table belonging to T (ni• ; n•j); let {nij} be the joint 
frequencies of T . Let (h,k), (h,g), (l,k) and (l,g) be four pairs of indexes 
such that h ≠ l,  k ≠ g and:  

nhk ≥ hkn̂ +1;  nlg ≥ lgn̂ +1;  
 
2 This definition has a strong analogy with the transformation suggested by Diaconis and 
Sturmfels (1998)  and carried out over 4 cells, to generate a Markov chain in the class of all 
bivariate distributions with given margins. 
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nhg ≤ hgn̂ −1; nlk ≤ lkn̂ −1.
Let T’  be the table with joint frequencies n’ij given by:  

n’hk = nhk – 1; n’hg = nhg + 1; 
n’lg = nlg – 1; n’lk = nlk+ 1;
and n’ij = nij for all other pairs of indexes (i,j). 

The transformation T → T’ is called a frequency transfer that decreases 
the directional dependence. 

 
In other words, directional dependence decreases when four joint 

frequencies became nearer to the corresponding independence 
frequencies by the effect of a frequency transfer acting over them.  

 
Naturally, an analogue definition can be given for transfers that 

increase the directional dependence.  
 

In dependence context, with the aim of defining an ordering relation, 
a suitable condition so that the distribution T shows more dependence 
than T’ must be identified:  
Definition 3: Directional dependence ordering  
Let T and T’ be two tables in T (ni• ; n•j) and let cij and c’ij be their 
respective contingencies. In T there is higher directional dependence - 
between the variables A and B – with respect to T’, if and only if, 

sjri:i,j 1,...,:;1,...,∀ :
a) when both contingencies cij and c’ij are not null, they have the 

same sign; 
b) | c’ij | ≤ |cij |, with strict inequality for at least one pair (i,j). 
 
The following notation will indicates it:  

T’ ≺DD T. 

4. Numerical examples 
In this section four classes T (ni• ; n•j) will be analyzed in detail, to 
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emphasize the impact of the ordering relation ≺DD. Although, for the 
sake of brevity, the chosen examples are very simple, the following 
methodology can be applied in the same way and with the same strength 
in depicting the degree of dependence of a given table T in its class T.

Example 1:  The class  TTTT {{{{n1•=4, n2•=6; n•1=3, n•2=7} 
 

T1
b1 b2

a1 0 ←4 4
a2 3→ 3 6

3 7 10 

T2

1 ←3 4
2→ 4 6
3 7 10 

T3

2 ←2 4
1→ 5 6
3 7 10 

T4

3 1 4
0 6 6
3 7 10 

T{ ljn̂ }
1.2 2.8 4 
1.8 4.2 6 
3 7 10 

T1, T2, T3, T4 are the four tables of the chosen class, T{ ljn̂ }is the 
independence table. The arrows show the frequency transfers that allow 
the transformation from one table to the following one. The 
corresponding tables of contingencies are: 

 
Cont. T1
−1.2 +1.2 
+1.2 −1.2 

Cont. T2
−0.2 +0.2 
+0.2 −0.2 

Cont. T3
+0.8 −0.8 
−0.8 +0.8 

Cont. T4
+1.8 −1.8 
−1.8 +1.8 

The prospect of comparisons between pairs of tables in the class 
turns out to be: 

T2 ≺DD T1
T3 ? T1; T3 ? T2;
T4 ? T1; T4 ? T2; T3 ≺DD T4.
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Among the six possible comparisons between pairs of tables, only 
two generate a ranking: T2 shows lower directional dependence than T1;
the same is true for T3 with respect to T4. The symbol “?” between two 
tables indicates that they are not comparable on the bases of DD-
ordering. 

 
Example 2: The class  TTTT {{{{ n1•=2, n2•=4, n3•=4; n•1=3, n•2=7}}}}

T1
b1 b2a1 0 2 2

a2 0 ←4 4
a3 3→ 1 4

3 7 10

T2

0 2 2
1 ←3 4

2→ 2 4
3 7 10

T3

0 2 2
2 ←2 4

1→ 3 4
3 7 10

T4

0 ←2 2
3→ 1 4
0 4 4
3 7 10

T5

1 1 2
2→ 2 4
0 ←4 4
3 7 10

T6

1 1 2
1→ 3 4
1 ←3 4
3 7 10

T7

1 ←1 2
0 4 4

2→ 2 4
3 7 10

T8

2 0 2
0 ←4 4

1→ 3 4
3 7 10

T9

2 0 2
1 3 4
0 4 4
3 7 10

T{ }

0.6 1.4 2
1.2 2.8 4
1.2 2.8 4
3 7 10

The arrows show how successive transfers of two frequencies involving 
four cells can generate the enumeration of the tables in the class. With 
the aid of contingencies one can recognize the transfers that increase 
(decrease) dependence: 
 

Cont. T1
−0.6 +0.6 
−1.2 +1.2 
+1.8 −1.8 

Cont. T2
−0.6 +0.6 
−0.2 +0.2 
+0.8 −0.8 

Cont. T3
−0.6 +0.6 
+0.8 −0.8 
−0.2 +0.2 

Cont. T4
−0.6 +0.6 
+1.8 −1.8 
−1.2 +1.2 

Cont. T5
+0.4 −0.4 
+0.8 −0.8 
−1.2 +1.2 

ijn̂
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Cont. T6
+0.4 −0.4 
−0.2 +0.2 
−0.2 +0.2 

Cont. T7
+0.4 −0.4 
−1.2 +1.2 
+0.8 −0.8 

Cont. T8
+1.4 −1.4 
−1.2 +1.2 
−0.2 +0.2 

Cont. T9
+1.4 −1.4 
−0.2 +0.2 
−1.2 +1.2 

Out of the 362
9

=



 available comparisons among pairs of tables, only 

four of them can be ranked according to the DD-ordering, namely: 
T2 ≺DD T1; T3 ≺DD T4; T6≺DD T8; T6 ≺DD T9.

Example  3:  The class TTTT {{{{n1•=2, n2•=3, n3•=5; n•1=2, n•2=8}}}}

T1
b1 b2

a1 2→ 0 2
a2 0 3 3
a3 0 ←5 5

2 8 10

T2

1 1 2
0 ←3 3

1→ 4 5
2 8 10 

T3

1→ 1 2
1 ←2 3
0 5 5
2 8 10 

T4

0 2 2
2→ 1 3
0 ←5 5
2 8 10 

T5

0 2 2
1→ 2 3
1 ←4 5
2 8 10 

T6

0 2 2
0 3 3
2 3 5
2 8 10 

T{ ijn̂ }

0.4 1.6 2 
0.6 2.4 3 
1.0 4.0 5 
2 8 10 

Only two comparisons out of the 152
6

=



 available produce a ranking 

between pairs of tables:  T2 ≺DD T1 and  T5 ≺DD T4.
In particular, note that, on the base of DD-ordering, one can not state 

that in T1 there is higher directional dependence than in T3, or in T4, T5,
T6, although T1 is the table of absolute dependence (maximum bilateral 
dependence) between variables A and B.
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Example 4:   The class  TTTT {{{{n1•=1, n2•=2, n3•=3; n•1=1, n•2=2, n•3=3}}}}

T1
b1 b2 b3

a1 1 0 0 1
a2 0 2→ 0 2
a3 0 0 ←3 3

1 2 3 6

T2

1 0 0 1
0 1→ 1 2
0 1 ←2 3
1 2 3 6

T3

1→ 0 0 1
0 0 2 2
0 ←2 1 3
1 2 3 6

T4

0 1 0 1
0 0 ←2 2
1 1→ 1 3
1 2 3 6

T5

0 1 0 1
0 ←1 1 2

1→ 0 2 3
1 2 3 6

T6

0 1 0 1
1 0 ←1 2
0 1→ 2 3
1 2 3 6

T7

0 1→ 0 1
1 1 0 2
0 0 ←3 3
1 2 3 6

T8

0 0 1 1
1→ 1 0 2
0 ←1 2 3
1 2 3 6

T9

0 0 1 1
0 2→ 0 2
1 0 ←2 3
1 2 3 6

T10 

0 0 1 1
0 1→ 1 2
1 1 ←1 3
1 2 3 6

T11 
0 0 1 1
0 0 2↓ 2

1↑ 2 0 3
1 2 3 6

T12 
0 0 1 1
1 0 1 2
0 2 1 3
1 2 3 6

T{ }

1/6 2/6 3/6 1 
2/6 4/6 6/6 2 
3/6 6/6 9/6 3 
1 2 3 6

Among the 662
12

=



 possible comparisons between the 12 tables, 

only in one case the ranking induced by the DD-ordering occurs:  
T2≺DD T1.

5. Dependence Intensity 
To increase the number of pairs of comparable tables according to 

their degree of dependence, the defining requirements must be 

ijn̂
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weakened. The ordering ≺DD is very restrictive because it requires r×s 
comparisons (one for each pair of entries with equal row and column 
indexes in the two involved tables). Moreover, each comparison needs 
the evaluation of both the contingencies sign and their absolute value 
|cij|. A weaker criterion can be found by considering only the absolute 
value of contingencies: 
Definition 4: Intensity of dependence ordering (ID-ordering)  

Let T and T’ be two tables in T (ni• ; n•j). In T there is higher intensity 
of dependence - between the variables A and B - with respect to T’ if 
and only if: |c’ij| ≤ |cij | ∀ (i,j), with strict inequality for at least one pair 
(i,j). This situation is denoted by: 

T’ ≺ID T.

If |c’ij| = |cij | ∀ (i,j), the two tables are said to have the same intensity 
of dependence and this will be denoted by:  

T’ ≈ID T.
Remark: The DD-ordering implies the ID-ordering. 

 
Now it is useful to reconsider the previous four examples.  
 
Example 1:  The class  TTTT {{{{ n1•=4, n2•=6; n•1=3, n•2=7}}}}

One can check immediately that all tables are comparable w.r.t ID-
ordering:  T2 ≺ID T3 ≺ID T1 ≺ID T4.

Indeed, for all 2×2 tables, as |c11| = |c12| = |c21| = |c22|, the ordering 
relation induced by Def. 4 is also a total ordering: hence all pairs of 
tables can be compared, so yielding a total ordering.  

 
Example 2:  The class  TTTT {{{{ n1•=2, n2•=4, n3•=4; n•1=3, n•2=7}}}}

Out of the 36 possible pairs of tables, only 18 of them produce a 
possible comparison, according to the ID-ordering. With reference to 
each chosen table, 8 comparisons arise, possibly classified in three 
ways: the chosen table is in a dominant position, is dominated, or it is 
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not comparable. This information is summarized in the following 
prospect:  

 
Table dominates no ranking with is dominated by total of comparisons 
T6 0 0 8 8
T3 1 4 3 8
T2 1 4 3 8
T5 1 5 2 8
T7 1 5 2 8
T8 2 6 0 8
T9 2 6 0 8
T1 5 3 0 8
T4 5 3 0 8

One can state that T6 represents the minimum dependence in the 
given class because it is dominated, according to the ID-ordering, by all 
other tables in the class. In T1 - and the same can be said for T4 - there 
must be the maximum constrained dependence, because it dominates 5 
tables, it is not dominated by any other table and it is not comparable 
with the remaining three.  

 
Example 3: The class  TTTT {{{{n1•=2, n2•=3, n3•=5; n•1=2, n•2=8}}}}

The ranking induced by the ID-ordering takes place in 9 out of the 15 
pairs of tables. Each table is compared with the remaining 5 in the 
following way: 

 
Table dominates no ranking with is dominated by total of comparisons 
T5 0 0 5 5
T6 1 2 2 5
T3 1 3 1 5
T2 1 3 1 5
T4 2 3 0 5
T1 4 1 0 5

Table T5 represents the lowest dependence, as it is dominated by all 
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the other tables in the class. In T1 there should be the highest 
dependence. 

 
Example 4:  The class  TTTT {{{{ n1•=1, n2•=2, n3•=3; n•1=1, n•2=2, n•3=3}}}}

With  the ID-ordering the couples of comparable tables are 18, 
among  the 66 possible pairs.  

 
Table dominates no ranking with is dominated by total of comparisons
T10 0 0 11 11 
T2 1 8 2 11 
T11 1 9 1 11 
T8 1 9 1 11 
T9 1 9 1 11 
T5 1 9 1 11 
T3 2 8 1 11 
T12 1 10 0 11 
T4 1 10 0 11 
T6 1 10 0 11 
T7 3 8 0 11 
T1 5 6 0 11 

Table T10 is dominated by all other tables, hence it has the lowest 
dependence. T1 should have the highest dependence as it dominates 5 
tables, it is not dominated by any table and it is not comparable with the 
remaining 6 tables. Note that T2 dominates T10, hence T2 has  lower 
dependence in comparison with the other ten tables. Table T7 should 
reflect a lower dependence than T1 and a higher dependence in 
comparison with all other tables. The remaining eight tables have an 
intermediate degree of dependence between T2 and T7.

6. Synthetic Dependence  

In the context of a partial ordering relation as ≺DD or ≺ID, based on 
the comparisons of r×s contingencies, only a subset of pairs of tables in 
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the same reference class belongs to the relation. 
To enable the ranking of all pairs of tables, a total ordering - coherent 

with the partial orderings ≺DD and ≺ID - is needed. The new ordering 
will synthesize contingencies and hence it will be called synthetic 
dependence ordering.  
Definition 5: Synthetic dependence ordering (SD-ordering) 

Let T and T’ be tables in T (ni• ; n•j). A synthetic dependence ordering 
≺SD is defined on T (ni• ; n•j) if and only if the following three conditions 
are satisfied:  

a) T≺SD T’ or T ≈SD T’ or T’≺SD T ;
b) T≺ID T’ ⇒ T ≺SD T’;
c) T ≈ID T’ ⇒ T ≈SD T’.

Requirement a) states the nature of a total ordering, while conditions 
b) and c)  assures the coherence with the ID-ordering.  

From an operational point of view,  synthetic dependence orderings 
can be defined by associating to each table of the class a scalar quantity. 
Our proposal is to evaluate this scalar quantity as a function f of
contingencies |cij|, or of relative contingencies3 |ρij| :

( )srrs nnnnff ••••= ,...,,,...,;,..., 1111 ρρ ,
considering the given marginal frequencies as parameters.  

The following conditions: 
a) f is not negative, 
b) f is strictly increasing on each variable  |ρij|, 

assure that  f induces a (total) ordering coherent with Definition 5. 
Two functions4 satisfying these conditions are: 

the weighted-arithmetic mean of |ρij| with weight ijn̂ :

3 As that all the tables in a reference class share the same independence frequencies 
ijn̂ , f can be based without distinction on |cij|, or on |ρij|; the same is true for the 

orderings ≺DD and ≺ID.
4 More examples of well-known association indices that belong to this class of 

functions can be found in Polisicchio (2002). 
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where X2 denotes the classic Pizzetti-Pearson’s statistic. 
 

In conclusion, the two well-known indexes M1(|ρ|) and M2(|ρ|) 
induce, among the tables in a reference class, a synthetic dependence 
ordering  ≺SD. Moreover, ≺SD is coherent with the ordering ≺ID and 
therefore also with ≺DD, yielding a hierarchy of orderings. 

We will evaluate the indexes M1(|ρ|) and M2(|ρ|) on each table of the 
four examples to understand how the two indexes operate.  

 
Example 1: The class  TTTT {{{{ n1•=4, n2•=6; n•1=3, n•2=7}}}}, whose 
independence table T{ ljn̂ } is: 
 

1.2 2.8 
1.8 4.2 

The following prospect reports, for each table in the given class, the 
absolute value of the relative contingencies, the mean values M1(|ρ|) and 
M2(|ρ|), and the index σ(|ρ|). 

As formerly remarked, in the case of 2×2 tables, the ID-ordering  is 
already a total ordering, moreover the total orderings induced by M1(|ρ|) 
and M2(|ρ|) coincide with it.  

We can also observe that M1(|ρ|)<M2(|ρ|); this happens because the 
quadratic mean is always greater than the arithmetic one, with equality 
only in the case in which all |ρij| take the same value. 

The prospect illustrates that in T2, showing the minimum 
dependence, the observed frequencies differ from the independence 
frequencies, on the average, by a value corresponding to the 8% of their 
value. Variability among contingencies is low, as we can infer by the 
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closeness between M2(|ρ|) and M1(|ρ|): 
 

( ) ( ) ( ){ } 039.02/12
1

2
2 =−= ρρρσ MM

In table T4, showing the maximum dependence compatible with the 
given margins, the observed frequencies differ from those of 
independence, on the average, by about the 72% of their value.

|ρij| M1(|ρ|) M2(|ρ|) σ(|ρ|) 

T2
0.166 0.071
0.111 0.048 0.080 0.089 0.039 

T3
0.666 0.286
0.444 0.190

0.320 0.356 0.156 

T1
1.000 0.429
0.666 0.286

0.480 0.534 0.234 

T4
1.500 0.643
1.000 0.429

0.720 0.802 0.353 

Example 2:   The class  TTTT {{{{n1•=2, n2•=4, n3•=4; n•1=3, n•2=7}}}} whose 
independence table T{ ljn̂ } is: 
 

0.6 1.4
1.2 2.8
1.2 2.8

In table T6, showing the minimum dependence, the absolute 
difference from nij and ijn̂ equals, on the average, the 16% of the value 
of ijn̂ ; among the |ρij| a fair variability is observed.  
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Conversely, T1 and T4 are the tables with the maximum dependence. 
The deviations |nij− ijn̂ | are, on the average, the 72% of the value of ijn̂ .

In T8 and T9, the index M1(|ρ|) is lower than in T1 and T4, while 
M2(|ρ|), in these four tables, takes the same value. This happens because 
variability among the |ρij| is greater in T8 and T9 than in T1 and in T4.

Note that the joint use of the indexes  M1(|ρ|) and M2(|ρ|), or rather of 
M1(|ρ|) and σ(|ρ|), allows to better discriminate between different 
situations: 
 

|ρij| M1(|ρ|) M2(|ρ|) σ(|ρ|)

T6
0.667 0.286
0.167 0.071
0.167 0.071

0.160 0.218 0.148

T3
1.000 0.429
0.667 0.286
0.167 0.078

0.320 0.408 0.253

T2
1.000 0.429
0.167 0.078
0.667 0.286

0.320 0.408 0.253

T5
0.667 0.286
0.667 0.286
1.000 0.426

0.480 0.535 0.236

T7
0.667 0.286
1.000 0.429
0.667 0.286

0.480 0.535 0.236

T8
2.333 1.000
1.000 0.429
0.167 0.079

0.560 0.802 0.574

T9
2.333 1.000
0.167 0.078
1.000 0.429

0.560 0.802 0.574

T1
1.000 0.429
1.000 0.429
1.500 0.643

0.720 0.802 0.353

T4
1.000 0.429
1.500 0.643
1.000 0.429

0.720 0.802 0.353

In the following prospect, the number of tables having a higher, 
lower or equal value Mi(|ρ|) (i = 1,2), is reported: 
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Number of  tables with synthetic dependence 
f blelower than equal to higher than 

Table M1(|ρ|) M2(|ρ|) M1(|ρ|) M2(|ρ|) M1(|ρ|) M2(|ρ|) 
T6 0 0 0 0 8 8
T3 1 1 1 1 6 6
T2 1 1 1 1 6 6
T5 3 3 1 1 4 4
T7 3 3 1 1 4 4
T8 5 5 1 3 2 0
T9 5 5 1 3 2 0
T1 7 5 1 3 0 0
T4 7 5 1 3 0 0

Example 3:  The class  TTTT {{{{n1•=2, n2•=3, n3•=5; n•1=2, n•2=8}}}} whose 
independence table T{ ljn̂ } is: 
 

0.4 1.6
0.6 2.4
1.0 4.0

The orderings induced by M1(|ρ|) and M2(|ρ|), among the tables of 
this class, besides confirming what was already clear by the ID-
ordering, allows to rank all couples of tables. In particular, in T5 there is 
the minimum dependence compatible with the given margins, and the 
lowest variability of contingencies. The comparison between T1 and T4
on the basis of both functions M1(|ρ|) and M2(|ρ|), allows to conclude 
that T1 has higher dependence than T4. All these considerations can be 
summarized by the following prospect: 
 

|ρij| M1(|ρ|) M2(|ρ|) σ(|ρ|)

T5
1.000 0.250
0.667 0.167
0.000 0.000

0.160 0.289 0.241
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|ρij| M1(|ρ|) M2(|ρ|) σ(|ρ|)

T2
1.500 0.375
1.000 0.250
0.000 0.000

0.240 0.433 0.360

T6
1.000 0.250
1.000 0.250
1.000 0.250

0.400 0.500 0.300

T3

1.500 0.375
0.667 0.167
1.000 0.250

0.400 0.520 0.332

T4

1.000 0.250
2.333 0.583
1.000 0.250

0.560 0.764 0.520

T1

4.000 1.000
1.000 0.250
1.000 0.250

0.640 1.000 0.768

The prospect also contains the following informations: 
a) with reference to the index M1(|ρ|), T3 and T6 have the same degree 

of synthetic dependence; 
b) the variability among the |ρij| is slightly higher in T3 than in T6.

The degree of dependence of a given table, with reference to that of 
all other tables in the same reference class, can be summarized by:  

 
Number of  tables with synthetic dependence 

lower than equal to higher than 
Table M1(|ρ|) M2(|ρ|) M1(|ρ|) M2(|ρ|) M1(|ρ|) M2(|ρ|) 
T5 0 0 0 0 5 5
T2 1 1 0 0 4 4
T6 2 2 1 0 2 3
T3 2 3 1 0 2 2
T4 4 4 0 0 1 1
T1 5 5 0 0 0 0
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Example 4: The class  TTTT {{{{ n1•=1, n2•=2, n3•=3; n•1=1, n•2=2, n•3=3}}}}
whose independence table T{ ljn̂ } is: 

1/6 2/6 3/6
2/6 4/6 6/6
3/6 6/6 9/6

As previously done, the following prospect summarize useful data 
about all tables in the given class: 
 

|ρij| M1(|ρ|) M2(|ρ|) σ(|ρ|)

T10 
1.000 1.000 1.000
1.000 0.500 0.000
1.000 0.000 0.333

0.444 0.601 0.405 

T2
5.000 1.000 1.000
1.000 0.500 0.000
1.000 0.000 0.33 

0.550 1.014 0.852 

T6
1.000 2.000 1.000
2.000 1.000 0.000
1.000 0.000 0.333

0.611 0.882 0.636 

T5
1.000 2.000 1.000
1.000 0.500 0.000
1.000 1.000 0.333

0.667 0.833 0.499 

T8
1.000 1.000 1.000
2.000 0.500 1.000
1.000 0.000 0.333

0.667 0.833 0.499 

T4
1.000 2.000 1.000
1.000 1.000 1.000
1.000 0.000 0.333

0.722 0.882 0.507 

T12 
1.000 1.000 1.000
2.000 1.000 0.000
1.000 1.000 0.333

0.722 0.882 0.507 

T9
1.000 1.000 1.000
1.000 2.000 1.000
1.000 1.000 0.333

0.944 1.054 0.469 
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|ρij| M1(|ρ|) M2(|ρ|) σ(|ρ|)

T3
5.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 0.333

0.944 1.202 0.744 

T11 
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000

1.000 1.000 0.000 

T7
1.000 2.000 1.000
2.000 0.500 1.000
1.000 1.000 1.000

1.056 1.118 0.367 

T1
5.000 1.000 1.000
1.000 2.000 1.000
1.000 1.000 1.000

1.222 1.414 0.711 

The degree of dependence of a table, compared to those of all other 
tables – of the same reference class – can be summarized by: 

 
Number of  tables with synthetic dependence 

lower than equal to higher than 
Table M1(|ρ|) M2(|ρ|) M1(|ρ|) M2(|ρ|) M1(|ρ|) M2(|ρ|) 
T10 0 0 0 0 11 11 
T2 1 1 0 0 10 10 
T6 2 3 0 2 9 6
T5 3 1 1 1 7 9
T8 3 1 1 0 7 9
T4 5 3 1 2 5 6
T12 5 3 1 2 5 6
T9 7 8 1 0 3 3
T3 7 9 1 0 3 2
T11 9 6 0 0 2 5
T7 10 9 0 0 1 2 
T1 11 11 0 0 0 0 

The relative position induced by the two indexes is the same for three 
tables out of twelve: T10, T2 and T1. It is almost the same for three tables 
- T4, T12 and T9 - and it is rather different for the remaining tables. 
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7. Conclusions 
This work proposes the introduction of new partial and total 

dependence orderings to allow a deeper understanding of some aspects 
of dependence. The definition of the directional dependence ordering 
≺DD takes into account the signs and the absolute values of r×s 
contingencies. This notion is natural enough and in a sense more 
intuitive than earlier proposals for dependence ordering considered in 
literature. In addition, a special kind of frequency transfer, defined over 
four cells in a bivariate table and increasing dependence, is studied. 
Starting from the orthant in which the given table T lays, by a series of 
transfers increasing the directional dependence, one can locate a 
situation (a table) with maximum dependence: the uniquely identified 
distributive independence situation is then counterbalanced by several 
situations of maximum dependence in orthants.  

Starting from the partial ordering ≺DD, and successively weakening 
the ranking criterion, a hierarchy of orderings is defined, till yielding a 
(total) synthetic dependence ordering. Section 7 shows that various 
functions of |ρij| (and of marginal frequencies) inducing total 
dependence orderings, can be used. The choice of the particular function 
f to be adopted in order to obtain a synthetic dependence index must 
therefore be based on further properties of f, besides its capability to 
generate total orderings useful in dependence context.  The same 
Section explains the reasons for which it is advisable to use jointly  
Mortara’s index M1(|ρ|) and Pearson’s M2(|ρ|), since M1(|ρ|) provides 
the order of magnitude of the |ρij|, and the difference between M2(|ρ|) 
and M1(|ρ|) gives their measure of variability. Perhaps, for descriptive 
purposes, it would be better to employ σ(|ρ|) together with M1(|ρ|). The 
idea to evaluate the degree of dependence in a given table T, by 
considering how many other tables of its reference class have a lower, 
equal or greater value of the chosen synthetic index in comparison to 
that of T, appears to be worthy of future developments. Further work 
should also deal with the characterization of minimal and maximal 
tables with respect to the DD and the ID partial orderings.  
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