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Summary: The aim of this paper is to construct bootstrap inference for VaR using a
nonparametric bootstrap scheme, the NN-sieve bootstrap. This procedure, which retains
the conceptual simplicity of the classical residual bootstrap, delivers consistent results
for quite general nonlinear processes.
In this paper, we consider stochastic volatility models for financial time series of the
nonlinear autoregressive-ARCH type and, in this context, we prove the consistency of
the conditional quantile function estimator and we derive its asymptotic distribution. The
proposed procedure is also evaluated through a small Monte Carlo study. The results
confirm that the bootstrap quantile estimators converge, in some sense, to a Normal
distribution. Moreover their distibutions are centered around zero and the variability
decreases when the sample size increases, supporting the consistency of the procedure.
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1. Introduction

In the last years the Value-at- Risk (VaR) concept has become one of the major tool in
market risk management and a large amount of research has been dedicated to produce
better VaR estimates. From a statistical point of view, VaR computation requires the
estimation of a quantile of a return distribution. As soon as the probability distribution
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of a return is specified, the VaR is calculated using the α-th quantile of this distribution.
In this context, in addition to parametric VaR models, which require strong assumptions
on the form of return distribution, several studies have investigated the possibility of
using non parametric techniques. In this context, the literature suggests some interesting
proposal; for example Cai and Wang (2008) use a combination of the weighted Nadaraya
Watson estimator of Cai (2002) and the double kernel local linear estimation of Yu and
Jones (1998). The advantage of this approach is especially that it is conceptually simple
and easy to implement. Generally, the price to be paid for the flexibility of this tool is
a slower convergence with respect to parametric models and, for fully non parametric
models, the need of a large number of data points to estimate tail quantiles.
Alternatively, Franke and Diagne (2006) propose the use of feedforward neural networks
for non parametric VaR estimation. One of the major benefit of this flexible approach is
that it allows to take various types of intra and intermarket information into account.

The aim of this paper is to construct bootstrap inference for VaR using the Neural
Network sieve bootstrap, a novel approach proposed by Giordano et al. (2005, 2009,
2011).
The basic idea of this proposal is to use feedforward neural network models as sieve ap-
proximators for nonlinear data generating processes. Several reasons justify this choice.
First of all, ANNs provides an arbitrarily accurate approximation to unknown target
functions which satisfy certain smoothness conditions. Barron (1993), and then Hornik
et al. (1994) and Makovoz (1996), obtained a deterministic approximation rate (in L2-
norm) for a class of artificial neural networks with r hidden units and sigmoidal activa-
tion functions. Secondly, if the network model is fitted to the data in such a way that
complexity of the network is allowed to increase at a proper rate with the sample size,
the resulting function estimator can then be viewed as a nonparametric sieve estimator
(Chen and Shen, 1998; Chen and White, 1999, Zhang 2004). Thirdly, estimation of
hidden layer size seems to be less critical than estimation of the window size in local
nonparametric approaches. Finally, artificial neural networks are global estimators and
they do not suffer the so called ’curse of dimensionality’: extension to high dimensional
models is more straightforward than other nonparametric approaches.
The paper is organized as follows. In the next session the NN-sieve bootstrap is de-
scribed. Some theoretical results are reported in section 3, while the results of a simula-
tion experiment are discussed in section 4. Some remarks conclude the paper.

2. NN-Sieve Bootstrap

The basic idea of NN-sieve bootstrap is to use feedforward neural network models
as sieve approximators.

Let Yt, t ∈ Z a stochastic process, modeled as



Value-at-Risk inference with NN-Sieve bootstrap 25

Yt = m (Yt−1, . . . , Yt−d) + s (Yt−1, . . . , Yt−d) εt (1)
= m (Zt−1) + s (Zt−1) εt

where m(.) and s(.) are real valued functions defined on Rd and Zt−1 = (Yt−1, . . . , Yt−d).
The errors {εt} are i.i.d. random variables with zero mean and unit variance. This model
is useful to analyze financial time series characterized by nonlinear structures of the
functions m(.) and s(.).
Of course, for z ∈ Rd, the function m(z) represents the conditional mean function of
the process while s2(z) is the volatility function, that is:

m (z) = E (Yt|Zt−1 = z) ;

s2 (z) = var (Yt|Zt−1 = z) .

The problem we focus on is the estimation of the conditional VaR which, following
Franke and Diagne (2006), in this context is defined, as:

V aR(z) = −qα(z)
where

qα(z) = m (z) + s (z) qεα (2)

and qεα is the α-quantile of distribution of εt.
In order to estimate the quantity qα(z) in (2), it is necessary to have an estimation

of the functions m(.), s(.) and qεα. The unknown functions m(·) and s(·) can be ap-
proximated by using single input, single layer feedforward neural network models in the
class:

O(rn,Δn) =

{
hrn (z;w) :

rn∑
k=1

|ck| < Δn

}
with

hrn (z;w) =

rn∑
k=1

ckL (a
′
kz+ bk) + c0

where:
L (·) is a sigmoidal activation function;
w = (c0, c1, . . . , crn ,a1, . . . ,arn , b1, . . . , brn);
{ak} are the d dimensional vectors of weights for the connections between input

layer and hidden layer;
{ck} are the weights of the link between the hidden layer and the output;
{bk}, c0 are, respectively, the bias terms of the hidden neurons and of the output and

rn is the hidden layer size.
A consistent estimate of the autoregression function m(·) can be obtained as
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m̂ = argminh∈O(rn,Δn)

1

n

n∑
t=1

(Yt − h(Zt−1;w))
2
.

Moreover, if m2(z) = E(Y 2
t |Zt−1 = z), an estimate of the squared of the volatility

function s2 can be obtained by:

ŝ2(z) = m̂2(z)− m̂(z)2

where m̂2 is defined as

m̂2 = argminh∈O(r′n,Δ′
n)

1

n

n∑
t=1

(
Y 2
t − h(Zt−1;w′)

)2
.

If q̂εα is the α-quantile of an estimate of the distribution of εt, then by (2)

q̂α(z) = m̂ (z) + ŝ (z) q̂εα (3)

estimates the conditional quantile function qα(z). The consistency of this estimator and
its asymptotic distribution is derived and discussed in the next session. In order to obtain
the sampling distribution of the estimator (3), the following bootstrap procedure can be
implemented.
First of all, the residuals from the network estimates

ε̂t =
Yt − m̂ (Zt−1)

ŝ (Zt−1)
(4)

are computed. Then the bootstrap replicates, which mimic the structure of the original
series, are obtained from the recursion:

Y ∗t = m̂
(
Z∗t−1

)
+ ŝ

(
Z∗t−1

)
ε∗t

where ε∗t
iid∼ Fε̂, the empirical distribution function of the centered residuals with the

first observation fixed to the mean value of Yt and t = 2, . . . , n + n1. The first n1

observations are discarded in order to make negligible the effect of starting values. The
bootstrap VaR analogue is obtained by:

V̂ aR
∗
(z) = −q̂∗α(z)

where:
q̂∗α(z) = m̂ (z) + ŝ (z) q̂∗εα (5)

and q̂∗εα is the α-quantile of the correspondent bootstrap distribution.
As usual the bootstrap distribution can be approximated by Monte Carlo simulations.

If the procedure is replicated B times, obtaining B bootstrap replicates of the statistic of
interest q̂∗α,b(z), the empirical distribution function, conditionally on Zt−1 = z is:
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F̂ ∗ (x|z) = B−1
B∑

b=1

I
(
q̂∗α,b(z) ≤ x

)
where I(·) denotes the indicator function. It can be used to approximate the unknown
sampling distribution of the estimator (3).

The proposed procedure has some advantages which makes it effective for the prob-
lem at hand (see also Giordano et al., 2007). First of all, with respect the AR-sieve
(Bühlmann 1997; 2002), the NN-sieve bootstrap is consistent for non linear processes
and it exploits the good properties on NN modeling. Secondly, it does not exhibit ar-
tifacts in the dependence structure like in the blockwise bootstrap. Moreover, the NN-
sieve bootstrap sample is not a subset of the original sample and there is no need of ’pre-
vectorizing’ the original observations. Thirdly, it enjoys the properties of a plug-in rule
(for nonlinear data) and it retains the simplicity of the classical residual bootstrap while
being a nonparametric bootstrap scheme. Finally, the NN-sieve bootstrap is shown to be
asymptotically justified delivering consistent results for quite general non linear models,
and it yields satisfactory results for finite sample size (Giordano et al., 2011).

3. Some theoretical results

In order to formulate some theoretical results, it is necessary to assume that the data
generating process is stationary, exponentially α-mixing, with the fourth moment finite
as in Franke and Diagne (2006).

For sake of simplicity, in the following we refer to the model with d = 1; that is

Yt = m (Yt−1) + s (Yt−1) εt. (6)

However, the results can be easy extended to the general case for d > 1. For this model
we assume that the following assumptions hold.

Assumptions A

A1) {εt} is an i.i.d. sequence with a positive density function in every compact set in
R.

A2) E(εt) = 0, E(ε2t ) = 1, E(ε3t ) = 0 and E(ε4t ) <∞.

A3) |m(x)| ≤ C1(1+ |x|) and s(x) ≤ C2(1+ |x|), with C1 ≥ 0, C2 ≥ 0 and ∀x ∈ R.

A4) infx∈S s(x) > 0, for every compact set S in R.

A5) C1 + C2

(
E(ε4t )

)1/4
< 1.
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A6) {Yt} is a stationary process.

The assumptions (A) are sufficient conditions to guarantee that the process {Yt} is ge-
ometrically ergodic and exponentially β-mixing (Härdle and Tsybakov, 1997) and, as a
consequence, also exponentially α-mixing.

We also need some conditions on the neural network structure. Let rn and Δn be
the number of neurons of the hidden layer and the upper bound for the weights of the
Neural Network model, respectively. We suppose that the following assumptions hold.

Assumptions B

B1) rn →∞ and Δn →∞ when n→∞.

B2) The activation function, L(·), is sigmoidal and it is infinitely derivable.

B3) (Δ2
nrn log(Δ

2
nrn))/

√
n→ 0 when n→∞

Now, consider the estimator of the conditional quantile in (3) given that Yt−1 = y,
as

q̂α(y) = m̂ (y) + ŝ (y) q̂εα (7)

where q̂εα is the α-quantile estimator with respect to the empirical distribution function
of ε̂t as in (4), that is

ε̂t =
Yt − m̂ (Yt−1)

ŝ (Yt−1)
. (8)

Definition. We say that Xn(y)
P∗
−→ X(y) if PY (|Xn(y)−X(y)| > ε)

P−→ 0 when
n→∞, ∀ε > 0.
Lemma 1. If the assumptions (A) and (B) hold then

q̂εα
P∗
−→ qεα

where the conditions (B1) and (B3) hold for rn, Δn and r′n, Δ′n with respect to the
neural network estimators m̂(·) and m̂2(·), respectively.

Proof.
By (8) and model (6), we can write, conditionally on Yt−1 = y

ε̂t|y = εt + εt

(
s(y)

ŝ(y)
− 1

)
+

s(y)

ŝ(y)

m̂(y)−m(y)

s(y)
(9)

Using the same arguments as in the proof of Corollary (4.1) in Franke and Diagne,
(2006), it follows that

wtn(y) := εt

(
s(y)

ŝ(y)
− 1

)
+

s(y)

ŝ(y)

m̂(y)−m(y)

s(y)

P∗
−→ 0 ∀t, y



Value-at-Risk inference with NN-Sieve bootstrap 29

This result implies that ε̂t|y P∗
= εt when n→∞. But, we can note that ε̂t|y, asymptoti-

cally, is independent of y.
By assumption (A2) and (A5) it implies that E

(
Y 4
t

)
<∞. So we can conclude that

supy wtn(y)
P∗
−→ 0. Since the random variables εt in wtn(y) do not depend on n and

they are i.i.d. by assumption (A1), we can argue that there exists a n0 such that ∀n > n0,

it follows that wn := suptsupywtn(y)
P∗
−→ 0, that is ε̂t − εt

P∗
= wn when n→∞.

Now, let Fε̂(u) be the empirical distribution function with respect to {ε̂t}. Then

Fε̂(u) = 1/n
∑
t

I (ε̂t ≤ u)

where I(·) is the indicator function.
But 1/n

∑
t I (ε̂t ≤ u) = 1/n

∑
t I (εt ≤ u− wn) = Fε(u − wn), where Fε(·) is

the empirical distribution function with respect to {εt}. By assumption (A1) the true
distribution function of {εt}, F (·), is continuous, so we have that Fε(u−wn) converges
(in P ∗) to F (u), ∀u. Then, it follows that

Fε̂(u)− F (u)
P∗
−→ 0 ∀u

Finally, applying Lemma (21.2) in van der Vaart, (1998), the result follows. �

Now we can consider the estimator q̂α(y) conditionally on Yt−1 = y.
Proposition 1. If the conditions in Lemma (1) hold then

q̂α(y)− qα(y)
P∗
−→ 0

where qα(y) = m (y) + s (y) qεα.
Proof.
The proof is straightforward using Corollary (4.1) in Franke and Diagne, (2006) and

Lemma (1). �

Remark. Using assumption (A1) it can be shown that
√
n (q̂εnα − qεα) converges in law

to a Normal distribution with zero mean and variance α(1 − α)/f2(qεα), where q̂εnα is
the α-quantile estimator with respect to the empirical distribution function of {εt} and
f(·) is the density function of εt (van der Vaart, 1998, chapter 21).

4. Some simulation results

In this section we discuss the results of a small simulation experiment performed
in order to evaluate the performance of the proposed procedure. In the data generating



30 F. Giordano et al.

process we assume: m(z) = 0, Yt = s (Yt−1) εt with four different variance functions:

(M1) s2(z) = 0.7, εt ∼ N(0, 1);
(M2) s2(z) = 0.1 + 0.3z2, εt ∼ N(0, 1);
(M3) s2(z) = 0.1 + 0.15z2, εt ∼ T(10)

√
8/10;

(M4)s2(z) = 0.01 + 0.1z2 + 0.35z2I(z < 0), εt ∼ N(0, 1)).

Model (M1) is clearly homoschedastic. Models (M2) and (M3) are ARCH models
with, respectively, Gaussian and Student T innovation terms. The last one is scaled to be
a unit variance random variable. Model (M4) is a threshold ARCH model introduced to
evaluate the procedure in presence of asymmetric volatility function. In the Monte Carlo
experiment, for each model we simulate N = 300, series of length n = 500, 1000, 2000.
For each model, we generate B = 1000 bootstrap replicates. Feedforward neural net-
work models have been estimated by using nonlinear least squares. The hidden layer
size has been estimated by using the correct Akaike Information criterion, in order to
keep as low as possible the complexity of the network.

To make inference about the conditional VaR, we consider two cases. First, we sup-
pose that the bootstrap estimator q̂∗α(z), in (5), has an asymptotic Normal distribution.
So, we have only to verify that the bootstrap variance of q̂∗εα is consistent with respect
to the true one, since the estimators of m(·) and s(·) are consistent as in Franke and
Diagne, (2006).

In the second case we can use q̂∗α(z) to estimate the sample distribution function for
the conditional VaR. In this context we have to verify that the bootstrap distribution of
q̂∗εα converges in some sense to a Normal distribution.

First, we use the above simulation experiment to verify that nV ar∗ (q̂∗εα ) converges
in some sense to nV ar (q̂εnα).

In figures (1) and (2) we can observe that the bootstrap estimator of nV ar (q̂εnα) has
a good performance for all the four models. In fact, the reference line (the true value)
crosses the boxplot graphs in correspondence of the median values.

To analyze the sample distribution for the estimator of qεα we consider γ1 = 0.01 and
γ2 = 0.05. Let z(γi), i = 1, 2, be the quantiles from a standard Normal distribution at
levels γi. So we define

ĉ∗Normal(γi) = q̂εα +
√
V ar∗ (q̂∗εα )z(γi) i = 1, 2

as the γi quantiles using the asymptotic Normal distribution and ĉ∗Boot(γi) as the quan-
tiles from the bootstrap distribution estimators. Both, ĉ∗Normal(γi) and ĉ∗Boot(γi), refer
to the estimator q̂εα for the true quantiles c(γi) = qεα +

√
V ar (q̂εα)z(γi).

To compare these two methods for the estimation of c(γi), we consider the statistics:

Si =
ĉ∗Normal(γi)− ĉ∗Boot(γi)

c(γi)
, i = 1, 2

in which the denominator allows to avoid the influence of n, the length of the time series.
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Figure 1. Distribution of nV ar∗ (q̂∗εα ), α = 0.01. Reference line is the true value
nV ar (q̂εnα) .
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Figure 2. Distribution of nV ar∗ (q̂∗εα ), α = 0.05. Reference line is the true value
nV ar (q̂εnα) .
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From figures (3) and (4), the bootstrap distribution of the estimators for qεα seem to
be well approximated by the Normal distribution. Moreover, the boxplot graphs seem
to be centerd about the vales zero for all the time series lenghts whereas the variability
decreases when n grows.
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Figure 3. Distribution of S1 with γ = 0.01, α = 0.05. Reference line is at zero.
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Figure 4. Distribution of S2 with γ = 0.05, α = 0.05, Reference line is at zero.
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5. Concluding remarks

In this paper we have proposed the NN-sieve bootstrap for VaR inference. The basic
idea of this proposal is to use feedforward neural network models as sieve approxima-
tors for nonlinear data generating processes. The approach, which is non-parametric in
its spirit, retains the conceptual simplicity of a classical residual bootstrap and it does
not have the problems of other nonparametric bootstrap techniques such as blockwise
schemes. Moreover, it is shown to be asymptotically justified and it delivers consistent
results for quite general nonlinear processes. We have considered stochastic volatility
models for financial time series of the nonlinear autoregressive-ARCH type and, in this
context, we have proved the consistency of the conditional quantile function estimator.
We have also derived its asymptotic distribution.

The performances of the proposed procedure has been also disscussed by mean of
small a Monte Carlo study. The results confirm that the bootstrap quantile estimators
converge, in some sense, to a Normal distribution. Moreover their distibutions are cen-
tered around zero and the variability decreases when the sample size increases, support-
ing the consistency of the procedure.
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Bühlmann P. (2002), Sieve bootstrap with variable-length Markov chains for station-

ary categorial time series, Journal of the American Statistical Association, 97, 443–471.
Cai Z. (2002), Regression quantiles for time series, Econometric Theory, 18, 169–

192.
Cai Z., X. Wang (2008), Nonparametric estimation of conditional var and expected

shortfall, Journal of Econometrics, 147, 120–130.
Chang Y., Park J. (2003), A Sieve Bootstrap for the Test of a Unit Root, Journal of

Time Series Analysis, 24, 379–400.
Chen X., Shen X. (1998), Asymptotic properties of sieve extremum estimates for

weakly dependent data with applications, Econometrica, 66, 299–315.
Chen X., White H. (1999), Improved Rates and Asymptotic Normality for Non-



34 F. Giordano et al.

parametric Neural Network Estimators, IEEE Transactions on Information Theory, 45,
682–691.

Franke J., Diagne M. (2006), Estimating market risk with neural networks, Statistics
& Decisions, 24, 233–253.

Giordano F., La Rocca M., Perna C. (2005), Neural network sieve bootstrap for
nonlinear time series, Neural Network World, 15, 327–334.

Giordano F., La Rocca M., Perna C. (2007), Forecasting nonlinear time series with
neural network sieve bootstrap, Computational Statistics & Data Analysis, 51, 3871–
3884.

Giordano F., La Rocca M., Perna C. (2009) Neural Network Sieve Bootstrap Predic-
tion Intervals: Some Real Data Evidence. In B. Apolloini, S. Bassis, M. Marinaro New
Directions in Neural Networks: Frontiers in Artificial Intelligence and Applications,
205–213.

Giordano F., La Rocca M., Perna C. (2011), Properties of the neural network sieve
bootstrap, Journal of Nonparametric Statistics , 23, 803–817.

Hornik K., Stinchcombe M., Auer P. (1994), Degree of approximation results for
feedforward networks approximating unknown mappings and their derivatives, Neural
Computation, 6, 1262–1275.
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