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Summary: In this paper, we analyse how complex sampling designs affect estimates of a
statistical model used for the analysis of ordinal data. If it is not possible to assume that
sample information comes from a superpopulation model, where the sampling scheme is
ignorable, we introduce a specific method to assess model parameter estimates and their
sampling variance. Specifically, we derive for the class of CUB models the variance esti-
mates for complex surveys by means of the Repeated Replication methods. We present
examples using data from the 2008 Survey on Households Income and Wealth performed
by the Bank of Italy and we apply the Jackknife Repeated Replication method to show
differences between design-based and unweighted CUB model parameter estimates and
statistical inference.
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1. Introduction

CUB models1 have been introduced to analyse how subjects’ and objects’ covari-
ates affect ordinal responses in rating contexts (Piccolo 2003; D’Elia and Piccolo 2005;

1 The acronym CUB stands for Combination of Uniform and shifted Binomial distributions.
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Iannario and Piccolo 2011). Generally, CUB model parameter estimators assume that
data are independent and identically distributed and that the probability assigned to each
element of the sample is the same, i.e. that data are collected using a simple random
sampling (with replacement) structure. Nevertheless, this is rarely the case; in practice,
data are collected as part of a complex sample survey that uses stratification, cluster-
ing or disproportionate sampling to increase statistical efficiency and reduce sampling
costs. In this case the sampling scheme can affect both the accuracy and the precision
of sampling estimates.

In fact, many investigations have shown that ignoring the sample design, leads to
biased estimates of descriptive statistics and model parameters, generally understating
the true value of their sampling variance (Kish 1992; Korn and Graubard 1995; Pfef-
fermann 1996; Brogan 1998). As a consequence, confidence intervals will be biased
and test statistics will tend to overstate the significance of tests. Therefore, design fea-
tures should be accounted for to produce approximately unbiased and design-consistent
estimates of the sampling variance.

It should be noted that if the use of weighting adjustment to correct for unequal
selection probabilities, non-response or post-stratification reduces the bias of the esti-
mates, on the other hand it usually inflates sampling variance. This argument is often
taken as a justification for a model based approach where attributes of the sample design
are not accounted for. In fact, advocates of this method argue that these elements are not
relevant when the model is correctly specified and applies universally (superpopulation
model). This approach requires strong assumptions, namely the correct specification of
the model and the ignorability of the sample design with respect to that model - i.e. the
selection probabilities do not depend on the dependent variable, conditionally on the
covariates of that model (Sudgen and Smith 1984; Skinner et al. 1989). When these
assumptions are not satisfied, the model approach may suffer both the consequences of
ignoring the design and of model misspecification: these shortcomings may be avoided
by the use of survey weights (Pfeffermann and Holmes 1985).

In the context of the design-model approach debate (see Binder and Roberts 2003),
this paper aims at discussing the procedures to account for sampling design in estimating
and testing CUB model parameters, leaving to the analyst the choice on which approach
better suits his/her needs.

The paper is organized as follows: the next section recalls the main features of the
CUB model. Section 3 introduces the rationale of the design based approach, and reviews
the different strategies that can be used to estimate the sampling variance. In section 4
a fitting model is presented for the analysis of ordinal data with the implementation of
weights for inferential issues according to the pseudo-maximum likelihood approach. In
section 5 we derive the estimate of the variance-covariance matrix using the Repeated
Replication method. In section 6 we describe the data used to check the validity of
the implemented model, the Survey of Households Income and Wealth, generated by
a complex survey design whereas in section 7 we summarize the main findings. Some
concluding remarks end the paper.
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2. Statistical models for ordinal data

In this section we synthesize CUB models, generally used to analyse rating scores
(ordinal responses) in evaluation contexts (Iannario 2007, 2008).

From a formal point of view, we define a CUB random variable R if and only if its
probability mass function, for a given m > 3, is defined by:

P r (R = r) = π

(
m− 1

r − 1

)
(1−ξ)r−1ξm−r+(1−π)

(
1

m

)
, r = 1, 2, . . . ,m. (1)

This model is identifiable if m > 3 (Iannario 2010), and the parametric space is the
(left open) unit square: Ω(π, ξ) = {(π, ξ) : 0 < π ≤ 1; 0 ≤ ξ ≤ 1}.

In case of ordinal variables generated by the response of an evaluation about a fixed
item, m is the number of possible alternatives (that may represent different degrees of
agreement to a specific item) while r is the provided score.

According to a CUB model, the uncertainty of respondents -modelled by a proportion
of a discrete Uniform random variable- increases with (1 − π), while agreement with
respect to the ‘object’ (feeling) -parameterized by a shifted Binomial random variable-
increases with (1− ξ).

If we consider a matrix T (n, v) of v covariates and we assume that p and q indicate
the number of covariates introduced to explain uncertainty and feeling, respectively, then
a CUB (p, q) model may be introduced. More specifically, we assume that uncertainty
and perception/evaluation parameters may be related to p and q covariates, respectively,
which are included in T , by means of two systematic components:

πi =
1

1 + e−yi β
; ξi =

1

1 + e−xi γ
; i = 1, 2, . . . , n , (2)

where yi and xi are the observed subjects’ covariates for explaining πi and ξi, respec-
tively, and β and γ are the related parameters.

The matrices Y and X are subsets of T . Parameters for this class of models can
be estimated by using maximum likelihood; specifically, estimators of parameters have
been implemented (Piccolo 2006) via EM algorithm (McLachlan and Peel 2000).

3. Inference with complex sample survey data

One concern in sample survey data analysis is the derivation of point estimates of
population quantities by using a sample estimate. When the sample is selected follow-
ing a complex design with unequal selection probabilities or adjustments to account for
non-response and post-stratification are employed, it is necessary to inflate observations
using the appropriate weights in order to obtain unbiased estimation of the finite pop-
ulation parameter (Kish 1992). The same concept can be applied to simple estimators
of the totals using the Horvitz-Thompson estimator (Horvitz and Thompson 1952), to
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linear regression coefficients (Kish and Frankel 1974) and in general to more complex
non-linear parameters using the pseudo-maximum likelihood estimation approach, with
the implementation of iterative algorithms. In this context, the pseudo-likelihood is an
approximation of the likelihood function in the finite population based on the likelihood
function of the observed sample units adjusted for their sampling weights (Binder 1981,
1983).

In order to evaluate the statistical reliability and the accuracy of those estimates,
to compute confidence intervals and to quantify the sampling error, it is necessary to
correctly estimate sampling variance.

Standard survey sampling textbooks provide explicit formulae for unbiased estima-
tors of sampling variance of simple linear estimators (totals, means) in case of a pop-
ulation of known size and for simple designs. In fact, the formulae for the variance
computation in complex surveys are complicated by different factors.

First of all, we often deal with non linear estimators of parameters as in case of
CUB parameters. Furthermore, usually in household surveys, multistage sampling de-
signs are adopted to account for the fact that units in the population are arranged hier-
archically (municipality, households) to reduce data collection costs. When multistage
sampling is adopted, stratification, clustering and weighting all affect standard errors
of estimates. In particular, stratification is usually adopted to ensure sample adherence
to the population distribution with some a priori known characteristics. This technique
can reduce the sampling variance when the variables used to stratify the population are
such that strata are correlated with survey measures. Clustering reduces survey costs and
time needed to conduct the survey; on the other hand, units within a cluster are likely
to have similar characteristics (as they share the same socio-economic environment or
background) so the inclusion of additional units in the sample coming from the same
cluster does not increase proportionally the effective sample size.

The effect of sample design on sampling variance is called Design EFFect and is
given by the ratio between the actual sampling variance (var(θ̂)complex) and the simple
random sampling variance (var(θ̂)srs) for samples of the same size (Kish 1965):

DEFF (θ̂) =
var(θ̂)complex

var(θ̂)srs
. (3)

Other factors affecting the sampling estimates are respondent behavior (non-response)
and unequal probability of selection. They are taken into account by the use of weights,
but the inclusion of weights into the estimator adds a further effect on sampling variance.
In particular, the effect on sampling variance due to weighting can be approximated by
(Kish 1965, 1992):

var(θ̂w) = var(θ̂uw) ∗ (1 + CV (w)2) , (4)

where var(θ̂w) and var(θ̂uw) are, respectively, the sampling variance of a weighted and
of an unweighted estimator of the parameter θ and CV (w) is the coefficient of variation
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of weights. The approximation in (4) is based on the assumption that selection proba-
bilities are unrelated with the variable of interest. Spencer (2000) provides an adjusted
version for the case where weights are correlated to the survey variable. In general, the
effect of weighting is to reduce sampling bias, while the impact on sampling variance
depends on weights variability. Theoretically, weighting can led also to a reduction in
sampling variance, as in the case of post-stratification, if the post-strata are homoge-
neous with respect to the analysed item. Expression (4) is derived in cases where equal
weighting would be optimal.

Finally, the effect of complex design and weighting on sampling variance estimators
can be calculated by means of the misspecification effect (Skinner, 1989):

MEFF (θ̂) =
varcomplex(θ̂w)

Ecomplex(varsrs(θ̂uw))
(5)

given by the ratio between the sampling variance of the weighted estimator that accounts
for the sampling design (varcomplex(θ̂w)) and the expected value, computed under the
complex sample design, of the estimator derived under the assumption that the sample
is selected by simple random sampling (SRS) with replacement (and thus unweighted)
(varsrs(θ̂uw)). As this factor is usually different from one, we can conclude that ig-
noring sampling design and weighting leads to biased estimates of the standard errors.
Therefore, confidence intervals and statistical tests will not be correct if the complexity
of sample design is not taken into account.

3.1. Methods used to estimate sampling variance: linearization vs replication methods

In the case of simple designs and simple statistics we can apply analytic formulae
to calculate an unbiased estimate for the sampling variance (Cochran 1977). But, as
mentioned, this is a rare case because in practice complications may arise from both the
complexity of the design and the correction added with weighting. In those cases there
are no direct analytic methods that can be used to produce unbiased estimators of the
standard errors of the estimates and we need to rely on variance estimation methods that
use some approximation (see Wolter 2007).

The approaches that may be used to obtain approximate estimates of sampling vari-
ance in such complex cases can be divided into:

1. Taylor linearization method;

2. Repeated Replication method.

The Taylor linearization method is used when complex (non-linear) estimators are
concerned and is based on the idea of adopting a simplifying assumption with respect
to the statistic for which the variance should be estimated. In particular, the non linear
estimator is approximated by a linear one, and the standard survey variance estimation
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methods are used to estimate the precision of the linearized statistic. In practice, the
linear approximation is derived by means of a first order Taylor series expansion for
the estimator θ̂ of the population parameter θ. Considering a simple case of a (twice
continuously differentiable) function f of one real variable x, Taylor’s theorem states
that:

f(x) = f(a) + f ′(a)(x− a) + (remainder) (6)

where a is the point about which the expansion is done. The linear approximation is
obtained by dropping that remainder term.

For the Replication methods, the original sample is used to select G sub-samples,
called replicate samples. Then, the estimator θ̂g of the population parameter θ is cal-
culated for each sub-sample. Finally, the variance of the estimator is computed as a
measure of the variability of these estimates among the sub-samples with respect to the
estimate θ̂ computed on the full sample :

ˆvar(θ̂) = c

G∑
g=1

hg(θ̂(g) − θ̂)2 (7)

where c is a constant that depends on the replication method and hg is a replicate specific
constant and depends on the sampling scheme. Replication methods differ in the way
replicates are selected from the total sample and in the specification of the constants c
and hg .

Replicate estimates can be obtained from the full sample also by applying replicate
weights (w(g)

i ) that are rescaled versions of the full sample weights (wi). For some
methods of replication, the replicate weights are equal to zero for the units that do not
belong to the replicate sample and nonzero for the units in the sub-sample. In other
methods, all units in the full sample receive a nonzero weight in each replicate.

There are different methods that can be used to select replicates. The methods that
are mainly used to derive variance estimates for complex surveys are the jackknife re-
peated replication (JRR), the balanced repeated replication (BRR) and the (rescaled)
bootstrap.

Both linearization and replication methods provide biased estimates of the variance,
even if the bias is usually negligible for large samples (for the replication methods the
bias depends also on the number of replications). All the methods are asymptotically
equivalent and generally lead to consistent variance estimators. In particular, the latter
statement is true for linear or differentiable nonlinear estimators. For the variance of
quantiles, the jackknife is not consistent whereas the bootstrap and the BRR are consis-
tent. In terms of statistical performance, the Taylor expansion and JRR show a lower
MSE while BRR and Bootstrap perform better in terms of confidence intervals and cov-
erage probability (Wolter 2007).

However, other features rather than precision make it often preferable to choose
replication methods (Brick et al. 2000). In particular, the main advantages of using the
replication approach are:
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1. generic applicability and adaptability to all kind of estimators, including non-
linear ones;

2. possibility to account for all kinds of sample designs, estimators and weight ad-
justments used;

3. sound theoretical basis: justified both in the design and model based approach;

4. applicability to domain estimates and in case of missing data;

5. simplicity: the idea of replicate samples and estimating variability from sub-
samples is easy to understand;

6. confidentiality safeguard: as all the information on the sample design is already
included in replication weights, design variables such as stratum or cluster of the
respondents do not need to be released.

On the other hand, linearization methods show many practical drawbacks:

1. the procedure assumes that in the Taylor series expansion of the estimator, terms
beyond the linear one make a negligible contribution to the variance of the esti-
mator, which may be not the case in small samples;

2. it may led to complicated formulae (often computationally intractable) in the case
of complex statistics and it cannot be applied for nonsmooth functions (like quan-
tiles) for which it is not possible to compute derivatives;

3. it requires the knowledge of all the design variables, which are often not released
in publicly disseminated datasets;

4. it is not always possible with linearization methods to account for weighting ad-
justments due to the fact that weights increase the complexity of the estimator,
making linear approximations difficult to compute.

In what follows we will therefore refer to Repeated Replicaton methods to estimate
the variance-covariance matrix of CUB parameters.

4. The use of weights in CUB models

In this section, to analyse the main inferential results which take into account the
sampling design, we present an updated version of the algorithm in order to take the
unequal selection probabilities into account.

The pseudo-log-likelihood for the parameter vector θ = (β,γ)′ with survey weights
w = (w1, w2, . . . , wn)

′ can be written as follows:

� (θ) =

n∑
i=1

wi log

{
1

1 + e−yiβ

[(
m− 1

ri − 1

)
e−xiγ(ri−1)

(1 + e−xiγ)
m−1 −

1

m

]
+

1

m

}
, (8)
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where ri is the observed value of the variable R for the i-th subject. For given m,
weights w, and a fixed small tolerance ε (= 10−6, for instance), the EM algorithm
may be effectively implemented by integration of standard steps (in this context we
summarize all the steps by underlying the innovations of procedures with weight related
to 2 and 3 steps of the classical procedure).

To simplify the notation, we implement a CUB models without covariates; thus, θ =
(π, ξ)′:

0. θ(0) = (π(0), ξ(0))′; �(0) = �(θ(0)).

1. bb(k)=
(
m−1
ri−1

) (
1− ξ(k)

)ri−1 (
ξ(k)

)m−ri
; τ (k)=

π(k) bb(k)

π(k) bb(k) + (1− π(k))/m
.

2. R
(k)

n (θ) =

n∑
i=1

wi ri τ(r;θ
(k))

n∑
i=1

wi τ(r;θ
(k))

.

3. π(k+1) =

∑n
i=1 wi τ(r;θ

(k))∑n
i=1 wi

; ξ(k+1) =
m−R

(k)

n (θ)

m− 1
.

4. θ(k+1) = (π(k+1), ξ(k+1))′; �(k+1) = �(θ(k+1)).

5. ⎧⎨⎩ if | �(k+1) − �(k) |≥ ε, k → k + 1; go to 1;

if | �(k+1) − �(k) |< ε, θ̂ = θ(k+1); stop.

One of the main problems of the EM algorithm is the choice of a convenient set
of starting values θ(0) for the estimates, since this procedure is generally slower than
the second order convergence rates of the Newton Raphson routines. Iannario (2012)
suggests alternative starting values based on the qualitative nature of responses which
have been proved useful in terms of efficiency for reducing time to convergence.

Previous implementation provides consistent parameter estimates with the support
of sampling weights.

5. Design based inference in CUB models

The next step in analysing CUB models for complex survey data is to estimate the
sampling variance of the parameters in order to assess their significance using the Re-
peated replication method.
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Following the replication method and using the weighted version of the EM algo-
rithm, the estimation of the parameters should be computed both for the entire sample
θ̂, using sampling weights (wi), and for each of the G sub-samples θ̂(g), using replicate
weights (w(g)

i ) in the EM algorithm. Then, an estimate of the sampling variance for θ̂ is
obtained by applying the formula (7).

In the same way, we obtain an estimate of the sampling variance and covariance
matrix of the parameters V̂ (θ̂), by generalizing the formula in equation (7) to account
for covariance elements:

V̂ (θ̂) = c

G∑
g=1

hg(θ̂(g) − θ̂)(θ̂(g) − θ̂)′. (9)

where the constants c and hg are, as mentioned, defined from the chosen replication
method and the survey design.

In addition to the computation of standard errors that accounts for the complex de-
sign, degrees of freedom in the Student t distribution must be adjusted when testing for
parameters’ statistical significance. The exact calculation of the degrees of freedom can
be in some cases difficult and is a function of the variability of the estimator of the pa-
rameters’ variance. One rule-of-thumb that is often used is the following (Valliant and
Rust 2010): the number of degrees of freedom is calculated as a difference between the
number of clusters (n.clusters) and number of strata (n.strata) of the survey design:

dfadj = n.clusters− n.strata .

This approximation, derived using the methods of Satterthwaite (1946) is based on the
assumption that the variance estimator has approximately a Chi square distribution.

6. The Survey on Household Income and Wealth

The Survey on Household Income and Wealth (SHIW, hereafter) has been conducted
by the Bank of Italy since 1965 to collect information on the economic behaviour of Ital-
ian households and specifically to measure income and wealth components. The main
objective is to estimate how these variables are distributed across Italian households.

The questionnaire has been extended during the years and contains topics about
households’ demographic structure, occupation and income for each member, house-
holds’ wealth and debts, consumption, insurance and pension plans. In each wave addi-
tional questions on relevant items are added in two round sections, each administered to
half of the sample. Over the years some of the topics collected in these additional sec-
tions have been about family choices, capital gains, inheritance, financial information,
happiness and job satisfaction.

Until 1987 the survey was conducted with time-independent samples of households.
Since 1989 part of the sample has comprised households interviewed in previous surveys
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(panel households) to allow the analysis of the dynamics of the studied phenomena.
In particular, in each wave, a random subset of households interviewed for the first
time in the previous wave is included in the sample in order to compensate for the loss
of panel units due to attrition. The design adopted is known as a split panel survey
(Kish 1987).

The sample is drawn in two stages. In the first stage municipalities (Primary Sam-
pling Units, PSUs) are stratified by region and demographic size. Municipalities are
then selected with probability proportional to the size of the resident population with the
exception of the bigger municipalities (more than 40,000 residents) that are always in-
cluded in the sample (Self Representing Units, SRUs). In the second stage, households
are selected randomly from the municipalities’ chosen in the first stage. Data are col-
lected by means of personal interviews conducted by professionally trained interviewers
and using computer-assisted devices (Computer-Assisted Personal Interviewing, CAPI).
The final sample comprises about 8,000 households. For further details about the sam-
pling design of the SHIW and the questionnaire content see Bank of Italy (2010). Mi-
crodata, documentation and publications can be downloaded free of charge from the
Bank of Italy’s website together with weights adjusting for unequal probability of se-
lection, non-response and post-stratification. Description of the impact of the latter on
estimates is provided by Faiella and Gambacorta (2007). In this paper we used data
from the 2008 wave of the SHIW. In particular, we refer to the individual global satis-
faction which has been collected only for half of the sample. The final sample size was
3,887 households.

6.1. SHIW sampling error calculation model

To allow the analysts to compute sampling variance, since 2008 the SHIW dissemi-
nates replication weights. This choice protects confidentiality as it avoids the dissemina-
tion of design variables related to geographical information (municipality of residence).

The SHIW sampling error computation model - an approximation of the complex
sample design that preserves the features of the actual design while avoiding any source
of analytical problems in the estimation of sampling variance (Heeringa et al. 2010)
- is constructed by assuming a sampling with replacement of ultimate clusters and a
paired selection of clusters design (Kish 1965). This assumption avoids sampling error
calculation complications associated with a multistage design with a selection without
replacement of PSUs. This is a conservative approach as the estimate of the variance will
slightly overestimate the true variance. A Sampling Error Stratum (SES) is formed for all
municipalities that are selected in the sample with certainty: i.e. all those with more than
40,000 inhabitants (SRUs) or that are home of panel households. Then, SES elements
are randomly assigned to form two Sampling Error Computation Units (SECUs). For the
remaining municipalities (Non Self-Representing units, NSRUs), sampling error strata
are obtained collapsing two similar NSRUs. Each municipality constitutes a SECU.
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In 2008 this model leds to 319 sampling error strata each containing two SECUs
each. The Jackknife Repeated Replication (JRR) method is then employed to construct
replicates. Another option could have been to use the Balanced Repeated Replication
method since pairs of SECUs were formed.

In the case of the JRR method each replicate is formed by deleting one PSU from
the sample in turn. In particular, as in the sampling error design each SES contains only
two SECUs one replicate is created for each stratum by deleting its first computation
unit. The paired replicates that could be obtained by deleting the second SECU are not
considered as they add no precision to the final variance estimate (Wolter, 2007). The
version of the Jackknife used in SHIW is also known as JK2. In terms of replicate
weights this means assigning to all the elements of the deleted SECU a weight equal to
zero and adjusting the weights of the elements in the remaining SECU in the strata to
compensate for the loss in weights of the cancelled units. The weights of all the other
elements remain unchanged (Faiella 2008).

Using replicate weights it is possible to calculate for each replicate the relevant es-
timator θ̂g of the population parameter θ and to calculate its variance by applying the
formula in equation (5) where c = 1 and hg = 1.

7. Design based estimation in the SHIW by means of CUB Models

Results based on an unweighted CUB model without covariates fitted for one of
the ordinal variable present in the questionnaire (happiness expressed on a Likert scale
with m = 10 ordered categories: from 1 low happiness to 10 high happiness), and the
implementation the same model with weights are presented in Table 1. The first two
rows report results for the model estimated without accounting for weights and design
features while in the following rows weights are included in the estimates by applying
the modified version of the EM algorithm reported in section 4. Standard errors are
calculated using the JRR method as described in section 5.

Considering the first model, the estimated value of π̂ denotes a low level of un-
certainty (1 − π̂ = 0.126) in the answers. Respondents give accurate rating to the
investigated question. The feeling toward happiness is on average moderately high
(1 − ξ̂ = 0.670). The results obtained using a design based approach show slightly
higher expected values for happiness and lower respondents indecision. Standard er-
rors, and therefore confidence intervals, are substantially larger in the latter case.

Table 2 summarizes the main findings in terms of estimated bias and effect of the de-
sign that can be deduced comparing the models in Table 1. We assume that the weighted
estimates are approximately unbiased

In this model, neglecting the use of weights leads little differences in term of param-
eters estimates; in particular, we observe a small overestimate of a person uncertainty
about happiness (as the estimated bias on π̂ is positive) and a minor underestimate of
respondent’s feeling towards happiness (the estimated bias on ξ̂ is negative). On the
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Table 1. Estimation of CUB model for Happiness

Model Parameter Standard t-Statistics 95% Confidence
Parameter Estimate Error (df ) interval

CUB unweighted,srs

π̂ 0.8735 0.0109 80.128 (0.8520, 0.8948)
ξ̂ 0.3296 0.0030 109.867 (0.3237, 0.3355)

CUB weighted,JRR

π̂ 0.8847 0.0159 55.642 (319) (0.8534, 0.9160)
ξ̂ 0.3240 0.0043 75.349 (319) (0.3155, 0.3325)

other hand, accounting for design features does affect standard errors as the misspecifi-
cation effect indicates a substantial increase in the estimates of the standard errors of the
parameters, although their significance is not altered.

Table 2. Estimated BIAS and MEFF of CUB model parameters for Happiness

π̂ ξ̂

BIAS 0.0113 −0.0056
MEFFJRR 2.1279 2.0544

Finally, Figure 1 reports smoothed density estimates of the Jackknife (JRR) distri-
bution for the analysis of standard errors concerning the CUB model with weights. The
distributions are based on 319 replicate estimates.

7.1. Design based estimation by means of CUB models with subjective covariates

For the implementation of a more complete model, several covariates related to hap-
piness are significant. Among them, we can observe the significance of gender, health,
education and marital status (married) for explaining the feeling parameter, and the per-
ceived family economic condition (familycond) for explaining the uncertainty. In par-
ticular, gender is a dummy equal to one for females, health is the individuals’ perceived
status of health from 1 (excellent) to 5 (very poor), education represents the education
degree of the individual on a scale from 1 to 5 , married is a dummy for married people
while familycond represent the perception of the individual about household’s income
as sufficient to allow the family to make ends meet, from 1 (with great difficulty) to 5
(very easily).
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Figure 1. Jackknife Repeated Replication (JRR) for the analysis of standard error. Top
panel is density for π̂; bottom panel is density for ξ̂.

In the following we compare the results obtained with CUB unweighted and CUB
weighted models, respectively.
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Table 3. Estimation of CUB model for Happiness

Model Parameter Standard t-Statistics 95% Confidence
Parameter Estimate Error (df ) interval

CUB unweighted,srs

β̂0 −0.0220 0.3076 − 0.0715 (−0.6249, 0.5809)
familycond β̂1 1.1909 0.1566 7.6022 ( 0.8838, 1.4979)

γ̂0 −0.7258 0.0674 −10.7720 (−0.8579,−0.5938)
gender γ̂1 0.1327 0.0290 4.5772 ( 0.0759, 0.1896)
health γ̂2 0.2621 0.0160 16.6520 ( 0.2312, 0.2930)
education γ̂3 −0.1145 0.0129 − 8.8760 (−0.1398,−0.0892)
married γ̂4 −0.3976 0.0292 −13.6060 (−0.4548,−0.3403)

CUB weighted,JRR (df = 319)

β̂0 −0.5599 0.4485 −1.2482 (−1.4421, 0.3223)
familycond β̂1 1.5168 0.2145 7.0719 ( 1.0949, 1.9387)

γ̂0 −0.7659 0.0977 −7.8413 (−0.9581,−0.5737)
gender γ̂1 0.1478 0.0342 4.3174 ( 0.0805, 0.2151)
health γ̂2 0.2664 0.0208 12.804 ( 0.2255, 0.3073)
education γ̂3 −0.1166 0.0206 −5.6534 (−0.1571,−0.0761)
married γ̂4 −0.3655 0.0385 −9.4844 (−0.4412,−0.2898)

The sign of the parameters are the same in both models: people that have problems to
make ends meet answer with higher uncertainty; men, healthier and more educated peo-
ple report higher level of happiness. Also, marriage exerts a positive effect on reported
feeling towards happiness.

Table 4 summarizes the main findings in terms of estimated bias and effect of the
design that can be deduced comparing the two models in Table 3. Neglecting the design
produces a consistent bias in estimating the effect of perceived family economic con-
ditions on uncertainty. The bias is moderate for other variables. MEFF are quite large
for all the variables, when using the jackknife repeated replication method, indicating
in general that, even when the increase in standard errors does not affect parameters
statistical significance, confidence intervals are larger, and thus parameters’ precision is
lower.

Finally, in Table 5 we report the Variance-Covariance matrix obtained by means of
JRR method, while Figure 2 reports the Jackknife (JRR) distribution for the analysis of
standard errors of the model with weights and covariates.
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Table 4. Estimated BIAS and MEFF of CUB model parameters for Happiness

Parameter BIAS MEFFJRR

β̂0 −0.5379 2.1263

β̂1 0.3259 1.8746
γ̂0 −0.0400 2.1013
γ̂1 0.0151 1.3937
γ̂2 0.0043 1.7477
γ̂3 −0.0021 2.5545
γ̂4 0.0320 1.7398
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Figure 2. Jackknife Repeated Replication (JRR) for the analysis of standard errors

8. Conclusions

In this paper we propose design-based parameter estimates and inference for CUB
models. Variance formulas are derived by using repeated replication methods.
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Table 5. Variance-Covariance matrix of CUB model with JRR method

β0 β1 γ0 γ1 γ2 γ3 γ4

β0 0.2012
β1 −0.0856 0.0460
γ0 0.0081 −0.0020 0.0095
γ1 −0.0022 0.0005 −0.0008 0.0012
γ2 −0.0012 0.0006 −0.0014 0.0000 0.0004
γ3 −0.0006 −0.0001 −0.0017 0.0000 0.0002 0.0004 0.0015
γ4 −0.0027 −0.0008 0.0000 −0.0013 0.0005 0.0000 0.0000

Results, obtained on data from the Survey on Households Income and Wealth, show
that neglecting design features led to a serious underestimate of the sampling variance
of the parameters’ estimates and to potentially biased estimates of the parameters. Nev-
ertheless, in our examples, the statistical significance of CUB parameters is not affected
by the selected approach. The latter result is probably due to the sizeable dimension
of the sample and to the large number of SECUs in the SHIW sampling error design.
However, in smaller surveys, or even in analyses of subgroups in SHIW (like regional
estimates, analysis referred to income classes), there could be cases where unweighted
estimates could produce false significance.

We therefore suggest to carefully choose the estimation approach (design vs model
based), and seriously to take into consideration the possible consequences on results.
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