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Summary: This paper concerns likelihood inference for the skew t-distribution, which
includes both the skew normal and the normal distributions as important special cases
that occur when the degrees of freedom is infinite. Inference based on the skew t-model
becomes problematic in these special cases for two reasons: the expected information
matrix is singular; and the parameter corresponding to the degrees of freedom takes a
value occurring at the boundary of its parameter space. For each of the special cases,
a reparameterization is introduced that copes with these difficulties, thereby producing
consistent estimators with known asymptotic properties. Inference for multiple linear
regression models based on the skew t-distribution is also considered.
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1. Introduction

The univariate skew t-distribution, with location parameter ξ, scale parameter ω,
skewness parameter α, and degrees of freedom ν, has density function

f
(
y; ξ, ω, α, ν

)
= 2ω−1t(z; ν)T (αzτ ; ν + 1), −∞ < y <∞, (1.1)

where z = (y − ξ)/ω and τ =
{
(ν + 1)/

(
z2 + ν

)}1/2
. In formula (1.1)

t(z; ν) =
Γ
{
(ν + 1)/2

}
(πν)1/2Γ(ν/2)

(
1 + z2/ν

)−(ν+1)/2
, −∞ < z <∞,



2 T.J. Di Ciccio et al.

and T (z; ν) =
∫ z

−∞ t(u; ν) du are the density and cumulative distribution functions, re-
spectively, of Student’s t-distribution with ν degrees of freedom. The skew t-distribution
is denoted by St(ξ, ω, α, ν). The skew t-distribution was introduced by Branco and Dey
(2001) and Azzalini and Capitanio (2003). As the skewness parameter α and the degrees
of freedom ν vary, this model can accommodate both skewness and heavy tails. Thus, it
provides considerable flexibility for fitting data that exhibit deviations from normality.

Special cases of the skew t-distribution are the location-scale Student’s t-distribution,
obtained when α = 0, and the skew normal (SN ) distribution, obtained as ν →∞. The
SN(ξ, ω, α) distribution (Azzalini, 1985; Azzalini and Capitanio, 1999) has density

fSN (y; ξ, ω, α) = 2ω−1φ(z)Φ(αz), z = (y − ξ)/ω, −∞ < y <∞,

where φ(z) and Φ(z) are the density and cumulative distribution functions, respectively,
of the standard normal distribution. When both α = 0 and ν → ∞, the St(ξ, ω, α, ν)
distribution tends to the normal with mean ξ and standard deviation ω.

When the distribution is either skew normal or normal, inference based on the skew
t-model becomes problematic for two reasons: the expected information matrix is singu-
lar; and the parameter corresponding to the degrees of freedom takes a value occurring
at the boundary of its parameter space. For each of these special cases, the present pa-
per proposes a reparameterization which copes with these difficulties, thereby producing
consistent estimators with known asymptotic properties.

In the next section, the score function is derived in the general case; furthermore,
the behaviour of the score function and the information matrix is investigated in the
special cases where the distribution is Student’s t, skew normal or normal. Problems
arising in likelihood inference are illustrated in Section 3. Sections 4 and 5 provide
the reparameterizations to be adopted when the distribution is skew normal or normal,
respectively. Inference for the multiple linear regression model is considered in Section
6. Technical details are confined to the Appendices.

2. Score function and information matrix

Let S(y) =
{
Sξ(y), Sω(y), Sα(y), Sν(y)

}′
be the score function of the St model based

on a single observation y; thus, Sξ(y) = ∂ ln f
(
y; ξ, ω, α, ν

)
/∂ξ, and so forth. The

components of S(y) are

Sξ(y) =
zτ2

ω
− ατν

ω(ν + z2)
w, Sω(y) = − 1

ω
+
z2τ2

ω
− ςν

ω(ν + z2)
w, Sα(y) = zτw,

Sν(y) =
1

2

{
Ψ

(
ν

2
+ 1

)
−Ψ

(
ν

2

)
− 2ν + 1

ν(ν + 1)
− ln

(
1 +

z2

ν

)
+

z2τ2

ν
,

+
αz
(
z2 − 1

)(
ν + z2

)2
τ
w +

γ

T (ς; ν + 1)

}
,

(2.1)
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where ς = αzτ , w = t(ς; ν + 1)/T (ς; ν + 1),

γ =

∫ ς

−∞

{
(ν + 2)u2

(ν + 1)(ν + 1 + u2)
− ln

(
1 +

u2

ν + 1

)}
t(u; ν + 1)du,

and Ψ(x) = ∂ ln
{
Γ(x)

}
/∂x. Since Sν(y) is of order O

(
ν−2

)
, it vanishes as ν →∞.

The second derivatives Sξξ(y), where Sξξ(y) = ∂2 ln f
(
y; ξ, ω, α, ν

)
/∂ξ∂ξ, and so

forth, which are useful for computing the observed information matrix for
(
ξ, ω, α, ν

)
based on a single observation y, are derived in Appendix A.1. Since these second deriva-
tives are bounded and continuous functions for fixed ν, their expectations are finite.
Thus, the expected information matrix I , whose components are Iξξ = −E{Sξξ(y)

}
,

and so forth, always exists.
Azzalini and Genton (2008) discussed likelihood inference for the St model. They

showed that the profile likelihood function for the skewness parameter α does not have
an inflection point when α = 0, as it does for the SN model, and that its shape is closer
to quadratic for the St model than it is for other flexible models such as the SN and
the Skew Exponential Power (Azzalini, 1986; DiCiccio and Monti, 2004). They also
investigated the finite-sample performance of maximum likelihood estimators in the St
model.

It is illuminating to consider the score function and the expected information matrix
for the two special cases of the location-scale Student’s t-distribution (α = 0) and the
SN distribution (ν →∞). Calculations summarized in Appendix A.2 show that, when
α = 0, the components of the score function become

St
ξ(y) =

zτ2

ω
, St

ω(y) =
z2τ2 − 1

ω
, St

α(y) = 2zτt(0; ν + 1),

St
ν(y) =

1

2

{
Ψ

(
ν

2
+
1

2

)
−Ψ

(
ν

2

)
− ln

(
1 +

z2

ν

)
+

z2 − 1

ν + z2

}
. (2.2)

Observe that the components for ξ, ω, and ν are the same as those for the location-scale
Student’s t-model. The non-zero components of the information matrix are shown in
Appendix A.2 to be

Itξξ =
ν + 1

ω2(ν + 3)
, Itξα =

(ν
π

)1/2Γ(ν/2 + 3/2)

ωΓ(ν/2 + 2)
, Itωω =

2ν

ω2(ν + 3)
,

Itων = −
2

ω(ν + 1)(ν + 3)
, Itαα = 4

Γ(ν/2 + 1)2

π(ν + 1)Γ(ν/2 + 1/2)2
, (2.3)

Itνν =
1

4

{
Ψ1

(
ν

2

)
−Ψ1

(
ν

2
+
1

2

)}
− ν + 5

2ν(ν + 1)(ν + 3)
,

where Ψ1(x) = ∂Ψ(x)/∂x. Since Itξω = Itξν = Itωα = Itαν = 0, it follows that the
maximum likelihood estimators

(
ξ̂, α̂
)

and
(
ω̂, ν̂

)
are asymptotically independent. The
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maximum likelihood estimators of the parameters ω and ν have the same asymptotic
variances in the St model as they have in the location-scale Student’s t-model; estima-
tion of the additional parameter α in the St model only affects the asymptotic properties
of the maximum likelihood estimator of ξ. Furthermore, Azzalini and Genton (2008)
remarked that, for finite ν, the expected information matrix for

(
ξ, ω, α, ν

)
in the St

model is invertible when α = 0, which is in contrast to the case of the SN model, where
the information matrix for

(
ξ, ω, α

)
is singular when α = 0.

As ν → ∞, the St distribution tends to the SN , and the components of the score
function become

SSN
ξ (y) =

z

ω
− α

ω
wφ, SSN

ω (y) = − 1

ω
+

z2

ω
− αz

ω
wφ,

SSN
α (y) = zwφ, SSN

ν (y) = 0,

where wφ = φ(αz)/Φ(αz). Since SSN
ν (y) = 0, the information matrix for

(
ξ, ω, α, ν

)
in the St model becomes singular as ν → ∞. This singularity is understandable, for,
if the parameters ξ, ω, and α are all known in the St model and only ν is estimated,
then, under the SN distribution, the parameter ν is infinite, and thus the variance of the
estimator is infinite.

The score components SSN
ξ (y), SSN

ω (y), and SSN
α (y) are the same as the compo-

nents for ξ, ω, and α under the SN model, so the portion of the expected information
matrix relating to these parameters in the St model coincides with the information ma-
trix for

(
ξ, ω, α

)
under the SN model given by Azzalini (1985); thus,

ISN
ξξ = ω−2

(
1 + α2d0

)
, ISN

ξω = ω−2
{
bδ
(
1 + δ2

)
+ α2d1

}
,

ISN
ξα = ω−1

{
b/
(
1 + α2

)3/2 − αd1
}
, ISN

ωω = ω−2
(
2 + α2d2

)
,

ISN
ωα = −ω−1αd2, ISN

αα = d2,

where b = (2/π)1/2, δ = α/
(
1 + α2

)1/2
, and dr = E(ZrW 2

φ) (r = 0, 1, . . .). More-
over, ISN

ξν = ISN
ων = ISN

αν = ISN
νν = 0. The singularity of the expected information

matrix for
(
ξ, ω, α, ν

)
in the St model as ν → ∞, i.e., under the SN distribution, can

be alleviated by a reparameterization discussed in Section 4.
Finally, for the normal distribution, obtained when α = 0 and ν → ∞, the compo-

nents of the score function become

SN
ξ (y) =

z

ω
, SN

ω (y) =
z2 − 1

ω
, SN

α (y) = z

(
2

π

)1/2

, SN
ν (y) = 0.

In addition to the score component for ν being 0, as occurs in the case of the SN
distribution, the component for ξ is a multiple of the one for α. Thus, the expected
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information matrix is singular with rank 2 and takes the form

IN =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

ω2
0

1

ω

(
2

π

)1/2

0

0
2

ω2
0 0

1

ω

(
2

π

)1/2

0
2

π
0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Singular information matrices also arise in three related situations: in the location-
scale Student’s t-model, the expected information matrix for (ξ, ω, ν) becomes singular
as ν → ∞; in the SN model, the observed and expected information matrices for(
ξ, ω, α

)
become singular as α → ±∞; and in the St model, both the observed and

expected information matrices for
(
ξ, ω, α, ν

)
become singular as α → ±∞. The sin-

gularity of the information matrices for the SN and St models as α→ ±∞ is shown in
Appendix A.3.

3. Problems arising in likelihood inference

Let
(
ξ̂, ω̂, α̂, ν̂

)
be the maximum likelihood estimator of

(
ξ, ω, α, ν

)
based on a sam-

ple of size n from the St(ξ, ω, α, ν) distribution.
The singularity of the expected information matrix for

(
ξ, ω, α, ν

)
as ν → ∞ has

an undesirable consequence on the efficiency of the estimators when the distribution is
normal or close to normal, i.e., when α is in a neighborhood of 0. Table 1 shows the
root mean square errors of the estimators of ξ, ω, α, and κ = 1/ν, the inverse degrees
of freedom, for several samples sizes in the case of the standard normal distribution.
The table entries were obtained by a simulation of size 10,000, and they demonstrate
that the root mean square errors of ξ̂ and α̂ fail to decrease at the usual n−1/2 rate. The
mean square errors of the estimators behave similarly when the distribution is SN with
α close to 0. Furthermore, this slow rate of decrease of the mean square errors for the
estimators of ξ and α can also be observed in the SN model when α is in the vicinity
of 0. In contrast to the behavior of ξ̂ and α̂, the root mean square errors in Table 1 for
ω̂ and κ̂ do seem to decrease at the regular rate. Thus, it is reasonable to conjecture that
the inefficiency of ξ̂ and α̂ is attributable mainly to the linear dependence between Sξ(y)
and Sα(y) under the normal distribution.

It should be noted, however, although ξ and α cannot be estimated reliably, efficient
estimators can be obtained for other functions of the parameter (ξ, ω, α, ν) that depend
on ξ and α. For example, Table 2 shows the results of a simulation that investigates
the efficiency of the maximum likelihood estimators of the probabilities under the St
model assigned to the intervals with cutoffs −∞,−2,−1, 1, 2,∞ when the distribution
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Table 1. Root mean square errors of the maximum likelihood estimators of (ξ, ω, α, κ)
and (μ, σ2, γ1, γ2) under the N(0, 1) distribution.

n ξ ω α κ μ σ γ1 γ2
50 0.8340 0.3463 86336.21 0.0667 0.1426 0.3231 5.7941 12.4095

(74) (116) (227)
100 0.7155 0.2650 1.5367 0.0459 0.0994 0.1422 0.7424 2.8703

(9)
200 0.6200 0.2053 0.9778 0.0328 0.0714 0.1007 0.1915 0.4495

(1)
500 0.5217 0.1484 0.7553 0.0211 0.0436 0.0635 0.1130 0.1874

1,000 0.4557 0.1165 0.6360 0.0157 0.0311 0.0443 0.0772 0.1253
5,000 0.3453 0.0692 0.4586 0.0073 0.0142 0.0202 0.0334 0.0506

10,000 0.3035 0.0542 0.3977 0.0052 0.0099 0.0139 0.0229 0.0352

The number of cases out of 10,000 simulations omitted for producing ν̂ smaller than the value
required for the existence of the corresponding parameter is shown in parentheses.

is standard normal. Despite the inefficiency of the estimators ξ̂ and α̂, the estimators of
the interval probabilities have biases and standard deviations that appear to decrease at
satisfactory rates.

Since ν approaches the boundary of the parameter space as ν → ∞, the resulting
singularity of the expected information matrix in the St model when the distribution
is normal cannot be avoided by using the reparametrization technique introduced by

Table 2. Biases and standard deviations (in parentheses) of interval probability estima-
tors when the distribution is normal.

Probability n
(interval) 50 100 200 500 1,000 5,000 10,000

0.0228 0.0236 0.0234 0.0231 0.0230 0.0230 0.0229 0.0229
(−∞,−2) (0.0156) (0.0112) (0.0080) (0.0050) (0.0035) (0.0016) (0.0011)

0.1359 0.1288 0.1307 0.1318 0.1335 0.1342 0.1352 0.1354
(−2,−1) (0.0358) (0.0235) (0.0162) (0.0100) (0.0071) (0.0033) (0.0023)

0.6827 0.6954 0.6919 0.6896 0.6869 0.6856 0.6840 0.6835
(−1, 1) (0.0526) (0.0361) (0.0254) (0.0159) (0.0112) (0.0051) (0.0035)

0.1359 0.1286 0.1305 0.1322 0.1335 0.1342 0.1352 0.1354
(1, 2) (0.0356) (0.0234) (0.0164) (0.0100) (0.0071) (0.0032) (0.0023)

0.0228 0.0236 0.0235 0.0233 0.0231 0.0230 0.0229 0.0228
(2,∞) (0.0158) (0.0112) (0.0080) (0.0050) (0.0035) (0.0016) (0.0011)
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Figure 1. Histograms of the maximum likelihood estimates ξ̂, ω̂ and α̂ from the St model
when the distribution is N(0, 1) and the sample size is n = 10, 000

Rotnitzky et al. (2000) as it can in other flexible models, such as in either the SN model
(Azzalini, 1985; Chiogna, 2005) or the skew exponential power model (Azzalini, 1986;
DiCiccio and Monti, 2004) when the distribution is normal. The dual problems of the
singular information matrix and the boundary case affect the asymptotic distributions
of the estimators, which fail to be normal as ν diverges. Figure 1 shows histograms,
based on 10,000 simulations, of the estimators ξ̂, ω̂, and α̂ from the St model when the
distribution is standard normal and the sample size is n = 10,000. The distributions
of ξ̂ and α̂ are both bimodal. Similar shapes have been observed for the distributions
of estimators of ξ and α in the SN model when α is close to 0 (Arellano -Valle and
Azzalini, 2008), i.e., when the distribution is close to normal.

When the St model is assumed and the distribution is a location-scale Student’s
t, the parameters take values within the parameter space and the expected information
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matrix is invertible. Consequently, when α = 0 and ν < ∞, the maximum likelihood
estimators have their usual asymptotic properties.

Sections 4 and 5 provide alternative parameterizations for the St model that improve
the properties of the maximum likelihood estimators. The reparameterizations provide
consistent estimators having known asymptotic properties when the distribution is SN
or normal.

A further inferential problem arising in both the SN and St models is that the pro-
file likelihood of the skewness parameter α can be monotonic, leading to α̂ = ∞ or
α̂ = −∞, even though α is finite. Remedies for this problem have been proposed by Sar-
tori (2005), Azzalini and Genton (2008), and Greco (2008). Results given in Appendix
A.3 show that, for the St model, both the observed and expected information matrices
evaluated at the maximum likelihood estimate, become singular when α̂ = ±∞. In the
SN model, only the expected information matrix behaves similarly; the observed infor-
mation matrix evaluated at the maximum likelihood estimate is not necessarily singular
when α̂ = ±∞.

4. Reparameterization by the inverse degrees of freedom

As ν → ∞, the component Sν(y) of the score function vanishes and the expected
information matrix for

(
ξ, ω, α, ν

)
becomes singular. Reparameterization can remedy

this difficulty, however, by using the inverse degrees of freedom, κ = 1/ν, in place of
ν. Thus, the parameter now becomes (ξ, ω, α, κ), and the SN distribution corresponds
to the boundary case κ = 0.

The component of the score function corresponding to κ is Sκ(y) = −κ−2Sν(y),
i.e.,

Sκ(y) =
1

2κ2
Ψ
( 1

2κ

)
− 1

2κ2
Ψ
( 1

2κ
+ 1
)
+

(2 + κ)

2κ(1 + κ)
+

1

2κ2
ln
(
1 + κz2

)
− (1 + κ)z2

2κ
(
1 + κz2

) − αz
(
z2 − 1)w

2
(
1 + κ

)1/2(
1 + κz2

)3/2 − γ

2κ2T (ς, 1/κ+ 1)
. (4.1)

As κ→ 0, Sκ(y) tends to

SSN
κ (y) =

1

4

{
z4 − 2z2 − 1− αz

(
2z2 + α2z2 − 1)wφ

}
. (4.2)

which is clearly non-zero, nor is it a linear combination of SSN
ξ (y), SSN

ω (y), and
SSN
α (y). Consequently, the information matrix for the parameterization (ξ, ω, α, κ) is

invertible under the SN distribution.
The components involving κ of the observed information matrix for (ξ, ω, α, κ) in

the St model are given in Appendix B, and their expectations under the SN distribution
are derived. The corresponding components of the expected information matrix when
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κ = 0 are shown to be

ISN
κξ =

bδ

4ω

{
9− 8δ2 + 3δ4 − 6

(1 + α2)2

}
− α2

4ω

{
d1 −

(
2 + α2)d3

}
,

ISN
κω =

2

ω
− α2

4ω

{
d2 −

(
2 + α2)d4

}
, ISN

κα =
1

4
α
{
d2 −

(
2 + α2)d4

}
, (4.3)

ISN
κκ =

7

2
+

1

16
α2
{
d2 − 2

(
2 + α2

)
d4 +

(
4 + 4α2 + α4)d6

}
.

Although the reparametrization produces a non-singular information matrix, the SN
distribution corresponds to the value κ = 0, which occurs on the boundary of the param-
eter space. The asymptotic properties of the maximum likelihood estimator

(
ξ̂, ω̂, α̂, κ̂

)
under the SN distribution, summarized in the following proposition, can be deduced
from the results of Self and Liang (1987, Lemma 1 and Case 2).

PROPOSITION 4.1. If κ = 0, so that the distribution is SN , then
(
ξ̂, ω̂, α̂, κ̂

)
is

consistent with rate of convergence of n−1/2. The asymptotic distribution of n1/2
(
ξ̂ −

ξ, ω̂ − ω, α̂− α, κ̂
)′

is the same as the distribution of

⎛⎜⎜⎜⎝
Z1

Z2

Z3

Z4

⎞⎟⎟⎟⎠ δ
(
Z4 > 0

)
+

⎛⎜⎜⎜⎝
Z1 −

(
IξκSN/IκκSN

)
Z4

Z2 −
(
Iωκ
SN/IκκSN

)
Z4

Z3 −
(
IακSN/IκκSN

)
Z4

0

⎞⎟⎟⎟⎠ δ
(
Z4 < 0

)
,

where (Z1, Z2, Z3, Z4)
′ ∼ N

(
0,
(
ISN

)−1)
, the inverse information

(
ISN

)−1
has com-

ponents denoted by IξξSN and so forth, and δ(�) is an indicator function which takes the
value 1 when � holds and the value 0 otherwise.

Proposition 4.1 describes the weak convergence properties of the maximum likeli-
hood estimator

(
ξ̂, ω̂, α̂, κ̂

)
. The asymptotic distribution of n1/2

(
ξ̂ − ξ, ω̂ − ω, α̂ − α

)
is given by a mixture of correlated normal variables, whereas n1/2κ̂ asymptotically
takes value 0 with probability 1/2 and otherwise is distributed as a half normal variable.
Therefore, n1/2

(
ξ̂ − ξ, ω̂ − ω, α̂ − α, κ̂

)
is not asymptotically unbiased, but rather has

asymptotic bias of order O(1) and has variance matrix different than the usual inverse
information matrix.

Another boundary case for the St and SN models occurs when α = ∞, in which
case, the results of Appendix A.3 show that the expected information matrix is singular.
By finding a reparameterization that has an invertible information matrix, the results of
Self and Liang (1987) could be applied to obtain the asymptotic distributions of the max-
imum likelihood estimators. The boundary case α = −∞ could be handled similarly.
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5. The centered parameterization

The reparameterization with κ = 1/ν does not remedy the singularity of the in-
formation matrix that arises from the linear dependence between the score components
for ξ and α when the distribution is normal. This problem can be alleviated, however,
by adapting the centered parameterization developed by Azzalini (1985), Azzalini and
Capitanio (1999), Chiogna (2005), and Arellano-Valle and Azzalini (2008) for the SN
model. In the case of the St distribution, the centered parameterization is

(
μ, σ2, γ1, γ2

)
where μ is the mean, σ2 is the variance, and γ1 and γ2 are the third and fourth standard-
ized cumulants, respectively, which are indices of skewness and kurtosis. The condition
ν > 4 is necessary to ensure that cumulants up to the fourth order exist. However,
for both the SN distribution and the normal distribution, which is the case of primary
interest in the present section, this restriction on ν is satisfied.

Formulae that express
(
μ, σ2, γ1, γ2

)
in terms of

(
ξ, ω, α, κ

)
for the St model can

be obtained from expressions derived by Azzalini and Capitanio (2003), who derived
the first four cumulants of the St model using the parameterization

(
ξ, ω, α, ν

)
. Thus,

μ = ξ + ωbκδ, σ2 = ω2λ2,κ, γ1 =
λ3,κ

λ
3/2
2,κ

, γ2 =
λ4,κ

λ2
2,κ

− 3,

where

bκ =

(
1

κπ

)1/2Γ
{
1/(2κ)− 1/2

}
Γ
{
1/(2κ)

} , δ =
α(

1 + α2
)1/2 , λ2,κ =

1

1− 2κ
− b2κδ

2,

λ3,κ = bκδ

{(
3− δ2

)
1− 3κ

− 3

1− 2κ
+ 2b2κδ

2

}
,

λ4,κ =
3

(1− 2κ)(1− 4κ)
− 4b2κδ

2
(
3− δ2

)
1− 3κ

+
6b2κδ

2

1− 2κ
− 3b4κδ

4.

An expression for the Jacobian ∂
(
μ, σ2, γ1, γ2

)
/∂
(
ξ, ω, α, ν

)
given by Azzalini

(2008, personal communication) yields

D =
∂
(
μ, σ2, γ1, γ2

)
∂
(
ξ, ω, α, κ

) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

bκδ 2ωλ2,κ 0 0

ωbκδ
′ −2ω2b2κδδ

′ ∂γ1
∂δ

δ′
∂γ2
∂δ

δ′

−ωbκδ 1
κ2

q

(
1

κ

)
ω2 ∂λ2,κ

∂κ

∂γ1
∂κ

∂γ2
∂κ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where δ′ =
(
1 + α2

)−3/2
and q(x) = 1

2

{
1/x + Ψ(x/2 − 1/2) − Ψ(x/2)

}
. Ex-

pressions for the derivatives that appear in D are given in Appendix C. If S(y) and
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I are the score function and the expected information matrix of the parameterization(
ξ, ω, α, κ

)
, then

(
μ, σ2, γ1, γ2

)
has score function D−1S(y), and the information ma-

trix is D−1I
(
D−1

)′
.

The case κ = 0, for which the St distribution reduces to the SN , corresponds to the
value

γ2 = 2(π − 3)

(
2δ2

π − 2δ2

)2

,

which is at the boundary of the parameter space for γ2. Hence, results similar to those
presented in Proposition 4.1 can be derived that provide the asymptotic distribution of
n1/2

(
μ̂− μ, σ̂2 − σ2, γ̂1 − γ1, γ̂2 − γ2

)
under the SN distribution.

Calculations summarized in Appendix C show that, when α = κ = 0, i.e., when the
distribution is normal, the components of the score function for

(
μ, σ2, γ1, γ2

)
become

SN
μ (y) =

z

ω
, SN

σ2(y) =
z2 − 1

2ω2
, SN

γ1
(y) =

z3 − 3z

6
, SN

γ2
(y) =

1

24

(
z4−6z2+3),

while the information matrix for
(
μ, σ2, γ1, γ2

)
is

IN = diag
( 1

ω2
,

1

2ω2
,

1

6
,

1

24

)
,

which is non-singular. Since the normal distribution corresponds to γ1 = γ2 = 0, which
is on the boundary of the parameter space, the results of Self and Liang (1987) yield the
following proposition.

PROPOSITION 5.1. When the distribution is normal, the estimator
(
μ̂, σ̂2, γ̂1, γ̂2

)
is

consistent and converges with rate n−1/2. Asymptotically, n1/2
(
μ̂−μ, σ̂2−σ2, γ̂1−γ1

)′
has the N

(
0, diag(ω2, 2ω2, 6)

)
distribution, and γ̂2 is distributed as Zδ(Z > 0), where

Z ∼ N(0, 24), independently of μ̂, σ̂2, and γ̂1.

Proposition 5.1 shows that, under the normal distribution, the asymptotic distribution
of n1/2

(
μ̂− μ, σ̂2 − σ2, γ̂1 − γ1

)
is the same as that of n1/2

(
μ̃− μ, σ̃2 − σ2, γ̃1 − γ1

)
,

where μ̃ is the sample mean, σ̃2 is the sample variance, and γ̃1 is the sample index of
skewness. The asymptotic distribution of n1/2(γ̂2 − γ2) is a mixture of a degenerate
distribution at 0 and a half-normal distribution, where the mixing probabilities are both
equal to 1/2. Note that μ̂, σ̂2, γ̂1, and γ̂2 are asymptotically independent.

6. The regression framework

The St model can be applied in the regression framework by assuming a St distri-
bution for the response variable.

Consider the situation where the regression model is expressed in terms of the loca-
tion parameter ξ; thus, Y1, . . . , Yn is assumed to be a sample generated by a regression
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model having St errors:

Yi = β0 + β1xi1 + · · ·+ βpxip + εi, εi ∼ St(0, ω, α, ν), (6.1)

where xi1, . . . , xip are covariate values and β0, . . . , βp are the regression coefficients.
Equivalently, Yi∼St(ξi, ω, α, ν) for i = 1, . . . , n, where ξi = x′iβ, xi =

(
xi1, . . . , xip

)′
,

and β =
(
β0, . . . , βp

)′
.

The score function S(yi) = {Sβ0(yi), . . . , Sβp(yi), Sω(yi), Sα(yi), Sν(yi)}′ for the
single observation yi has components

Sβ0(yi) =
ziτ

2
i

ω
− νατiwi

ω
(
ν + z2i

) , Sβj (yi) =
ziτ

2
i

ω
xij − νατiwi

ω
(
ν + z2i

)xij , (j = 1, . . . , p),

Sω(yi) = − 1

ω
+

z2i τ
2
i

ω
− ατiziν

ω(ν + z2i )
wi, Sα(yi) = ziτiwi,

Sν(yi) =
1

2

{
Ψ

(
ν

2
+ 1

)
−Ψ

(
ν

2

)
− 2ν + 1

ν(ν + 1)
− ln

(
1 +

z2i
ν

)
+

z2i τ
2
i

ν

+
αzi
(
z2i − 1

)(
ν + z2i

)2
τi
wi +

γi
T (αziτi; ν + 1)

}
,

where

zi =
1

ω
(yi− β0− β1xi1− · · · − βpxip), τi =

(
ν + 1

ν + z2i

)1/2

, wi =
t(αziτi; ν + 1)

T (αziτi; ν + 1)
,

and

γi =

∫ αziτi

−∞

{
(ν + 2)u2

(ν + 1)(ν + 1 + u2)
− ln

(
1 +

u2

ν + 1

)}
t(u; ν + 1)du.

The score components Sω(yi), Sα(yi), Sν(yi) have the same expressions as those given
in Section 2 with z replaced by zi. The components of the observed information matrix
are given in Appendix A.4.

Appendix A. Information matrix

Appendix A.1. Observed information matrix of the St model

Let w = t(ς; ν + 1)/T (ς; ν + 1); then,

wz =
∂w

∂z
= − ν(ν + 2)α2zw

(ν + z2 + α2z2)
(
ν + z2

) − νατw2

ν + z2
,
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wα =
∂w

∂α
= − (ν + 2)αz2w

(ν + z2 + α2z2)
− zτw2,

wν =
∂w

∂ν
=

w

2

{
(ν + 2)α2z2

(ν + z2 + α2z2)
(
ν + z2

) − ln

(
1 +

α2z2

ν + z2

)
− γ

T (ς; ν + 1)

}

+
αz

(
1− z2

)
w2

2τ
(
ν + z2

)2 .

Furthermore, with f(y) = f(y; ξ, ω, α, ν) and

Szz(y) =
∂2 ln f(y)

∂z∂z
, Szα(y) =

∂2 ln f(y)

∂z∂α
, Sαα(y) =

∂2 ln f(y)

∂αα
,

and so forth, we have

Szz(y) =
2τ2z2

ν + z2
− τ2 − 3ατνzw

(ν + z2)2
+

ατνwz

ν + z2
, Szα(y) =

ντ
(
w + αwα

)
ν + z2

,

Szν(y) =
z(1− z2)

(ν + z2)2
+

α
{
ν(3z2 − 1) + 2z2

}
w

2τ(ν + z2)3
+

ατνwν

ν + z2
,

Sαα(y) = zτwα, Sαν(y) =
z
(
z2 − 1)w

2τ(ν + z2)2
+ zτwν ,

and

Sνν(y) =
1

4

{
Ψ1

(
ν

2
+ 1

)
−Ψ1

(
ν

2

)}
+

2ν2 + 2ν + 1

2ν2(ν + 1)2
+

z2

2ν
(
ν + z2

)
− z2

(
ν2 + 2ν + z2

)
2ν2

(
ν + z2

)2 − αz
(
z2 − 1

)(
z2 + 4ν + 3

)
w

4τ(ν + 1)
(
ν + z2

)3 +
αz

(
1− τ2

)
wν

2τ
(
ν + z2

)
− γ2

4T (ς; ν + 1)2
− αz

(
z2 − 1)γw

4T (ς; ν + 1)τ
(
ν + z2

)2 +
2δ + β

4T (ς; ν + 1)

+
αz

(
z2 − 1)w

4τ
(
ν + z2)2

{
(ν + 2)α2z2

(ν + 1)(ν + z2 + α2z2)
− ln

(
1 +

α2z2

ν + z2

)}
,

where

β =

∫ ς

−∞

{
(ν + 2)u2

(ν + 1)(ν + 1 + u2)
− ln

(
1 +

u2

ν + 1

)}2

t(u; ν + 1)du,

and

δ =

∫ ς

−∞

(νu2 − 2ν − 2)u2

(ν + 1)2(ν + 1 + u2)2
t(u; ν + 1)du.

The second derivatives with respect to ξ and ω are given by

Sξξ(y) =
1

ω2
Szz(y), Sξω(y) =

z

ω2
Szz(y) +

1

ω2
Sz(y), Sξα(y) = − 1

ω
Szα(y),

Sξν(y) = − 1

ω
Szν(y), Sωω(y) =

1

ω2
+

z2

ω2
Szz(y) +

2z

ω2
Sz(y), (A.1)

Sωα(y) = − z

ω
Szα(y), Sων(y) = − z

ω
Szν(y).

where Sz(y) = ∂ ln f(y)/∂z = −τ2z + ατνw/(ν + z2).
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Appendix A.2. Score function and information matrix under the location-scale Student’s
t-model

The score components for ξ, ω, and α under the location-scale Student’s t-distribution, are
obtained by setting α = 0 in (2.1). The score component for the degrees of freedom, (2.2), is
obtained as

Sν(y) =
1

2

{
Ψ

(
ν

2
+ 1

)
−Ψ

(
ν

2

)
− 2ν + 1

ν(ν + 1)
− ln

(
1 +

z2

ν

)
+

z2τ2

ν

}
+ γ0,

where

γ0 =

∫ 0

−∞

{
(ν + 2)u2

(ν + 1)(ν + 1 + u2)
− ln

(
1 +

u2

ν + 1

)}
t(u; ν + 1)du

=
1

2

{
Ψ

(
ν

2
+

1

2

)
−Ψ

(
ν

2
+ 1

)
+

1

ν + 1

}
,

and by simplification we obtain formula (2.2).
Under the location-scale Student’s t-distribution, the components of the information matrix

corresponding to ξ, ω, and ν are the same as those for the location-scale Student’s t-model. Thus,
to derive (2.3), we only need to derive the information components involving α. In particular,

St
zα(y) =

ντwt

ν + z2
, St

αα(y) = −
(
zτwt)2, St

αν(y) =
z
(
z2 − 1)wt

2τ(ν + z2)2
− zτwtγ0,

where wt = 2t(0; ν + 1). It follows from (A.1) that the required components of the information
matrix are Itωα = Itαν = 0,

Itξα =
2ν(ν + 1)1/2t(0; ν + 1)

ω
E

{
1(

ν + Z2
)3/2

}
, Itαα = 4(ν+1)t(0; ν+1)2E

(
Z2

ν + Z2

)
,

where Z has Student’s t-distribution with ν degrees of freedom.

Appendix A.3. Singularity of information matrices as α→ ±∞ in the St and SN models

Standard calculations show that

lim
α→∞

αw = −ν + 1

zτ

for z < 0 and that the limit is 0 for z > 0. Consequently, w is of order O(α−1) or smaller as
α→ ±∞ for z �= 0. Moreover,

lim
α→±∞

γ

T (ς; ν + 1)
w = 0.

These results imply

lim
α→±∞

wα = lim
α→±∞

wν = lim
α→±∞

(w + αwα) = 0.
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Thus, Szα(y), Sαα(y), and Sαν(y) all tend to 0 as α→ ±∞, for y �= ξ, and by (A.1), Sξα(y) and
Sωα(y) also converge to 0. It follows that, with probability one, the observed information matrix
is singular in the St model as α→ ±∞, so the expected information matrix is also singular in the
limit. Note that the observed information matrix evaluated at the maximum likelihood estimate is
singular whenever α̂ =∞.

In the case of the SN model,

SSN
ξα (y) = − 1

ω
wφ +

α2

ω
z2wφ +

α

ω
zw2

φ, SSN
ωα (y) = − 1

ω
zwφ +

α2

ω
z3wφ +

α

ω
z2w2

φ,

SSN
αα (y) = −αz3wφ − z2w2

φ,

and it can be shown that, for z > 0,

lim
α→∞

wφ = lim
α→∞

αwφ = lim
α→∞

α2wφ = lim
α→∞

αw2
φ = 0.

Consequently, SSN
ξα (y), SSN

ωα (y), and SSN
αα (y) vanish when z > 0 as α → ∞. Since z > 0

with probability tending to 1 as α → ∞, the expected information matrix is singular. A similar
argument shows that the expected information matrix is also singular as α → −∞. Note that
the observed information matrix evaluated at the maximum likelihood estimate is not necessarily
singular for finite α, even when α̂ =∞.

Appendix A.4. Observed information matrix in the regression framework

In the regression model (6.1), the second derivatives with respect to z, α, and ν are

Szz(yi) =
2τ2

i z
2
i

ν + z2i
− τ2

i − 3ατiνziwi

(ν + z2i )
2

+
ατiνwzi

ν + z2i
,

Szα(yi) =
ντi

(
wi + αwαi

)
ν + z2i

, Szν(yi) =
zi
(
1− z2i

)
(
ν + z2i

)2 +
α
{
ν(3z2i − 1) + 2z2i

}
wi

2τi(ν + z2i )
3

+
ατiνwνi

ν + z2i
,

Sαα(yi) = ziτwαi, Sαν(yi) =
zi
(
z2i − 1)wi

2τi(ν + z2i )
2
+ ziτwνi,

Sνν(yi) =
1

4

{
Ψ1

(
ν

2
+ 1

)
−Ψ1

(
ν

2

)}
+

2ν2 + 2ν + 1

2ν2(ν + 1)2
+

z2i
2ν

(
ν + z2i

)
− z2i

(
ν2 + 2ν + z2i

)
2ν2

(
ν + z2i

)2 − αzi
(
z2i − 1

)(
z2i + 4ν + 3

)
wi

4τi(ν + 1)
(
ν + z2i

)3 +
αzi

(
1− τ2

i

)
wνi

2τi
(
ν + z2i

)
− γ2

i

4T (αziτi, ν + 1)2
− αzi

(
z2i − 1)γiwi

4T (αziτi, ν + 1)τi
(
ν + z2i

)2 +
2δi + βi

4T (αziτi, ν + 1)

+
αzi

(
z2i − 1)wi

4τi
(
ν + z2i )

2

{
(ν + 2)α2z2i

(ν + 1)(ν + z2i + α2z2i )
− ln

(
1 +

α2z2i
ν + z2i

)}
,

where

wzi =
∂wi

∂zi
= − ν(ν + 2)α2ziwi

(ν + z2i + α2z2i )
(
ν + z2i

) − νατiw
2
i

ν + z2i
,
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wαi =
∂wi

∂α
= − (ν + 2)αz2i wi

(ν + z2i + α2z2i )
− ziτiw

2
i ,

wνi =
∂wi

∂ν
=

wi

2

{
(ν + 2)α2z2i

(ν + z2i + α2z2i )
(
ν + z2i

) − ln

(
1 +

α2z2i
ν + z2i

)
− γi

T (αziτi, ν + 1)

}

+
αzi

(
1− z2i

)
w2

i

2τ
(
ν + z2i

)2 .

βi =

∫ αziτi

−∞

{
(ν + 2)u2

(ν + 1)(ν + 1 + u2)
− ln

(
1 +

u2

ν + 1

)}2

t(u; ν + 1)du,

and

δi =

∫ αziτi

−∞

(νu2 − 2ν − 2)u2

(ν + 1)2(ν + 1 + u2)2
t(u; ν + 1)du.

The second derivatives with respect to the β0, . . . , βp, and ω are given by

Sβ0β0(yi) =
1

ω2
Szz(yi), Sβ0βj (yi) = Sβ0β0(yi)xij , Sβjβr (yi) = Sβ0βj (yi)xir,

Sβ0ω(yi) =
zi
ω2

Szz(yi) +
1

ω2
Sz(yi), Sβ0α(yi) = −

1

ω
Szα(yi),

Sβ0ν(yi) = −
1

ω
Szν(yi), Sβjω(yi) = Sβ0ω(yi)xij , Sβjα(yi) = Sβ0α(yi)xij ,

Sβjν(yi) = Sβ0ν(yi)xij , Sωω(yi) =
1

ω2
+

z2

ω2
Szz(yi) +

2zi
ω2

Sz(yi),

Sωα(yi) = −zi
ω
Szα(yi), Sων(yi) = −zi

ω
Szν(yi),

where Sz(yi) = −ziτ2
i + ατiνwi/(ν + z2i ).

Appendix B. Reparameterization by reciprocal degrees of freedom

The score component for κ is Sκ(y) = Sν(y)(∂ν/∂κ) and its expression is given in (4.1).
Taylor expansion of (4.1) about κ = 0 yields

Sκ(y) =
1

4

(
z4 − 2z2 − 2

)− 1

2
αz

(
z2 − 1)

t(ς; 1/κ+ 1)

T (ς; 1/κ+ 1)
− γ

2κ2T (ς, 1/κ+ 1)
+O(κ),

and formula (4.2) follows, since

lim
κ→0

γ

κ2
=

1

2

{
αz(1 + α2z2)φ(αz)− Φ(αz)

}
. (B.1)

In terms of the notation introduced in Appendix A,

Szκ(y) =
z(z2 − 1)

(1 + z2κ)2
− α

(
3z2 − 1 + 2z2κ

)
w

2(1 + κ)1/2
(
1 + z2κ

)5/2 +
α(1 + κ)1/2wκ(
1 + z2κ

)3/2 ,

Sακ(y) =
z
(
1− z2)w

2(1 + κ)1/2
(
1 + z2κ

)3/2 +
z(1 + κ)1/2wκ(
1 + z2κ

)1/2 ,
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and

Sκκ(y) = Sνν(y)(∂ν/∂κ)
2 + Sν(y)(∂

2ν/∂κ2)

=
1

κ4

[
1

4
Ψ1

( 1

2κ
+ 1

)
− 1

4
Ψ1

( 1

2κ

)
+

(
2 + 2κ+ κ2

)
κ2

2(1 + κ)2
+

z2κ2

2
(
1 + z2κ

)
− z2

(
1 + 2κ+ z2κ2

)
κ2

2
(
1 + z2κ

)2 − αz
(
z2 − 1

)(
4 + z2κ+ 3κ

)
κ3w

4(1 + κ)3/2
(
1 + z2κ

)5/2
− αzκ4

(
z2 − 1

)
wκ

2(1 + κ)1/2
(
1 + z2κ

)3/2 − γ2

4T (ς, 1/κ+ 1)2

− αzκ2
(
z2 − 1

)
γw

4T (ς, ν + 1)(1 + κ)1/2
(
1 + z2κ

)3/2 +
2δ + β

4T (ς, 1/κ+ 1)

+
αzκ2

(
z2 − 1

)
w

4(1 + κ)1/2
(
1 + z2κ

)3/2
{

α2z2(1 + 2κ)κ

(1 + κ)
(
1 + z2κ+ α2z2κ

)
− ln

(
1 +

α2z2κ

1 + z2κ

)}]

+
1

κ3

{
Ψ
( 1

2κ
+ 1

)
−Ψ

( 1

2κ

)
− κ(2 + κ)

(1 + κ)
− ln

(
1 + κz2

)
+

κ(1 + κ)z2(
1 + κz2

)
+

αz
(
z2 − 1)κ2w

(1 + κ)1/2
(
1 + κz2

)3/2 +
γ

T (ς, 1/κ+ 1)

}
,

where

wκ =
∂w

∂κ
= − w

2κ2

{
α2z2(1 + 2κ)κ

(1 + z2κ)
(
1 + z2κ+ α2z2κ

) − ln
(
1 +

α2z2κ

1 + z2κ

)
− γ

T (ς, ν + 1)

}

+
αz

(
z2 − 1

)
w2

2(κ+ 1)1/2
(
1 + z2κ

)3/2 .
The observed information matrix for the parameter

(
ξ, ω, α, κ

)
can then be obtained from expres-

sions (A.1).
Taylor expansion of Szκ(y), Sακ(y), and Sκκ(y) about κ = 0 yields

Szκ(y) =z(z2 − 1)− α
(
3z2 − 1

)
w

2
− α3z2

(
4− 2z2 − α2z2

)
w

4

+
αγw

2κ2T (ς, 1/κ+ 1)
+

α2z
(
z2 − 1

)
w2

2
+O(κ),

Sακ(y) =
z
(
1− z2)w

2
− α2z3

(
4− 2z2 − α2z2

)
w

4
+

zγw

2κ2T (ς, 1/κ+ 1)

+
αz2

(
z2 − 1

)
w2

2
+O(κ),
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Sκκ(y) =
1

6

(
3− 2z6 + 3z4) +

αz

4

(
3z4 − 2z2 − 1

)
w +

α3z3
(
z2 − 1

)(
3− z2 − α2z2

)
w

4

− αz
(
z2 − 1

)
γw

2κ2T (ς, ν + 1)
− α2z2

(
z2 − 1

)2
w2

4
− γ2

4κ4T (ς, 1/κ+ 1)2

+
β

4κ4T (ς, 1/κ+ 1)
+

δ + 2κγ

2κ4T (ς, 1/κ+ 1)
+O(κ),

since

wκ = −α2z2
(
4− 2z2 − α2z2

)
w

4
+

γw

2κ2T (ς, 1/κ+ 1)
+

αz
(
z2 − 1

)
w2

2
+O(κ).

By taking the limit as κ→ 0 in the expansions for Szκ(y) and Sακ(y), it follows from (B.1)
that

SSN
zκ (y) =z(z2 − 1)− α

(
3z2 − 1

)
wφ

2
− α3z2

(
4− 2z2 − α2z2

)
wφ

4

+
αwφ

4

{
αz(1 + α2z2)wφ − 1

}
+

α2z
(
z2 − 1

)
w2

φ

2
,

and

SSN
ακ (y) =

z
(
1− z2)wφ

2
− α2z3

(
4− 2z2 − α2z2

)
wφ

4
+

zwφ

4

{
αz(1 + α2z2)wφ − 1

}

+
αz2

(
z2 − 1

)
w2

φ

2
.

Similarly, the expansion for Sκκ(y) shows that

SSN
κκ (y) =

1

6

(
3z4 − 2z6

)
+

1

16
αz

(
1− 4z2 + 12z4

)
wφ

− 1

48
α3z3

{
7− 48z2 + 12z4 − α2z2

(
19− 12z2

)
+ 3α4z4

}
wφ

− 1

16
α2z2

{
1− 4z2 + 4z4 − 2α2z2

(
1− 2z2) + α4z4

}
w2

φ,

since
lim
κ→0

β

κ4
=

1

4

{
57Φ(αz)− (

α7z7 + 3α5z5 + 19α3z3 + 57αz
)
φ(αz)

}
,

and

lim
κ→0

δ + 2κγ

κ4
= −8Φ(αz) +

(
2

3
α5z5 +

10

3
α3z3 + 8αz

)
φ(αz).

Expression (4.3) follows by taking expected values of SSN
zκ (y), SSN

ακ (y), and SSN
κκ (y) and apply-

ing (A.1).

Appendix C. Centered Parametrization

The derivatives appearing in the matrix D = ∂
(
μ, σ2, γ1, γ2

)
/∂

(
ξ, ω, α, κ

)
are

∂λ2,κ

∂κ
= 2

{
1

(1− 2κ)2
+

b2κδ
2

κ2
q

(
1

κ

)}
,
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∂γ1
∂δ

=
γ1
δ
− 2bκδ

2
{
1/(1− 3κ)− 2b2

}
λ
3/2
2,κ

+
3γ1b

2
κδ

λ2,κ
,

∂γ2
∂δ

=
4b2κδ

λ2,κ

[
γ2 + 3− 1

λ2,κ

{
2
(
3− 2δ2

)
1− 3κ

− 3

1− 2κ
+ 3b2κδ

2

}]
,

∂γ1
∂κ

= − γ1
κ2

q

(
1

κ

)
− bκδ

λ
3/2
2,κ

{
− 3

(
3− δ2

)
(1− 3κ)2

+
6

(1− 2κ)2
+

4b2κδ
2

κ2
q

(
1

κ

)}
− 3γ1

2λ2,κ

∂λ2,κ

∂κ
,

and

∂γ2
∂κ

=
1

λ2
2,κ

[
6(3− 8κ)

(1− 2κ)2(1− 4κ)2
+

4b2κδ
2
(
3− δ2

)
(1− 3κ)2

[{
2q

(
1

κ

)
1

κ
+ 1

}(
1

κ
− 3

)
− 1

κ

]

− 6b2κδ
2

(1− 2κ)2

[{
2q

(
1

κ

)
1

κ
+ 1

}(
1

κ
− 2

)
− 1

κ

]
+

12b4κδ
4

κ2
q

(
1

κ

)]

− 2λ4,κ

λ3
2,κ

∂λ2,κ

∂κ
.

To determine the score function and information matrix under SN and normal distributions, first
take κ = 0, and now let b = (2/π)1/2 and λ2 = 1−b2δ2. Then, in obvious notation, the Jacobian
D becomes

DSN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

bδ 2ωλ2 0 0

ωbδ′ − 4

π
ω2δδ′

3bδ2(4− π)δ′

πλ
5/2
2

32δ3(1− 3/π)δ′

πλ3,κ
2

3

4
ωbδ ω2

(
2− 3

π
δ2

)
3a1bδ

4πλ
5/2
2

− 2a2

π2λ3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where a1 = 4π − 12δ2 − δ2π + 4δ4 and a2 = 18δ2π − 36δ4 − 2δ4π + 12δ6 − 3π2.
The inverse DSN =

(
DSN

)−1
= ∂

(
ξ, ω, α, κ

)
/∂

(
μ, σ2, γ1, γ2

)
, necessary to calculate the

score function of the centered parameterization under the SN distribution, is

DSN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

− bδ

2ωλ2

1

2ωλ2
0 0

−ωλ
3/2
2

(
2δ4 − 4δ2 + π

)
δ2c

ωλ
3/2
2 ba3

3δc
−λ

3/2
2 ba2

6δ2δ′c
−8λ

3/2
2 bδ(π − 3)

3c

−ωπλ2
2b(δ

2 − 2)

4δc

ωλ2
2(δ

2 − 6 + π)

2c
− λ2

2a1

8δδ′c
−λ2

2(π − 4)

2c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The score function of the centered parameterization under the SN distribution has components

Sμ(y)
SN =

z

ω
− αw

ω
, SSN

σ2 (y) =
1

2ω2λ2

{
(z − αw)(z − bδ)− 1

}
,
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SSN
γ1

(y) =
λ
3/2
2

c

[
− (z − αw)

2δ4 − 4δ2 + π

δ2
+ (z2 − 1− αzw)

ba3

3δ
− zw

ba2

6δ2δ′

− 2

3

{
z4 − 2z2 − 1− αz(2z2 + α2z2 − 1)w

} bδ(π − 3)

3

]
,

SSN
γ2

(y) =
λ2
2

c

[
− 1

4
bπ(z − αw)

δ2 − 2

δ
+

1

2

(
z2 − 1− αzw

)(
δ2 − 6 + π

)− 1

8
zw

a1

δδ′

− 1

8

{
z4 − 2z2 − 1− αz(2z2 + α2z2 − 1)w

}
(π − 4)

]
.

By expanding these components with respect to α and eventually taking the limit as α→ 0 yields
the expressions for Sμ(y)

N , Sσ2(y)N , Sγ1(y)
N , and Sγ2(y)

N given in Section 5. The expected
information matrix IN is obtained by calculating the covariance matrix of these components under
the normal model.
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