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Summary: Data obtained from the most recent Italian multipurpose survey Health con-
ditions and the use of health services is analysed through multivariate linear regression
methods in order to study the inßuence of some geographic, social, economic, demo-
graphic and health factors on the Italian public opinion about the Italian health system
and other public services (postal services, rail transports, education system, public tele-
vision, phone services, public utilities). Recently-proposed multivariate linear regres-
sion methods that take account of the possible presence of skewness and/or heavy-tails
in the distribution of the error terms are employed. A best subset selection of the rele-
vant regressors for the multivariate linear regression model is performed. The analysis
allows to detect the factors that mainly affect public opinion and the way such factors
inßuence satisfaction with the investigated public services.

Keywords: Finite mixture model, Italian multipurpose survey, Multivariate linear regres-
sion.

1. Introduction

The Italian multipurpose survey on families Health conditions and
the use of health services is periodically performed and processed by the
National Institute of Statistics (ISTAT). The 2004-2005 survey collected
information about respondents� opinions on the Italian health system and
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some other public services (ISTAT, 2006).
The aim of this paper is to evaluate the dependence of the Italian pub-

lic opinion about such services on some geographic, social, economic,
demographic and health factors. Namely, the factors considered in this
paper are: educational level, income, gender, age, physical and psycho-
logical perceived health status, health service consumption and presence
of chronic diseases. The analysis is performed at a local health unit1 level,
by using aggregated variables.

This aim is pursued through multivariate linear regression methods.
Such methods are widely used in many branches of science to predict
values of D responses from a set of P regressors, where D ≥ 1 and
P ≥ 1. They are based on a statistical model in which the error terms
are generally assumed to be independent and identically distributed ran-
dom variables. As far as the error distribution is concerned, it is usually
considered to be multivariate normal with a zero mean vector and a pos-
itive deÞnite covariance matrix (see, for example, Mardia et al., 1979,
Srivastava, 2002). However, if the error distribution is skewed and/or
heavy-tailed, the assumption of multivariate normality will ignore such
important features of the data and the results will be not completely ade-
quate. Many solutions to this problem have been discussed and proposed
in literature (see, for example, Zellner, 1976; Sutradhar and Ali, 1986;
Galea et al., 1997; Liu, 2002; Diaz-Garcia et al., 2003; Ferreira and Steel,
2004). However, they rely on parametric models that may still be incor-
rectly speciÞed.

A proposal that allows to overcome this drawback is based on a mix-
ture model framework: the unknown distribution of the error terms is
modelled using a Þnite mixture of Gaussian D-dimensional components
(Soffritti and Galimberti, 2009). Finite mixture modelling represents a
convenient framework in which to model unknown distributional shapes.
It is well known that, through an appropriate choice of its components, a
Þnite mixture model is able to model quite complex distributions, includ-
ing skewed and/or heavy-tailed distributions, and can handle situations
where a single parametric family is unable to provide a satisfactory model
for local variations in the observed data (McLachlan and Peel, 2000). In

1 ASL: Azienda Sanitaria Locale.
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the special case of a single Gaussian component, this approach coincides
with the classical one. In order to deal with the possible presence of
skewness and/or heavy tails in the distribution of the error terms, we have
performed the analysis of the data using this approach.

The remainder of the paper is organized as follows: in Section 2 we
give some information about the survey Health conditions and the use
of health services and the data analysed in this paper; in Section 3 we
describe the multivariate linear regression models employed in this study
to evaluate opinions about public services; in Section 4 we illustrate the
main results of the data analysis; Þnally, in Section 5, we present a short
discussion and some concluding remarks.

2. The 2004-2005 Italian multipurpose survey and the analysed dataset

The multipurpose survey on Health conditions and the use of health
services is periodically conducted by ISTAT on a sample of Italian fam-
ilies. In the most recent survey (2004-2005) an entire section was ded-
icated to opinions on the Italian health system and some other public
services. ISTAT survey data collection is based on local administrative
ofÞces spread all over Italian territory at regional and municipal level.
From ISTAT central ofÞce to the local network of interviewers two main
steps are performed: at Þrst, ISTAT central ofÞce contacts the ISTAT
regional ofÞces2 to provide information on the survey (questionnaires,
instructions, time schedule); then, every regional ofÞce contacts selected
municipalities (Þrst stage sampling units) to coordinate second stage sam-
pling selection (households), interviewers� recruiting and Þeld-work per-
formance.

In order to provide accurate estimates for sub-regional levels, the sam-
ple size of the 2004-2005 survey was increased up to more than 50,000
families, approximately 128,000 subjects. The families were selected in a
representative way for the whole Italian population. The survey was con-

2 Each Italian region has its own ISTAT regional ofÞce apart from Trentino-Alto Adige, that
has two ISTAT ofÞces, one for each autonomous province. The ISTAT ofÞces of Piemonte and
Valle D�Aosta are formally considered as a unique regional ofÞce.
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ducted by both face-to-face interviews and self-administered question-
naires with all family members in a sampled family. The face-to-face
questionnaire is composed of two sections: one concerns each family
member while the other refers to the household. The individual section
includes demographic, social and economic factors, working conditions,
weight, height and diet, prevention and physical activity, physical exam-
inations or checkups, hospitalizations, health-rehabilitation services, dis-
abilities, expenditures on health and social services, alternative medicine.
The household section collects information about aids and services for the
family, the house in which the family lives and resources of the family.
The self-administered questionnaire focuses on perceived state of health,
chronic or long-lasting illness, drug consumption, tobacco consumption,
opinions on some public services, pregnancy and breastfeeding. If a fam-
ily member was absent a proxy was interviewed. Nearest-neighbour im-
putation methods were applied for missing data. Items related to opinions
on public services were restricted to respondents older than 17 years of
age.

The World Health Organization deÞnes health as being �a state of
complete physical, mental, and social well-being and not merely the ab-
sence of disease or inÞrmity�. In order to gather quantitative informa-
tion about this multi-dimensional concept, the 2004-2005 Italian multi-
purpose survey included the 12-item Short-Form Health Survey question-
naire (SF-12), which is one of the most widely-used tools to measure the
health-related quality of life. The SF-12 was originally developed in the
United States to provide a shorter alternative to a similar 36-item ques-
tionnaire (the SF-36, see Ware et al., 1992), for use in large-scale health
measurements whose focus is on overall physical and mental health out-
comes. The SF-12 was subsequently validated in European countries (see,
for example, Gandek et al., 1998). It generates two summary scores: the
physical component summary (PCS) and the mental component summary
(MCS). These scores are computed by weighting data about physical and
social habits, limitations due to physical, emotional and mental problems,
bodily pain, vitality and perceptions of general health.

Two indexes were derived from the recorded data: the chronicity in-
dex and the health services consumption index. The chronicity index is



Evaluating public services through multivariate linear regression analysis 187

based on the number of self-reported chronic conditions and their impact
on perceived health status. Scores range from 0 (absence of long-lasting
illness) to 100. The health services consumption index is a weighted sum
of the health resources recently used by respondents (hospital admissions,
medical examinations, checkups, rehabilitation services, drug consump-
tion). Weights are proportional to the economic value of these services.
Scores range from 0 (no service consumption) to 100. For further details
see, for example, Gargiulo et al. (2008).

Analyses were performed at a local health unit level (189 units), by
using the following aggregated variables as measures of the opinions on
public services:

• Trend, percentage of respondents who think that the public health
system is getting worse;

• Health Grade, percentage of respondents giving a rating lower than
or equal to 5 on the local health system (on a 1-10 rating scale, 1
worst judgement, 10 best judgement);

• Other Grade, percentage of respondents giving an average rating
lower than or equal to 5 (on a 1-10 rating scale, 1 worst judge-
ment, 10 best judgement) on other public services (postal service,
rail transports, education system, public television, phone service,
public utilities).

These three variables were analysed as response variables, while the
candidate explaining factors were:

• Male, percentage of male respondents;

• Elder, percentage of respondents older than 64 years of age;

• PCS, average physical component summary;

• MCS, average mental component summary;

• Chron, average chronicity index;

• Cons, average health services consumption index;
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• Educ, percentage of respondents with low educational level;

• Econ, percentage of respondents belonging to households with low
(scarce or absolutely insufÞcient) economic resources;

• Area, geographic area (North-West, North-East, Centre, South, Is-
lands).

The effects of these explaining factors on the three response variables
were studied within the framework of multivariate linear regression. This
framework allows to take into account the relationships among the re-
sponse variables, thus leading to a single, simultaneous model for jointly
evaluating the investigated Italian public services.

3. Multivariate linear regression methods

Multivariate linear regression models (see, for example, Mardia et al.,
1979; Srivastava, 2002) are generally based on the assumption that the
joint dependence of D response variables on P regressors is linear. Fur-
thermore, it is usually assumed that the error terms are independent and
identically distributed random vectors, whose distribution is assumed to
be multivariate Gaussian with a D-dimensional zero mean vector and a
positive deÞnite covariance matrix Σ. Namely:

Yi = β0 + B′xi + εi, εi ∼ MV ND(0,Σ), (1)

where Yi and xi represent the D-dimensional random column vector
of the response variables and the P -dimensional column vector of the
Þxed regressor values for the ith sample unit, respectively; β0 is a D-
dimensional column vector containing the intercepts for the D responses;
B is a matrix of dimension P × D whose (p, d)th element, βpd, is the
regression coefÞcient of the pth regressor on the dth response; Þnally,
εi denotes the D-dimensional column random vector of the error terms
corresponding to the ith observation.

Model (1) has been recently generalised by assuming that the dis-
tribution of the error terms is a mixture of K D-dimensional Gaussian
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components (Soffritti and Galimberti, 2009):

Yi = β0 + B′xi + εi, εi ∼

K∑
k=1

πkMV ND(νk,Σk), (2)

where πk > 0 ∀k,
∑K

k=1 πk = 1, and
∑K

k=1 πkνk = 0.
Clearly, when K = 1 model (2) coincides with model (1). When

K > 1, model (2) is able to model quite complex distributions and can
handle situations where a single parametric family is unable to provide
a satisfactory model for local variations in the observed data. Model (2)
also represents a generalization of a model proposed for dealing with non-
normal error terms in the multiple linear regression analysis, that is when
D = 1 (Bartolucci and Scaccia, 2005).

Given equation (2), the probability density function of the ith obser-
vation of the D response variables, yi, is

K∑
k=1

πkφD(yi; μik,Σk), μik = νk + β0 + B′xi, (3)

where φD(yi; μik,Σk) is the density of the D-dimensional Gaussian dis-
tribution MV ND(μik,Σk) evaluated at yi. According to equation (3),
model (2) can also be seen as a mixture of K restricted multivariate linear
regression models with Gaussian error terms, whose generic component
takes the form

Yi = λk + B′xi + ε̃ik, ε̃ik ∼ MV ND(0,Σk), (4)

where λk = β0 + νk, for k = 1, . . . , K. Thus, the components have
different intercepts for the D responses and different covariance matrices
for the error terms, but the K matrices of the regression coefÞcients are
restricted to be equal. This alternative representation of model (2) allows
to highlight a further property: in model (2) the set of regressors also
includes one latent categorical variable with K categories. It affects both
the conditional expected value and the conditional covariance matrix of
the dependent variables, but it does not interact with the other regressors.
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This categorical latent variable is also assumed to be independent of all
regressors.

Provided that the I × P matrix X with rows xi for i = 1, . . . , I
has full column rank, it is possible to prove that, apart from the well-
known label-switching problem (see, for example, McLachlan and Peel,
2000), model (2) is always identiÞable. This proof is similar to the proof
of Proposition 2 in Yakowitz and Spragins (1968) and exploits the fact
that matrix B does not depend on k (for further details see Soffritti and
Galimberti, 2009).

Maximum likelihood estimation of the parameters of model (2) may
be carried out through the well-known Expectation-Maximization (EM)
algorithm (Dempster et al., 1977). This is a general-purpose algorithm
for maximum likelihood estimation in a wide variety of situations best
described as incomplete-data problems. A comprehensive account of the
EM algorithm, including the special case of parameter estimation for mix-
ture models, can be found in McLachlan and Krishnan (2008). As far as
model (2) is concerned, the model log-likelihood given a random sample
of I observations is

l =
I∑

i=1

log

(
K∑

k=1

πkφD(yi; μik,Σk)

)
. (5)

Let Y = (y′
1, . . . ,y

′
I) be the matrix of dimension I × D with the values

of the D response variables for the I sample units. Let zik be a binary
variable equal to 1 when the error term for the ith observation has been
generated from the kth component, and 0 otherwise, for k = 1, . . . , K.
Thus,

∑K
k=1 zik = 1. Furthermore, let zi be the K-dimensional column

vector whose kth element is zik. Since vectors zi�s are unknown, the ob-
served data Y can be considered incomplete, and equation (5) represents
the incomplete-data log-likelihood. If we know both the observed data
and the component-label vectors zi�s, we can obtain the so-called com-
plete log-likelihood of the model. For random samples, it is appropriate to
assume that the component label vectors z1, . . . ,zI are observed values
of I independent and identically distributed random vectors whose un-
conditional distribution is multinomial consisting of one draw on K cate-
gories with probabilities π1, . . . , πK . Up to a constant factor, the complete
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log-likelihood of the model is equal to

lc =
I∑

i=1

K∑
k=1

zik[log πk + log φD(yi; μik,Σk)] = lc1 + lc2, (6)

where

lc1 =
K∑

k=1

z.k log πk,

lc2 = −
1

2

K∑
k=1

z.k log |Σk| −
1

2

I∑
i=1

K∑
k=1

zik(yi − μik)
′
Σ

−1
k (yi − μik),

with z.k =
∑I

i=1 zik, and |A| denotes the determinant of matrix A.
Function lc1 depends only on the parameters πk�s and can be maxi-

mized simply by letting πk equal to π̂k = z.k/I , k = 1, . . . , K.
In order to show how lc2 can be maximized, it is convenient to ex-

press such a quantity in the matrix notation obtained as follows. Let
Γ = (λ′

1, . . . ,λ
′
K ,B) whose dimensions are (K + P ) × D. Moreover,

let zk = (z1k, . . . , zIk)
′ and μk = (μ′

1k, . . . ,μ
′
Ik), whose dimensions are

I × 1 and I × D, respectively. Note that the latter may be expressed as
μk = XkΓ, where Xk = (Ok X), Ok is a matrix of dimension I × K
with all the elements equal to 0 apart from those of column k which are
equal to 1. As a consequence of these relations, it is possible to write

lc2 = −
1

2

K∑
k=1

z.k log |Σk| −
1

2

K∑
k=1

tr(Σ−1
k Dk), (7)

where Dk = (Y −XkΓ)′diag(zk)(Y −XkΓ), and diag(zk) is the I×I
diagonal matrix whose main diagonal equals vector zk.

Function lc2 deÞned by equation (7) depends on the parameters Γ and
Σk, k = 1, . . . , K. It can be maximized by evaluating its Þrst differential,
by setting the Þrst derivatives computed with respect to all the parameters
equal to 0, and by solving the resulting equations (for further details see
Soffritti and Galimberti, 2009). Provided that matrix M =

∑K
k=1 Σ

−1
k ⊗

[X ′
kdiag(zk)Xk] is non-singular, the solutions are
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vec(Γ̂) = M−1Nvec(Y ), (8)

Σ̂k = z−1
.k Dk, k = 1, . . . , K, (9)

where N =
∑K

k=1 Σ
−1
k ⊗ [X ′

kdiag(zk)], vec(A) denotes the vector
formed by stacking columns of the matrix A, one underneath the other,
and ⊗ is the Kronecker product operator. From Γ̂ we directly obtain
λ̂1, . . . , λ̂K and B̂. We may also obtain μ̂ik as λ̂k + B̂

′
xi for k =

1, . . . , K and i = 1, . . . , I . Furthermore, β̂0 is obtained as
∑K

k=1 π̂kλ̂k,
and ν̂k as λ̂k − β̂0 for k = 1, . . . , K.

As equation (8) depends on the Σk�s, and equation (9) depends on Γ,
the maximization of function lc2 with respect to such parameters can be
obtained by iteratively updating the estimate of Γ given an estimate of
the Σk�s, and vice versa. Since the zik�s are missing, in the EM algorithm
they are substituted with their conditional expected values. More speciÞ-
cally, the EM algorithm consists in iterating the following two steps until
convergence:

Step E On the basis of the current estimate of the model parameters, the
expected value of the complete log-likelihood given the observed
data, E(lc|Y ), is computed. In practice, this consists of substituting
any zik in equation (6) with its conditional expected value

pik = E(zik|Y ) =
π̂kφD(yi; μ̂ik, Σ̂k)∑K

h=1 π̂hφD(yi; μ̂ih, Σ̂h)
. (10)

Step M E(lc|Y ) is maximized with respect to the model parameters as
follows:

1. the estimate for πk is updated by computing 1
I

∑I
i=1 pik (k =

1, . . . , K);
2. the estimates of Γ and Σk, k = 1, . . . , K, are iteratively up-

dated, until convergence, through equations (8) and (9) re-
spectively, where any zik is substituted with the corresponding
pik deÞned in equation (10).
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The iterative estimation process requires a set of starting values for
the model parameters. A possible solution can be obtained as follows:
for B simply compute the ML estimate under assumption (1). For λk

use β̃0 + ν̃k (k = 1, . . . , K), where β̃0 is the estimate of β0 under as-
sumption (1), and ν̃k the estimate of νk obtained by Þtting a multivariate
Gaussian mixture model to the residuals computed under assumption (1),
using for example the R package mclust02 (Fraley and Raftery, 2002;
2003). This also provides the starting estimates of the parameters Σk and
πk, k = 1, . . . , K. As far as the choice of the unknown value of K is con-
cerned, model-selection techniques that take into account both the Þt and
complexity of a model can be employed (see, for example, McLachlan
and Peel, 2000).

4. Results

Given the data described in Section 2, the multivariate linear regres-
sion model deÞned by equation (2) was estimated for values of K from
1 to 3. No restriction was imposed on the error covariance matrices
throughout the analysis. All calculations were performed in the R environ-
ment (R Development Core Team, 2008). A speciÞc function implement-
ing the maximum likelihood estimation of the model parameters through
the EM algorithm described in Section 3 was used. In order to avoid
difÞculties when applying linear regression models to bounded-range de-
pendent variables, logit transformation was applied to each of the D = 3
dependent variables before estimating the models, as suggested, for ex-
ample, in Montgomery et al. (2006). One local health unit was excluded
from the analysis due to an outlying value for one of the dependent vari-
ables, thus considering I = 188 units. Furthermore, the explaining factor
Area was recoded into the following four dummy indicators, using the
North-West area as a reference category: Area NE (North-East), Area C
(Centre), Area S (South), Area IS (Islands), thus producing 12 candidate
explaining factors.

Since a crucial point of a regression analysis is the choice of the rel-
evant regressors (see, for example, Miller, 2002), we performed a best
subset selection in which the whole set of the possible regressors was



194 M. Di Martino  et al. 

composed of the factors described in Section 2. Only main effects were
considered; thus, 212 = 4096 different regression equations were esti-
mated and Þtted to the dataset for each value of K, with a different subset
of regressors each. Estimation was performed using a PC with Windows
XP Professional operating system, an Intel Core 2 QUAD processor and
4 GB RAM. The convergence criteria used in the analysis were: the in-
crement in the log-likelihood value between two consecutive steps lower
than 0.0005 for the EM algorithm (with a maximum number of iterations
equal to 300); the Euclidean distance between two consecutive model pa-
rameter estimates, divided by the total number of estimated parameters,
lower than 0.0005 for the M step within the EM algorithm (with a max-
imum number of iterations equal to 100). Fitting the 12288 models took
108 hours and 37 minutes: 9 minutes for models with K = 1, 32 hours
and 8 minutes with K = 2, and 76 hours and 20 minutes with K = 3.

The choice of the best model among the Þtted ones was performed us-
ing the Bayesian Information Criterion (Fraley and Raftery, 2002; Fraley
and Raftery, 2003):

BICM = 2 max [log LM ] − nparM log(I),

where max [log LM ] is the maximum of the log-likelihood of a model M
for the given sample of I units and nparM is the number of independent
parameters to be estimated for that model. This criterion enables us to
trade-off the Þt and parsimony of a given model: the greater the BIC, the
better the model (Schwartz, 1978).

Figure 1 summarizes the distributions of the BIC values taking into
account the number of components K and the number of regressors P . If
we compare models with the same number of regressors, it is possible to
see that the median BIC values tend to decrease as K increases for P =
1, . . . , 11. However, as far as the maximum BIC values are concerned,
they correspond to models with one component only when P ≤ 5. When
P > 5, the maximum BIC values are obtained using models with K > 1
components.

The best models were selected and examined for K = 1, 2, 3. Their
BIC values are highlighted in Figure 1. Table 1 reports the three subsets
of regressors corresponding to these three best models, together with the
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Figure 1. Boxplots of the BIC statistic distributions by number of regres-
sors P and number of components K

values of the BIC statistic for the models with K = 1, 2, 3 components.
A different subset of relevant regressors is obtained for each value of K.
The regressors that result to be relevant in all the selected models are:
Econ, Area S and Area NE. According to the BIC the best model is
the one with K = 2, that is, a model with a mixture of two Gaussian
components for the error terms. In the following we focus on the results
obtained from this particular model.

The estimates of the two mixing proportions are π̂1 = 0.084 and
π̂2 = 0.916. Table 2 shows the estimates of the remaining model pa-
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Table 1. Best subsets of regressors for each value of K, and correspond-
ing BIC values for models with K = 1, 2, 3 (for each subset the largest
BIC value is reported in bold type)

K = 1 K = 2 K = 3 Regressors
−496.84 −531.17 −569.21 Chron,Econ,Area NE,

Area S,Area IS

−522.39 −475.53 −557.34 Chron,Cons,Educ,Econ,

Area NE,Area S,Area IS

−552.75 −535.79 −481.50 Male,Elder, PCS,Cons,

Educ,Econ,Area NE,Area S

Table 2. Estimates of the parameters νk and Σk for the best model (esti-
mated correlation coefÞcients between dependent variables in brackets)

Estimate logit(Trend) logit(Health Grade) logit(Other Grade)

ν̂ ′
1 −0.284 −0.375 −0.427

ν̂ ′
2 0.026 0.034 0.039

Σ̂1 0.070 0.024 −0.014
(0.637) 0.020 −0.023

(−0.305) (−0.931) 0.032
Σ̂2 0.116 0.078 0.028

(0.579) 0.158 0.068
(0.210) (0.440) 0.149

rameters that depend on the components, that is, νk and Σk. An interest-
ing result concerns some correlations between the dependent variables:
within the Þrst component logit(Other Grade) is negatively correlated
with both logit(Trend) and logit(Health Grade), while within the sec-
ond component the same correlations reverse.

Table 3 shows the estimates of the model parameters β0 and B to-
gether with their 95% conÞdence intervals obtained using the parametric
bootstrapping residual method (Efron and Tibshirani, 1993). Such inter-
vals do not contain the zero value for some of the model parameters (see
the bold-faced entries in Table 3). Thus, not all the model parameters may
be considered signiÞcant. As far as the effects of the selected explaining
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Table 3. Estimated intercepts and regression coefÞcients of the best model
(bootstrap 95% conÞdence intervals are reported in brackets)

logit(Trend) logit(Health Grade) logit(Other Grade)

β̂
′

0 −1.19 −1.01 −1.70
(−1.82, −0.50) (−1.79, −0.26) (−2.40, −0.91)

Chron 0.17 0.16 0.19
(0.10, 0.24) (0.06, 0.25) (0.09, 0.26)

Cons −0.08 −0.29 −0.32
(−0.37, 0.23) (−0.61, 0.09) (−0.65, 0.04)

Educ −1.01 −1.08 −1.08
(−1.88, −0.18) (−2.11, −0.03) (−2.10, −0.08)

Econ 0.79 1.62 0.45
(0.15, 1.49) (0.77, 2.48) (−0.44, 1.32)

Area NE 0.25 −0.09 0.06
(0.10, 0.38) (−0.26, 0.07) (−0.10, 0.20)

Area S 0.11 0.65 0.19
(−0.03, 0.26) (0.46, 0.80) (0.01, 0.34)

Area IS 0.04 0.51 0.29
(−0.18, 0.24) (0.26, 0.77) (0.03, 0.49)

factors are concerned, dissatisfaction with health and other public ser-
vices is positively related with the presence of chronic conditions, while
it decreases when the percentage of people with low educational level in-
creases. Low economic resources seem to be signiÞcantly related only
with the dissatisfaction with health services. Moreover, South Italy and
the Islands show markedly lower satisfaction with both local health sys-
tem and other public services compared to the North-West area, while in
those areas opinions about the trend in the public health system are sim-
ilar. North-East Italy is characterized by more pessimistic views about
this trend than the North-West, while the satisfaction levels with the pub-
lic services are similar. Regarding health services consumption index,
dissatisfaction with health system seems to be lower (the regressor co-
efÞcients are nearly statistically signiÞcant) in local health units where
residents use more extensively health care services.
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Table 4. Estimated intercepts and regression coefÞcients of the model
that uses the same subset of regressors as the best one but with only one
component

logit(Trend) logit(Health Grade) logit(Other Grade)

β̂
′

0 −1.41 −1.53 −2.17
Chron 0.16 0.12 0.15
Cons −0.07 −0.24 −0.26
Educ −0.57 −0.11 −0.19
Econ 0.81 1.70 0.51
Area NE 0.22 −0.15 0.01
Area S 0.09 0.61 0.14
Area IS 0.04 0.51 0.31

A deeper insight into the effects of the error term speciÞcation on the
selection of the relevant regressors emerges from the comparison between
the best selected model and the model that has the same subset of relevant
regressors but with K = 1 component. Table 4 shows the estimated inter-
cepts and regression coefÞcients of this second model (bold-faced entries
denote the estimates whose 95% bootstrap interval does not contain the
zero value). The main difference with respect to the results reported in
Table 3 is related to the effect of the percentage of respondents with low
educational level: assuming normal error terms for the linear regression
model leads to regression coefÞcients which are closer to zero and also
not signiÞcant.

5. Discussion and concluding remarks

The set of geographic, social, economic, demographic and health fac-
tors identiÞed by the analysis described in this paper may be used to ex-
plain Italian public opinion about the Italian health system and other pub-
lic services. The estimated effects are sensible and coherent with previous
knowledge and conjectures on the phenomenon. The multivariate linear
regression model selected using the BIC statistic is characterized by non-
Gaussian error terms. However, it is worth noting that the selected model
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is not completely satisfactory. If we compute the proportion of the to-
tal sum of squares of each response explained by the selected model (by
using the posterior estimated mixing proportions), the estimated model
accounts for only 21%, 55% and 22% of the deviance of logit(Trend),
logit(Health Grade) and logit(Other Grade), respectively. Further-
more, the use of a different model selection criterion could lead to the
selection of a different model, with respect to both the error term distri-
bution and the relevant regressors. Finally, it should be noted that this
analysis is performed on aggregated variables. This aggregation over re-
spondents implies a reduction of the information originally present in the
collected data. Thus, the obtained results do not take into account any
differences between individual responses. In order to fully exploit this
information, regression models for ordinal responses could be considered
(see, for example, Faraway, 2006). This approach could also take account
of the hierarchical structure of the dataset (respondents are nested within
local health units) by considering multilevel models (see, for example, de
Leeuw and Meijer, 2008).

The multivariate linear regression methods used in this paper seems to
represent a useful and ßexible strategy for evaluating public services by
handling possible non-normal error terms in the regression model. How-
ever, some theoretical aspects are still under study, namely the Hessian
of the log-likelihood function, the asymptotic covariance matrix of the
model estimators and the inclusion of restrictions on the estimation of the
regression coefÞcients. In particular, the development of an estimation
procedure that allows for linear restrictions on the regression coefÞcients
could be very useful in practical applications: allowing for different sets
of restrictions for the D dependent variables may lead to the selection of
a different subset of relevant regressors for each response and, thus, to the
identiÞcation of more parsimonious and more ßexible models.
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