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Summary: A relevant issue in regression studies is the model diagnostics performed by
using estimated residuals and their transformations. Such tools cannot be exploited in
Generalized Linear Models framework where a decomposition of response into Þtted
and error components is no more available; thus, some kind of generalized residuals are
derived by Þrst-order conditions of maximum likelihood equations. In this paper, we
will introduce generalized residuals for CUB models, discuss their main characteristics
and test their usefulness on two real data sets. This approach brings out as a noticeable
feature the possibility to detect a differential effect of covariates on the probability of
choice for ordinal categories.
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1. Introduction

In regression models, residuals analysis is a key tool for different pur-
poses: validating the structure of the model, checking the nature and per-
sistence of the postulated dependence, detecting outliers and/or inßuential
data, assessing the validity of classical linear hypotheses (homoscedastic
and uncorrelated errors) and, Þnally, when necessary, verifying distribu-
tional assumptions (Gaussianity, skewness, heavy tails, and so on). A
relevant issue is the study of residuals pattern in order to Þnd omitted
covariates in the models. Moreover, by exploiting their variability and
distributional properties, standard R2 measures and F tests are derived
together with several generalizations (Magee, 1990).

These objectives are strongly interrelated and graphical tools, trans-
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formations and formal tests have been proposed in current literature for
assessing one or few of them (Atkinson, 1985; Belsey et al., 1980; Cook
and Weisberg, 1994; Fox, 1991; 1997, 267-366; Mosteller and Tukey,
1968; Seber, 1977).

However, when the response variable is not continuous and standard
regression paradigm is converted to the Generalized Linear Models (GLM)
framework, the deÞnition of residuals is not so evident. In fact, it is not
possible to rely on a simple decomposition as:

response=expectation + error ⇐⇒ observation=Þtted + residual ,

which is regularly assumed in classical linear models. In this vein, several
proposals have been advanced in order to mimic the main assumptions of
regression models leading to Pearson, Anscombe and deviance residu-
als, respectively (McCullagh and Nelder, 1989, 37-40; 396-415), among
others.

This kind of problems becomes more awkward when studying mod-
els with qualitative data, speciÞcally, ordinal data since there is no natural
deÞnition of residuals for these models. Indeed, the very concept of �out-
lier� is not so evident for ordinal data as the admissible range of observa-
tion is Þnite and discrete. Thus, statisticians should look for more general
deÞnitions that hopefully preserve some of the fundamental requirements
of standard residuals.

The paper is organized as follows: in section 2, we brießy review a
likelihood-based approach to generalized residuals and in section 3 we
will formally derive these residuals for a peculiar class of ordinal models,
called CUB . Then, in section 4 we will apply this new deÞnition to empir-
ical data in order to highlight limits and usefulness of the proposal; specif-
ically, we will enhance a noticeable feature of this approach in detecting
differential effects of covariates on the probabilities of choice. Some Þnal
remarks end the paper.

2. Likelihood-based deÞnition of generalized residuals

In a standard regression model: y = Xβ + ε, the Ordinary Least
Squares (OLS) solutions for the β = (β0, β1, . . . , βp)

′ parameters vector
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imply that the estimated residuals: ei = yi − xiβ̂, for i = 1, 2, . . . , n,
should obey the requirements:

n∑
i=1

x′
i (yi − xiβ̂) =

n∑
i=1

x′
i ei = 0 . (1)

or, explicitly,

n∑
i=1

ei =
n∑

i=1

xi1 ei = · · · =
n∑

i=1

xip ei = 0 .

where xi = (xi0, xi1, . . . , xip) and xi0 = 1, for i = 1, 2, . . . , n.
If we adopt independence and Gaussianity for the random vector ε =

(ε1, ε2, . . . , εn)′, the same orthogonality constraint (1) is derived by as-
suming that score functions are identically 0, that is:

∂ log L(β)

∂β
=

∂ �(β)

∂β
= 0 ,

where we denote by L(β) and �(β) the likelihood and log-likelihood
functions, respectively. Sometimes, these are deÞned as Þrst-order condi-
tions of Maximum Likelihood (ML) estimation method.

Adopting a similar structure, we can assume that �residuals� are the
numerical estimated quantities such that orthogonality with covariates is
preserved, when the Þrst derivatives of the log-likelihood function are
performed. From an operational point of view, this new conception con-
siders residuals as quantities possessing properties shared by classical re-
gression models in contexts where it is not possible to deduce them as
difference among observed and Þtted values.

This approach, starting from Pregibon (1981), leads to generalized
residuals and it has been successfully pursued with dichotomous and or-
dered polytomous (probit and logit) analysis. Their introduction has been
mainly suggested for checking the presence of outliers and the validation
of the model (as in Franses and Paap (2001), 62;123;172-173, for in-
stance) or for suggesting further R2-type measures (as in Hübler, 1997).
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3. Generalized residuals of CUBmodels

In the framework of models for ordinal data, CUB models have been
proposed by Piccolo (2003), D�Elia and Piccolo (2005), Iannario and Pic-
colo (2009a), with increasing levels of generalizations.

Brießy, they are characterized by a discrete mixture where two param-
eters (related to feeling and uncertainty of the respondent, respectively)
are able to generate a ßexible range of distributions with different loca-
tion, heterogeneity and shape. This class of models has been applied in
several Þelds (as reported in the last reference) and immediate and inter-
esting interpretations are derived when signiÞcant subject�s covariates for
feeling and uncertainty parameters are explicitly included.

Formally, given a Likert-type m-point ordered scale, for any m > 3,
a sample of ratings r = (r1, r2, . . . , rn)′ is collected on n respondents
together with a set of discrete and/or continuous covariates for each sub-
ject. Thus, the sample data consist of: (ri, yi, wi)

′, for i = 1, 2, . . . , n
where we are denoting by yi and wi the covariates related to uncertainty
and feeling parameters, respectively.

Then, we assume that ordered responses ri, i = 1, 2, . . . , n are the
realizations of a random variable R whose distribution is deÞned by:

pi(θ) = P r (R = ri | yi; β, γ) = πi

(
m − 1

r − 1

)
(1−ξi)

r−1ξm−r
i +(1−πi)

1

m
,

and links functions are:

πi = πi(β) =
1

1 + e−yi β
; ξi = ξi(γ) =

1

1 + e−wi γ
; i = 1, 2, . . . , n .

where β = (β0, β1, . . . , βp)
′ and γ = (γ0, γ1, . . . , γp)

′. Notice that the
peculiar structure of the model allows that some and/or all covariates yi

and wi may overlap without losing identiÞability.
In the quoted literature, it is common to denote such structure as

CUB (p, q) models, where p and q are the number of signiÞcant covariates
useful for explaining the respondents� behavior with reference to uncer-
tainty and feeling, respectively. Then, a CUB model without covariates is
denoted as CUB (0, 0) and it is parameterized by θ = (π, ξ)′.
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As a consequence, after some algebra, the log-likelihood function for
the parameter vector θ = (β′,γ ′)′ of a general CUB (p, q) model turns out
to be:

�(θ) =
n∑

i=1

log

[
1

1 + e−yiβ

{(
m − 1

ri − 1

)
e(−wiγ)(ri−1)

(1 + e−wiγ)m−1 −
1

m

}
+

1

m

]
.

In this regard, an effective EM algorithm for deriving ML estimates and
performing asymptotic inference is available (Piccolo, 2006).

Thus, it may be useful to introduce for such models some sort of resid-
uals in order to achieve diagnostics information. A peculiar difÞculty of
CUB model stems from the circumstance that covariates (and related es-
timable coefÞcients) may differ for both uncertainty and feeling param-
eters. Then, there is no unique deÞnition of residuals and we have to
introduce both π-generalized residuals (related to uncertainty parameter)
and ξ-generalized residuals (related to feeling parameter), respectively.
This conceptual situation stems from the explicit deÞnition of the links re-
lating covariates to parameters. As a consequence, we will only consider
CUB models with just a single set of covariates affecting either uncertainty
or feeling parameters.

By means of the link functions, we may express both parameters π
and ξ in a CUB (0, 0) model as:

π =
1

1 + e−β0

; ξ =
1

1 + e−γ0

;

thus, a similar approach can be applied for deÞning generalized residuals
in models without and with covariates, respectively.

3.1. Models without covariates

In CUB models without covariates, it is well known that information
in sample data are equivalent to that contained in the vector of relative
frequencies (f1, f2, . . . , fm)′, for any given m > 3. Thus, all expressions
of this subsection relate to these quantities since they exhaust sample in-
formation for both parameters.
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If we equate to 0 the derivative of log-likelihood function with respect
to π, we get the equation:

m∑
r=1

(
fr

pr(θ)
− 1

)
= 0 .

Then, we deÞne the generalized π-residuals of a CUB model without co-
variates as

e(π)
r =

fr

pr(θ)
− 1 , r = 1, 2, . . . ,m . (2)

In a similar way, if we equate to 0 the derivative of log-likelihood
function with respect to ξ, we get the equation:

m∑
r=1

fr

(
1 −

1 − π

mpr(θ)

)
m − r − ξ(m − 1)

ξ (1 − ξ)
= 0 .

Then, we deÞne the generalized ξ-residuals of a CUB model without co-
variates as

e(ξ)
r = fr

(
1 −

1 − π

mpr(θ)

)
[m − r − ξ(m − 1)] , r = 1, 2, . . . , m . (3)

It is evident that π-residuals are immediately related to a comparison
of observed and predicted probability estimated by ML methods, and thus
they convey useful information for Þtting measures. As a matter of fact,
following and independent line of reasoning, Iannario (2009) introduced a
measure of Þtting for CUB model based on the average of the squared e

(π)
r .

Finally, it is interesting to notice that in a different context (nonparametric
estimation of mixtures), Lindsay and Roeder (1992) deÞned a residual
function strictly equivalent to (2).

Instead, it seems difÞcult to derive an immediate interpretation from
the cumbersome expression of the ξ-residuals and we will try to Þnd con-
ditions leading to small residuals (near 0). From (3), it is evident that such
residuals tends to 0 when either fr → 0 or pr(θ) → (1− π)/m. The Þrst
condition implies that the r-th category is absent while the second con-
dition requires that the r-th Binomial component of the mixture should
tend to 0. In both case, it seems that small ξ-residuals are expected at
categories selected by very few respondents.
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3.2. Models with covariates

In a CUB (p, 0) model, the p covariates yi only affect the π parameter.
Then, after some algebra, for such model, the Þrst-order conditions on the
log-likelihood function are:

n∑
i=1

yis

[
(1 − πi(β))

(
1 −

1

mpi(θ)

)]
= 0 , s = 0, 1, 2, . . . , p.

Then, by emulating (1), we deÞne as generalized π-residuals for a
CUB (p, 0) model the quantities:

e
(π)
i = (1 − πi(β̂))

(
1 −

1

mpi(θ̂)

)
, i = 1, 2, . . . , n . (4)

Similarly, for a CUB (0, q) model, where the q covariates wi only af-
fect the ξ parameter, we get the equations:

n∑
i=1

wit

[(
1 −

1 − π̂

m pi(θ̂)

)
[m − ri − ξi(γ̂)(m − 1)]

]
= 0 , t = 0, 1, 2, . . . , q.

Then, as before, the generalized ξ-residuals are deÞned as:

e
(ξ)
i =

(
1 −

1 − π̂

m pi(θ̂)

)
[m − ri − ξi(γ̂)(m − 1)] , i = 1, 2, . . . , n . (5)

An important property of these residuals derives from the compulsory
presence of a unit covariate in any CUB model. This circumstance implies
that:

n∑
i=1

e
(π)
i =

n∑
i=1

e
(ξ)
i = 0 ,

a result that increases their similarity with traditional residuals interpreta-
tions.

Now, by using empirical data, we will look for possible usefulness
of these generalized residuals when applied to standard use, that is for
outliers detection and the study of omitted/relevant covariates.
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4. An artiÞcial experiment

We examine an experimental data set of n = 2000 observations ob-
tained by simulating a CUB (1, 0) model with m = 7 and by assuming
ξ = 0.3. The uncertainty covariate is a dummy one: Di = 0, 1, and thus:

πi =
1

1 + e−β0−β1 Di

; i = 0, 1.

We chose parameters (β0, β1) such that: π0 = 0.2, when Di = 0, and
π1 = 0.9, otherwise.
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Figure 1. Observed and probability distributions for faked data

The peculiarity of this data set, fully discussed in Iannario (2009),
derives from an high confounding effect that induces to suspect a unique
population whereas two distinct subgroups are in fact present with regard
to uncertainty behaviour. Instead, two clusters are easily detected when a
CUB (1, 0) model with a dummy covariate is proposed.
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For this model, we compute the generalized π-residuals deÞned in
the previous section by (4). For a check, we notice that the average and
variance of these generalized π-residuals are −4.691 × 10−6 and 0.017,
respectively. Then, in Figure 2 we plot the same residuals with respect
to the dummy covariate in order to obtain a more stylized shape: this
plot enhances that ordinal data with m categories and a dummy explana-
tory covariate (with 2 categories) can only generate 2 × m unique resid-
uals. We label them in correspondence with the admissible values of
r = 1, 2, . . . , m; thus, it is immediate to observe that, for this data set, the
order of residuals is strictly related to the probability pi(θ̂) for either con-
ditioning of Di. As a consequence, these generalized π-residuals relate to
the probabilities and not to the values of observed ratings.
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Figure 2. Generalized π-residuals with respect to dummy covariate

As a further consideration, Figure 2 shows that π-residuals pertain-
ing to the Di = 0 subgroup vary in a limited range as probabilities
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are more similar each other. Finally, we found that only 7 are related
to the bottom right value in Figure 2. These few extreme residuals are
related to observations when Di = 1 and ri = 1, an event with esti-
mated probability as low as 0.0086068; so, they appear as comparatively
extreme. However, their expected occurrence in the observed sample is
0.0086068 × 2000 = 17.214 and we can not consider such residuals as
outliers since the model predicts them with a low probability.

5. A real data set

As a further case study, we consider the expressed perceptions of sub-
jective survival probabilities to 75 years collected by a large sample sur-
vey (n = 20184) conducted in Italy by ISFOL during 2006; they have
been analyzed by means of classical ordinal models by Peracchi and Per-
otti (2009). Instead, Iannario and Piccolo (2009b) categorized them and
Þtted a CUB models with covariates where m = 7.
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Figure 3. Generalized π−residuals after CUB model estimation
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For reference, we show in Figure 3 (left panel) the observed and esti-
mated distributions of responses: a shelter effect is evident at R = 7 as a
consequence of an optimistic view about own survival probability to age
75, and its inclusion produces a very good Þtting (right panel).
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Figure 4. Generalized π- and ξ-residuals of a CUB (0,0) model

For this model, we get generalized π- (indicated as circle in Figure 4)
and ξ-residuals for a CUB model without covariates by applying formulas
(4) and (5), respectively. It is evident that the Þrst kind of residuals ex-
presses the relevance of the obtained Þtting by the estimated probability
distribution; speciÞcally, it is observed how the weight of discrepancy at
R = 4 is heavier than those at R = 6 and R = 7. This conÞrms that ML
estimates does not performs per se a Þtting objective since discrepancy is
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weighted with the inverse of probabilities. On the contrary, the pattern of
ξ-residuals does not manifest a clear relationship between observed and
Þtted distributions since residuals at R = 6 is about 0 in presence of a
serious discrepancy whereas it is the largest at R = 7 (and this is not the
maximum deviation).

Then, for the same data set, we consider CUB (p, 0) and CUB (0, q)
models, respectively, where the age of respondent has been considered as
a relevant covariate after preliminarily logging and transforming for im-
proving the statistical properties of models (this result conÞrmed a cohort
effect).
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Figure 5. Generalized π-residuals after CUB model estimation

In Figure 5 we plot the generalized π-residuals from a CUB model
where age and age squared (on left and right panels, respectively) have
been used as explanatory for the uncertainty parameter. In all these plots
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we denote with r = 1, 2, . . . , 7 the residuals generated from the compu-
tation of P r (R = r) given the covariate.

As a Þrst comment we see that age acts in a quite homogeneous
manner in determining residuals (and then responses) producing more
extreme residuals in correspondence to the rarest events. If we add the
squared covariates we see that the effect is quite modest on higher prob-
abilities where substantial modiÞcations are induced on low and inter-
mediate probabilities. Since this parameter is related to uncertainty of
responses, we may infer that signiÞcance of age (as explained by the re-
version effect caused by squaring it) is more sensible on low and medium
probability but it is not so important for expressing a high subjective prob-
ability to survive.
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Figure 6. Generalized ξ-residuals after CUB model estimation

Similarly, in Figure 6, we consider the generalized ξ-residuals after
the introduction of age and age squared (on left and right panels, respec-
tively). In this case, the pattern seems different as the comment. First of
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all, as we can see in the left panel, the response at R = 1, 2, 6 is not af-
fected by age in a signiÞcant manner, whereas R = 4, 7 behavior is more
extreme as far as perception is concerned. An important consideration
arises from analyzing how probabilities at R = 3, 5, 6, 7 react in a sensi-
ble manner to a squared age covariate (see the right panel); for instance,
this added covariate reverses the relative position of R = 3 and R = 5
probabilities. Finally, the probabilities at R = 3 and R = 7 manifest in a
larger measure the impact of inversion caused by squared covariate, that
is a similar behavior of young and elderly respondents.

A general consideration applies: the generalized ξ-residuals may help
to investigate where and how signiÞcant covariates affect the single prob-
abilities and not only the whole distribution, as instead it is enhanced by
estimating and validating the model.

6. Concluding remarks

In this paper, we have introduced generalized residuals for a new class
of models proposed for the interpretation and Þtting of ordinal data even
with covariates when they are signiÞcant. The formal deÞnition of such
residuals has been derived and two empirical examples have been dis-
cussed and commented for evaluating limits and implications of such pro-
posals.

This preliminary study shows that standard concepts for detecting out-
liers and leverage effects should be considered as useless with ordinal
data; in fact, extreme values are mostly derived by low probabilities to
appear in a sample, and thus deserve homogeneous consideration. More-
over, the effect and the role of covariates on the parameters have to be
judiciously considered by stepwise strategies and induced modiÞcations
into the generalized residuals. Indeed, it seems that residuals deÞned by
taking uncertainty parameters into consideration are more related to Þt-
ting interpretation. On the other hand, residuals deÞned by taking feeling
as a reference do not show a clear pattern in any case, but they help to
understate how a covariate induces a differential modiÞcation in a single
probability or in a subgroup of probabilities.
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