
Quaderni di Statistica
Vol. 5, 2003

A mixture model with covariates for ranks
data: some inferential developments

Angela D’Elia
Dipartimento di Scienze Statistiche

Università degli Studi di Napoli Federico II
E-mail: angela.delia@unina.it

Summary: The paper deals with a mixture model for ranks data with covariates. Special
attention is devoted to the inferential and computational issues related with the main
steps of an E-M algorithm for the estimation of the model’s parameters. Effective ex-
pressions for computing asymptotic standard errors are also derived. Evidence from real
data highlights the main results and supports the usefulness of the proposed approach.

Keywords: Covariates, E-M algorithm, Mixture model, Ranks data.

1. Introduction

The elicitation mechanism by means of which a rater expresses his/her
preferences ranking towards m different items can be thought of as a com-
posite procedure: indeed, the rank assigned to a given item results from
the liking/disliking feeling for it, and depends also on the uncertainty of
the ranking process itself. Of course, we expect that the uncertainty be-
comes greater for those items that do not excite strong liking or disliking
feelings.

Thus, a convincing framework for modelling ranking procedures has
to take into account both the selection mechanism and the uncertainty
related to it. As a consequence, D’Elia and Piccolo (2003) proposed a
Mixture model of a discrete Uniform and a shifted Binomial random vari-
ables (henceforth called MUB): here, the Uniform component describes
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the degree of uncertainty in the preferences, while the shifted Binomial
random variable represents the behavior of the rater with respect to the
liking/disliking feeling.

In this paper we extend the MUB model, allowing the inclusion of
raters’ covariates in the model’s specification. In this way, (following the
same strategy developed in other models for ranks data with covariates,
as in D’Elia, 1999, 2000, 2003), we are able to link the main features of
the raters (e.g. Sex, Age, Profession, etc.) to the rank they assigned to a
given item; in particular, both the preference and the uncertainty feeling
can be explained by means of subjects’ specific covariates, yielding a
deeper insight in the preferences data analysis.

The paper is organized as follows. In section 2, we recall the MUB
framework, and we introduce some notation to be used throughout the
paper. Then, in sections 3 and 4, we explicitly develop the MUB model
with covariates, in order to explain how the degree of preference and the
uncertainty feeling change with the covariates, respectively. Particular at-
tention is paid to the computational aspects (e.g. the E-M algorithm for
obtaining the maximum likelihood estimates of the parameters, in sub-
sections 3.2 and 4.2); moreover, effective expressions for computing their
asymptotic standard errors are also given (subsections 3.3 and 4.3). Then,
several examples raised by real datasets are exploited (section 5) in or-
der to highlight the potentialities of including the covariates in the MUB
model. Final considerations about further developments on this issue end
the paper.

2. The MUB model

Let m be the fixed and known number of items, and r be the rank
assigned to a given item among m; in the following, we assume that r = 1
means “most preferred”, while r = m means “least preferred”.

D’Elia and Piccolo (2003) consider r as an observed realization of the
random variable R ∼ MUB(m,π, ξ) if:

Pr(R = r) = πPB(r) + (1 − π)PU(r), r = 1, 2, . . . ,m,
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where:

PB(r) =

(

m − 1
r − 1

)

(1 − ξ)r−1ξm−r; PU(r) =
1

m
;

and π ∈ [0, 1]; ξ ∈ [0, 1].
Then, we get:

Pr(R = 1) = πξm−1 +
1 − π

m
;

and
E(R) = π(m − 1)

(

1

2
− ξ

)

+
m + 1

2
. (1)

For a fixed value of π, when the parameter ξ increases then Pr(R = 1)
increases too, while E(R) decreases: thus, ξ may be considered as a
proxy of a preference measure. Indeed, E(R) ≥ (m + 1)/2 (that is, the
midrange) if ξ ≤ 1/2 (and, viceversa, E(R) < (m + 1)/2 if ξ > 1/2):
thus, a rater tends to a disliking or liking feeling - with respect to the
central rank location (m + 1)/2 - as long as ξ moves from 1/2 towards 0
or 1, respectively.

On the other hand, for a fixed value of ξ, the π parameter is inversely
related to the uncertainty in the preferences, so that (1−π)/m represents
the uncertainty share spread out over the m items.

Even if we introduced the MUB model as a mixture for representing
two aspects of the ranking procedures, of course it can be also seen as a
mixture of two different populations of raters: the first (with probability
π) is made of people that give ranks by means of a paired comparisons
criterion (Bradley and Terry, 1952; and more recently: D’Elia, 2000); the
second (with probability 1 − π) consists in people that give ranks with
the maximum uncertainty attainable by a discrete random variable on the
{1, 2, . . . ,m} support. Anyway, also this interpretation confirms the role
of ξ as a liking parameter and of π as a measure of uncertainty.

In order to include the n raters’ covariates inside this framework, we
need to link the parameters ξ and π to the (p + 1)-length vector of a sub-
ject’s specific covariates xi = (1, xi1, xi2, . . . , xip)

′, for i = 1, 2, . . . , n; as
it is standard in these contexts, the unit is included to represent a baseline
effect.
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Although we might need a model where both the parameters depend
upon the covariates, in this paper we are going to develop a first step of
a more complex framework, modelling a parameter at a time. In fact, we
think that this preliminary step is meaningful in order to better understand
the role of π and ξ.

To do that, we have specified two different structures:

• a model where π is kept fixed and only ξ depends upon the covari-
ates (section 3);

• a model where ξ is fixed and only π is a function of the covariates
(section 4).

It should be noticed that in the first case we are going to explain how
the degree of preference changes with the covariates, while in the second
situation we will be interested in studying their effect on the uncertainty
feeling.

3. The MUB model with a subject specific ξ

In this section we develop an extension of the MUB model allowing
the ξ parameter to depend upon the raters’ covariates. Then, in subsec-
tion 3.2 we show the steps of the E-M algorithm for obtaining maximum
likelihood estimates of the parameters (that is, π and the covariates co-
efficients), while in subsection 3.3 the expressions for computing their
asymptotic standard errors are explicitly derived.

3.1 Model specification

Letting the ξ parameter to depend upon the raters’ covariates means
that we are considering a situation where the liking or disliking feeling
towards a given item can be explained on the basis of some features of
the raters; instead, throughout this section, the uncertainty (as measured
by 1 − π) is not assumed to depend on the covariates.

In order to link the features of the n raters (as expressed in the n ×
p + 1 design matrix X) to the preference parameter ξ, we borrow the link
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function of a logistic regression model (McCullagh and Nelder, 1989),
and then we let:

(ξ | X = xi) =
1

1 + exp(−xiγ)
, i = 1, 2, ..., n,

where γ = (γ0, γ1, . . . , γp)
′ is the covariates coefficients vector. Of course,

the rationale for this stems from the fact that the logistic function yields
a smooth mapping from the entire real space to the interval [0, 1], as it is
proper for ξ. Indeed, it can be easily seen that when the linear predictor
xiγ → ∞, then (ξ | X = xi) → 1; viceversa, when xiγ → −∞, then
(ξ | X = xi) → 0.

Moreover, from (1) it results that:

E(R | X = xi) =
π(m − 1)

2
− π(m − 1)

1

1 + exp(−xiγ)
+
(

m + 1

2

)

.

Without loosing in generality, if we let xi = (1, xi1)
′, then xiγ = γ0 +

γ1xi1, and we get:

E(R | X = xi) =
π(m − 1)

2
−π(m−1)

1

1 + exp(−γ0 − γ1xi1)
+
(

m + 1

2

)

.

Thus, letting u = (0, 1)′, it can be shown that:

E(R | X = xi + u) − E(R | X = xi) =

= π(m − 1)

[

e−γ0−γ1xi1(e−γ1 − 1)

(1 + e−γ0−γ1xi1)(1 + e−γ0−γ1xi1−γ1)

]

,

from which it results that E(R | X = xi + u) − E(R | X = xi) > 0
when γ1 < 0.

This means that for a negative γ1 estimate there is an increase in E(R),
which means a worsening in the preference feeling when the covariate xi1

augments; it happens viceversa for a positive γ1 estimate.
The above results can be easily extended to any number p > 1 of

covariates, leading to the following scheme, valid for a generic xij (j =
1, 2, . . . , p), ceteris paribus:
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• γj < 0 ⇒ preference worsening, when xij increases;

• γj = 0 ⇒ no effect on the preference;

• γj > 0 ⇒ preference improvement, when xij increases.

3.2 The likelihood function and the E-M algorithm

Given a vector of observed independent ranks r = (r1, r2, . . . , rn)′ for
a pre-fixed item, and a (n × p + 1) design matrix X, the log-likelihood
function for the MUB model, using the above introduced specification for
the parameter ξ, becomes:

log L(γ, π; r,X) =

=
n
∑

i=1

log

{

π

[(

m−1
ri−1

)

e−xiγ(ri−1) 1

(1 + e−xiγ)m−1
−

1

m

]

+
1

m

}

.

In order to get the maximum likelihood estimates of both π and the
coefficient vector γ, we rely on the E-M algorithm, whose effectiveness
in estimating the parameters of mixture models has been widely proved
in the literature (McLachlan and Krishnan, 1997; McLachlan and Peel,
2000). Indeed, the rationale for the use of the E-M algorithm in fitting
mixture models is that we can consider the observed data as incomplete,
since the appropriate mixture component for each subject is unknown.
As a result, the complete likelihood function factorizes in two separate
components, allowing easy derivatives and computations, as it will be
shown in the following.

The E-M algorithm involves the iteration until convergence of the fol-
lowing two steps (for any iteration k = 0, 1, 2, . . .):

• E-step: compute the conditional expectation of the complete data
log-likelihood, using the current parameters estimate; that is, in our
case:

Q(π(k), γ(k)) =
n
∑

i=1

{

τ
(k)
i log(π(k)) + (1 − τ

(k)
i )log(1 − π(k))

}

+

+
n
∑

i=1

{

τ
(k)
i log(PB(ri; γ

(k))) + (1 − τ
(k)
i )log(1/m)

}

.
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In this expression π(k) and γ(k) denote the k-th iteration estimates of
the parameters; then,

τ
(k)
i =

[

1 +
1 − π(k)

mπ(k)PB(ri; γ(k))

]

−1

is the estimated posterior probability that Ri belongs to the shifted Bino-
mial component of the mixture model; and PB(ri; γ

(k)) = Pr(R = ri) is
expressed as a function of the linear predictor xiγ .

• M-step: maximize the Q(π(k), γ(k)) function in order to get updated
estimates of the parameters: π(k+1), γ(k+1).

In fact, at a fixed k-th iteration, we get:

Q(π(k), γ(k)) = Q1(π
(k)) + Q2(γ

(k)) + constant,

where we let:

Q1(π
(k)) =

n
∑

i=1

{

τ
(k)
i log(π) + (1 − τ

(k)
i )log(1 − π)

}

;

Q2(γ
(k)) =

n
∑

i=1

{

τ
(k)
i log(PB(ri; γ

(k)))
}

=

= −
n
∑

i=1

τ
(k)
i {(ri−1)xiγ

(k)+(m−1)log(1+e−xiγ
(k)

)}.

Thus, maximizing Q1(π
(k)) with respect to π yields:

π(k+1) =

∑n
i=1 τ

(k)
i

n
,

while γ(k+1) is obtained by finding the maximum of Q2(γ
(k)).

In detail, the implementation of the E-M algorithm for the MUB model
with ξ depending on covariates is developed as follows:

1. Compute logL(π(0), γ(0)
r,X), using starting values π(0), γ(0) for

initializing the algorithm;
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2. PB(ri; γ
(k)) =

(

m − 1
ri − 1

)

[

e−xiγ(k)
]ri−1

[

1+e−xiγ(k)
]m−1 ; i = 1, 2, . . . , n;

3. τ
(k)
i =

[

1 + 1−π(k)

mπ(k)PB(ri;γ(k))

]

−1
, i = 1, 2, . . . , n;

4. π(k+1) =
∑n

i=1
τ
(k)
i

n
; maximize Q2(γ

(k)) for getting γ(k+1);

5. compute logL(π(k+1), γ(k+1); r,X);

6. if L(π(k+1), γ(k+1)) − L(π(k), γ(k)) < ε stop;
else k = k + 1, and reiterate from 2.

3.3 Computing standard errors

In order to estimate the asymptotic covariance matrix of the maximum
likelihood estimators we rely on the inverse of the observed information
matrix: I(π̂, γ̂; r), that is the negative of the Hessian of the log-likelihood
function evaluated at π = π̂, γ = γ̂.

Now, the observed information matrix for the observed (incomplete)
data can be computed in terms of the conditional moments of the gradient
and curvature of the complete-data log-likelihood function obtained in
the E-M algorithm (McLachlan and Peel, 2000, pp. 64-66; Pawitan, 341-
362). In particular, for i.i.d. observations we can approximate I(π̂, γ̂; r)
by taking the second-order partial derivatives of the conditional expecta-
tion of the complete data log-likelihood:

Q(π, γ) = Q1(π) + Q2(γ) + constant

.
Then, it results that:

V ' −

[

dππ 0
′

0 Γ

]

−1

= −

[

d−1
ππ 0

′

0 Γ
−1

]

,

where

dππ =
∂2

∂π2
Q1(π) = −

n
∑

i=1

τi

π2
−

n
∑

i=1

1 − τi

(1 − π)2
=

−n

π(1 − π)
,
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and Γ is a (p + 1 × p + 1) matrix with generic element:

{Γ}hj =
∂2

∂γh∂γj

Q2(γ) = −(m − 1)
n
∑

i=1

τixihxij

e−xiγ

(1 + e−xiγ)2
,

(h = 0, 1, . . . , p; j = 0, 1, . . . , p), where we let xi0 = 1, for simplifying
the notation.

For instance, when xiγ = γ0+γ1xi1, the (3×3) asymptotic covariance
matrix is:

V ' −







dππ dπγ0 dπγ1

dγ0π dγ0γ0 dγ0γ1

dγ1π dγ1γ0 dγ1γ1







−1

,

where

dγ0γ0 =
∂2

∂γ2
0

Q2(γ) = −(m − 1)
n
∑

i=1

τi

{

e−γ0−γ1xi1

(1 + e−γ0−γ1xi1)2

}

;

dγ1γ1 =
∂2

∂γ2
1

Q2(γ) = −(m − 1)
n
∑

i=1

τi

{

x2
i1

e−γ0−γ1xi1

(1 + e−γ0−γ1xi1)2

}

;

dγ0γ1 = dγ1γ0 =
∂2

∂γ0γ1

Q2(γ) = −(m−1)
n
∑

i=1

τi

{

xi1
e−γ0−γ1xi1

(1 + e−γ0−γ1xi1)2

}

;

dπγ0 = dγ0π = 0; dπγ1 = dγ1π = 0.

Of course, in order to compute all the previous expressions, we use
the ML estimates π̂, γ̂.

Several statistical and computing consequences stem from these re-
sults:

• the maximum likelihood estimators of π and of the coefficient vec-
tor γ are asymptotically uncorrelated, and then independent, as
marginals of a Bivariate Normal distribution;

• it is possible to perform hypotheses tests on π and γ, separately;
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• from a computing point of view, we get:

V ar(π̂) =
π̂(1 − π̂)

n
.

4. The MUB model with a subject specific π

In this section we develop an extension of the MUB model allowing
the π parameter to depend upon the raters’covariates. Then, following the
same scheme of the previous section 3, we describe the related steps of
the E-M algorithm, and the expressions for the asymptotic standard errors
of the parameters estimates.

4.1 Model specification

Here we assume that the uncertainty in the ranking process depends
upon a set of raters’ covariates, and thus we link the π parameter to a
linear predictor. On the other hand, ξ is kept fixed with respect to the
raters’ features. Following the same strategy of the previous section, we
let:

(π | X = xi) =
1

1 + exp(−xiβ)
, i = 1, 2, ..., n,

where β = (β0, β1, . . . , βp)
′ is the covariates coefficients vector. Again,

we notice that when the linear predictor xiβ → ∞, then (π |X=xi) →1;
viceversa, when xiβ → −∞, then (π | X = xi) → 0.

Moreover, using the same notation of section 3.1, if we let xiβ =
β0 + β1xi1, it results:

(π | X = xi +u)−(π | X = xi) =
e−β0−β1xi1(1 − e−β1)

(1 + e−β0−β1xi1)(1 + e−β0−β1xi1−β1)
,

showing that (π | X = xi + u)− (π | X = xi) > 0 when β1 > 0; that is,
the uncertainty (1 − π) decreases when xi1 augments.

Generalizing to p > 1 covariates, we have ceteris paribus (for j =
1, 2, . . . , p):
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• βj < 0 ⇒ uncertainty increases, when xij augments;

• βj = 0 ⇒ no effect on the uncertainty;

• βj > 0 ⇒ uncertainty decreases, when xij augments.

Instead, as far as it concerns the effect of the covariates on E(R), it re-
sults:

E(R | X = xi + u) − E(R | X = xi) =

=
(

1

2
− ξ

)

(m − 1)

[

e−β0−β1xi1(1 − e−β1)

(1 + e−β0−β1xi1)(1 + e−β0−β1xi1−β1)

]

.

Thus,

• ξ < 1/2 and β1 > 0 ⇒ E(R | X = xi + u) − E(R | X = xi) > 0

• ξ > 1/2 and β1 < 0 ⇒ E(R | X = xi +u)−E(R | X = xi) > 0;

• otherwise, E(R | X = xi + u) − E(R | X = xi) < 0.

4.2 The likelihood function and the E-M algorithm

Given a vector of observed ranks r = (r1, r2, . . . , rn)′, the log-likelihood
function for the MUB model, using the above introduced specification for
the parameter π, becomes:

log L(β, ξ; r,X) =

=
n
∑

i=1

log
{

1

1 + e−xiβ

[

PB(ri; ξ) −
1

m

]

+
1

m

}

.

For obtaining the maximum likelihood estimates of both ξ and the
coefficient vector β, we again rely on the E-M algorithm, by iterating the
following two steps:

• E-step: compute the conditional expectation of the complete data
log-likelihood, using the current parameters estimate; that is:
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Q(ξ(k), β(k)) =

=
n
∑

i=1







τ
(k)
i log

(

1

1 + e−xiβ(k)

)

+ (1 − τ
(k)
i )log





e−xiβ
(k)

1 + e−xiβ(k)











+

+
n
∑

i=1

{

τ
(k)
i log(PB(ri; ξ

(k))) + (1 − τ
(k)
i )log

(

1

m

)}

.

• M-step: maximize the Q(ξ(k), β(k)) function in order to get updated
estimates of the parameters: ξ(k+1), β(k+1).

In fact, at a fixed k-th iteration, we get:

Q(ξ(k), β(k)) = Q1(ξ
(k)) + Q2(β

(k)) + constant,

where we let:

Q1(ξ
(k)) =

n
∑

i=1

{

τ
(k)
i log(PB(ri; ξ

(k)))
}

;

Q2(β
(k)) =

n
∑

i=1







τ
(k)
i log

(

1

1+e−xiβ(k)

)

+ (1−τ
(k)
i )log





e−xiβ
(k)

1+e−xiβ(k)











=

= −
n
∑

i=1

{

log
(

1 + e−xiβ
(k)
)

+ (1 − τ
(k)
i )xiβ

(k)
}

.

Maximizing Q1(ξ
(k)) with respect to ξ, it yields:

ξ(k+1) =
m −

∑n
i=1 riτ

(k)
i /

∑n
i=1 τ

(k)
i

m − 1
,

while β(k+1) is obtained by finding the maximum of Q2(β
(k)).

In detail, the implementation of the E-M algorithm for the MUB model
with a subject specific π is developed as follows:

1. Compute logL(ξ(0), β(0); r,X), using starting values ξ(0), β(0) for
initializing the algorithm;
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2. PB(ri; ξ
(k)) =

(

m−1
ri−1

)

(1 − ξ(k))ri−1(ξ(k))m−ri ;

π
(k)
i = 1

1+e−xiβ(k) , i = 1, 2, . . . , n;

3. τ
(k)
i =

[

1 +
1−π

(k)
i

mπ
(k)
i

PB(ri;ξ(k))

]

−1

;

R̄(k)
n =

∑n

i=1
riτ

(k)
i

∑n

i=1
τ
(k)
i

; i = 1, 2, . . . , n;

4. ξ(k+1) = m−R̄
(k)
n

m−1
; maximize Q2(β

(k)) for getting β(k+1);

5. compute logL(ξ(k+1), β(k+1); r,X);

6. if L(ξ(k+1), β(k+1)) − L(ξ(k), β(k)) < ε stop;
else k = k + 1, and reiterate from 2.

4.3 Computing standard errors

In this subsection we derive the inverse of the observed information
matrix: I(ξ̂, β̂; r), in order to estimate the asymptotic covariance matrix
of the maximum likelihood estimators. As in the previous section, we
approximate I(ξ̂, β̂; r) by taking the second-order partial derivatives of
the conditional expectation of the complete data log-likelihood:

Q(ξ, β) = Q1(ξ) + Q2(β) + constant.

Then, it results that:

V ' −

[

dξξ 0
′

0 B

]

−1

= −

[

d−1
ξξ 0

′

0 B
−1

]

,

where

dξξ =
ξ2 − m(1 − ξ)2

ξ2(1 − ξ)2

n
∑

i=1

τi +
1 − 2ξ

ξ2(1 − ξ)2

n
∑

i=1

riτi,

and B is a (p + 1 × p + 1) matrix with generic element:

{B}hj =
∂2

∂βh∂βj

Q2(β) = −
n
∑

i=1

xihxij

e−xiβ

(1 + e−xiβ)2
,
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(h = 0, 1, . . . , p; j = 0, 1, . . . , p), where again we let xi0 = 1.
For instance, when xiβ = β0+β1xi1, the (3×3) asymptotic covariance

matrix is:

V ' −







dξξ dξβ0 dξβ1

dβ0ξ dβ0β0 dβ0β1

dβ1ξ dβ1β0 dβ1β1







−1

,

where

dβ0β0 =
∂2

∂β2
0

Q2(β) = −
n
∑

i=1

{

e−β0−β1xi1

(1 + e−β0−β1xi1)2

}

;

dβ1β1 =
∂2

∂β2
1

Q2(β) = −
n
∑

i=1

{

x2
i1

e−β0−β1xi1

(1 + e−β0−β1xi1)2

}

;

dβ0β1 = dβ1β0 =
∂2

∂β0β1

Q2(β) = −
n
∑

i=1

{

xi1
e−β0−β1xi1

(1 + e−β0−β1xi1)2

}

;

dξβ0 = dβ0ξ = 0; dξβ1 = dβ1ξ = 0.

In fact, in order to compute all the previous expressions we use the
ML estimates ξ̂, β̂.

Moreover, analogous considerations to those of subsection 3.3 hold.

5. Some evidence from real datasets

In this section we are going to show some evidence obtained by fit-
ting the MUB model with covariates to real datasets. In particular, as
illustrative examples, we choose only a sample of results from more wide
case-studies. Besides, we limit ourselves to the statistical aspects of the
estimation, avoiding any comments about the psychological issues that
might be derived from our models, too.

The data refer to studies about the preferences of young people to-
wards different colors (henceforth, Colors dataset, m = 12, n = 169),
different professions (Professions dataset, m = 14, n = 183), and differ-
ent places where to live (Cities dataset, m = 12, n = 183). In each case,
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the raters were asked to rank the items from the most preferred (r = 1) to
the least loved (r = m), without ties.

In first instance, we illustrate the results obtained by fitting to the data
the MUB model with a subject specific ξ (following the model proposed
in section 3), that is the case where we assume that the degree of liking
depends upon covariates, while the uncertainty feeling does not.

Colors
Tables 1, 2 and 3 show the ML estimates obtained via the method

discussed in the previous sections, and concerning the colors Pink, Grey
and Brown, respectively.

Table 1. Preferences towards Pink.
Variable estimate standard error
Constant γ̂0 −1.832 0.141

Sex (M=0, F=1) γ̂1 0.722 0.175
π̂ 0.498 0.038

E(R | Sex = 0) 8.483 (ξ̂ | Sex=0) 0.138
E(R | Sex = 1) 7.881 (ξ̂ | Sex=1) 0.248

Table 2. Preferences towards Grey.
Variable estimate standard error
Constant γ̂0 0.845 0.116

Left-handed (No=0, Yes=1) γ̂1 1.017 0.479
π̂ 0.211 0.031

E(R | Lh = 0) 6.036 (ξ̂ | Lh=0) 0.699
E(R | Lh = 1) 5.650 (ξ̂ | Lh=1) 0.866

Table 3. Preferences towards Brown.
Variable estimate standard error
Constant γ̂0 −3.465 0.372

Smoker (No=0, Yes=1) γ̂1 4.391 0.447
π̂ 0.175 0.029

E(R | Sm = 0) 7.403 (ξ̂ | Sm=0) 0.030
E(R | Sm = 1) 6.084 (ξ̂ | Sm=1) 0.716
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Figure 1. Estimated probability functions for preferences
towards Pink, Grey and Brown,respectively.

In all these cases we obtained positive estimates of the coefficient γ1, that
implies (see also Figure 1):
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• the preference towards Pink (generally low) is greater in the Fe-
males than in the Males;

• the preference towards Grey (generally quite high) is greater in
Left-handed people than in Right-handed ones;

• the preference towards Brown is greater in the Smokers than in the
no-Smokers.

Professions
Tables 4 and 5 show the results obtained for the preferences expressed

towards Public Relations and Politics. Also in this case it emerges that the
liking for this kind of jobs depends upon the Sex of the raters: indeed, the
preference towards Public Relations is greater in the young women than
in the young men, and it happens viceversa for the Politics.

Table 4. Preferences towards Public Relations.
Variable estimate standard error
Constant γ̂0 0.554 0.085

Sex (M=0, F=1) γ̂1 1.305 0.143
π̂ 0.525 0.037

E(R | Sex = 0) 6.579 (ξ̂ | Sex=0) 0.635
E(R | Sex = 1) 5.009 (ξ̂ | Sex=1) 0.865

Table 5. Preferences towards Politics.
Variable estimate standard error
Constant γ̂0 2.780 0.384

Sex (M=0, F=1) γ̂1 −2.708 0.442
π̂ 0.087 0.020

E(R | Sex = 0) 7.002 (ξ̂ | Sex=0) 0.942
E(R | Sex = 1) 7.480 (ξ̂ | Sex=1) 0.518
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With respect to this example, we would like to stress that (ξ̂ | Sex=1) =
0.518: in fact, this happens since γ̂0 ' −γ̂1, and thus (ξ̂ | Sex=1) =

1
1+exp(−2.78+2.71)

' 0.5. More in general, every time the estimated linear

predictor xiγ̂ ' 0, we get ξ̂ ' 1/2, that is a symmetric distribution (see
Figure 2). In particular, this happens when there a single dichotomic co-
variate and γ̂0 ' −γ̂1, as in the previous example.

Figure 2. Estimated probability functions
for preferences towards Politics.

Cities
Finally, from the Cities dataset, the greatest evidence of a significant

difference in the preferences was obtained in the case of Verona (Table
6), for whom the disliking feeling of the men is much deeper than that of
the women.
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Table 6. Preferences towards Verona.
Variable estimate standard error
Constant γ̂0 −3.637 0.328

Sex (M=0, F=1) γ̂1 3.397 0.343
π̂ 0.387 0.036

E(R | Sex = 0) 8.518 (ξ̂ | Sex=0) 0.026
E(R | Sex = 1) 6.755 (ξ̂ | Sex=1) 0.440

Now, we are going to illustrate the results obtained by fitting to the data
the MUB model with a subject specific π (as proposed in section 4): this
means that we assume that the uncertainty feeling in the ranking process
may be explained by means of the raters’ covariates; the ξ parameter is,
instead, kept fixed.

Colors
Considering the same items as above, we notice that for Pink and

Grey the same covariates found above are significant also for explaining
the uncertainty (Tables 7 and 8). In particular, it emerges that:

• in the women there is more uncertainty as far as it concerns the
ranking of Pink, with respect to the men;

• left-handed people exhibit less uncertainty in the ranking of Grey
than right handed people.

Table 7. Preferences towards Pink.
Variable estimate standard error
Constant β̂0 0.585 0.244

Sex (M=0, F=1) β̂1 −1.171 0.323
ξ̂ 0.171 0.013

E(R | Sex = 0) 8.825 (π̂ | Sex=0) 0.642
E(R | Sex = 1) 7.795 (π̂ | Sex=1) 0.357



20 A. D’Elia

Table 8. Preferences towards Grey.
Variable estimate standard error
Constant β̂0 −2.165 0.260

Left-handed (No=0, Yes=1) β̂1 3.879 0.963
ξ̂ 0.787 0.025

E(R | Lh = 0) 6.175 (π̂ | Lh=0) 0.103
E(R | Lh = 1) 3.333 (π̂ | Lh=1) 0.847

Collecting this evidence with that of Tables 1 and 2, we can conclude:

• the covariate Sex has a significant effect on both the liking and the
uncertainty in giving a rank to Pink: in particular, the females ap-
pear to be less disappointed with this color, but are also more doubt-
ful in deciding a rank;

• the covariate Left-handed has a significant effect on both the liking
and the uncertainty in giving a rank to Grey: in particular, left-
handed people appear to prefer more this color, and are less doubt-
ful in deciding a rank for it.

As far as it concerns the preferences towards Brown, the liking feeling
resulted to depend upon the feature Smoker (Table 3), but this covariate
was found not significant with respect to the uncertainty.

Professions
For this dataset, we get that the covariate Sex is significant also for

explaining the uncertainty in the ranking of Public Relations (Table 9),
where the women are less doubtful than the men.

Table 9. Preferences towards Public Relations.
Variable estimate standard error
Constant β̂0 −1.815 0.302

Sex (M=0, F=1) β̂1 2.208 0.369
ξ̂ 0.848 0.012

E(R | Sex = 0) 6.866 (π̂ | Sex=0) 0.140
E(R | Sex = 1) 4.799 (π̂ | Sex=1) 0.597
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On the other hand, there is no analogous evidence about the preferences
toward Politics.

Cities
Here, in relation to Verona, the covariate Sex resulted significant again

(Table 10), yielding a fewer uncertainty feeling in the ranking given by
the women. In particular, the estimated value for the men (π̂ | Sex=0) =
0.011 highlights that the preference toward Verona in the males has an
almost Uniform behavior (as it is depicted in Figure 3), with a constant
probability for each rank: say, an equipreference feeling.

Figure 3. Estimated probability functions
for preferences towards Verona.
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Table 10. Preferences towards Verona.
Variable estimate standard error
Constant β̂0 −4.483 0.997

Sex (M=0, F=1) β̂1 4.290 1.019
ξ̂ 0.436 0.023

E(R | Sex = 0) 6.508 (π̂ | Sex=0) 0.011
E(R | Sex = 1) 6.816 (π̂ | Sex=1) 0.452

Finally, we would like to show the case of Venice, for which the covariate
Sex resulted significant in the MUB model with a subject specific π (Fig-
ure 4b), but not in that with ξ depending on the raters’ covariates (Figure
4a, where the estimated probability functions for males and females can
be hardly distinguished). In particular, it appears (Tables 11 and 11bis)
that men and women have the same degree of liking towards Venice, but
in the women there is less uncertainty in assigning a preference rank to
this city.

Table 11. Preferences towards Venice (model for ξ).
Variable estimate standard error
Constant γ̂0 0.268 0.100

Sex (M=0, F=1) γ̂1 0.007 0.050
π̂ 0.461 0.037

E(R | Sex = 0) 6.163 (ξ̂ | Sex=0) 0.567
E(R | Sex = 1) 6.154 (ξ̂ | Sex=1) 0.568

Table 11bis. Preferences towards Venice (model for π).
Variable estimate standard error
Constant β̂0 −1.203 0.249

Sex (M=0, F=1) β̂1 1.921 0.333
ξ̂ 0.565 0.016

E(R | Sex = 0) 6.334 (π̂ | Sex=0) 0.231
E(R | Sex = 1) 6.016 (π̂ | Sex=1) 0.672
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Figure 4 (a, b). Estimated probability functions
for preferences towards Venice.

6. Concluding remarks and further developments

In this paper we developed an extension of a mixture model for ranks
data (MUB), by introducing a link between the parameters and the raters’
covariates. In this way, we are able to explain both the preference feeling
and the uncertainty of the ranking process by means of some features
of the raters. This allows a deeper interpretation of the liking/disliking
behavior, to be used for inferential and predictive purposes.

In fact, this has been accomplished by modelling the two parameters
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of the MUB in function of a linear predictor, once at a time. Thus, a nat-
ural further step will be to develop a model where both the parameters
depends upon a set (maybe disjoint) of covariates, and then to derive the
corresponding E-M algorithm for obtaining the maximum likelihood es-
timates of the coefficients vectors β and γ together. In this vein, some
preliminary results have been obtained by Piccolo (2003).

Indeed, the evidence obtained in this work is that, in many real ap-
plications, it is important to jointly consider the effect of the raters’ co-
variates on both the liking and the uncertainty feeling, and that it may be
the case where different covariates play significant roles with respect to
them.

Moreover, it seems also important to propose some goodness of fit
measures for this kind of models, by means, for instance, of a comparison
between observed and expected quantities, and taking into account how
the knowledge of a significant covariate may improve the estimation of a
degree of preference towards a given item.
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