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with CUB marginals
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Summary: The CUB model is a mixture distribution recently proposed in literature for
modelling ordinal data. Although various methodological aspects of these models have
been investigated, extensions are still needed in order to represent multivariate ordinal
data. In this article we propose using the Plackett distribution in order to construct a
one parameter bivariate distribution from CUB margins. The article examines both the
methodological and computational issues and discuss the performance of the proposed
technique by a simulation study.
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1. Introduction

An alternative class of models, denoted CUB, has been recently introduced in or-
der to model ordinal data originated by the assessment of a single or a group of items
expressed by means of ratings or rankings (Piccolo, 2003; D’Elia and Piccolo, 2005).

The methodology has produced interesting results in several fields of applications
ranging from linguistics (Balirano and Corduas, 2008) to medicine (D’Elia, 2008), from
sociology (Iannario and Piccolo, 2010) to food marketing (Piccolo and D’Elia, 2008;
Cicia et al. 2010; Manisera et al. 2011).

CUB model is a mixture distribution defined by the convex combination of a uniform
and a shifted binomial distribution whose parameters may be related to explanatory vari-
ables characterizing raters or the object of evaluation. The model mimics a simplified
choice mechanism which is supposed to underly the moulding of the judgements when a
rater is requested to evaluate a certain item (such as a product or a service). The ratings
are usually given by means of a Likert scale and concern rater’s preferences, degree of
satisfaction or, generally speaking, his/her agreement with a statement (Corduas et al.,
2009; Iannario and Piccolo, 2012).
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Although various methodological aspects concerning CUB models have been inves-
tigated, extensions are still needed in order to represent multivariate ordinal data. For
this aim we consider the method introduced by Plackett (1965) for constructing a one
parameter bivariate distribution from given margins and propose using it for modelling
ordinal data with CUB margins.

The article is organized as follows. Initially, the bivariate Plackett’s distribution is
illustrated. Then, assuming that the margins are described by a CUB distribution, the
estimation problem is discussed. Finally, the performance of the proposed technique is
assessed by a simulation study.

2. The Plackett distribution with CUB marginals

A bivariate Plackett random variable (X,Y ) is characterized by a joint cumulative
distribution function H(x, y;ψ), ψ ∈ (0,∞), such that:

H(x, y;ψ) =
M(x, y)− [M2(x, y)− 4ψ(ψ − 1)F (x)G(y)]1/2

2(ψ − 1)
, (1)

where F (x) and G(y) are the pre-defined marginal distribution functions defined on the
support Sx and Sy , respectively (Plackett, 1965). Moreover, M(x, y) = 1 + (F (x) +
G(y))(ψ − 1) (Mardia, 1970). Statistical properties were investigated by Mosteller
(1968), Steck (1968) and Wahrendorf (1980).

In literature various denominations involve Plackett distribution family. The refer-
ence can be either to the principle behind the genesis of the distribution or to specific
features. For instance, this is the case of: ”distribution with constant Yulean associa-
tion”, ”contingency-type bivariate distribution” or ”C-type distribution”.

The parameter ψ is a measure of association between X and Y , in particular, ψ = 1
implies that X and Y are independent (so that H(x, y;ψ) = F (x)G(y)), whereas ψ < 1
and ψ > 1 refer to negative and positive association, respectively.

The distribution H(x, y;ψ) satisfies the Fréchet bounds:

max{F (x) +G(y)− 1, 0} ≤ H(x, y;ψ) ≤ min{F (x), G(y)}, (2)

where the lower and upper bounds are attained when ψ → 0 and ψ →∞, respectively.
The original derivation of the Plackett distribution moves from considering the case

of continuous margins and observing that one can always construct a joint cumulative
distribution H(x, y;ψ) such that when it is cut anywhere by lines parallel to the x and
y axes, the probabilities in the four quadrants, viewed as a contingency table, lead to a
cross-product ratio which remains constant for any choice of the cutting points (x, y).

This is a relevant constraint over the possible shapes that the joint distribution can as-
sume. The problem goes back to the earlier contribution of Yule (1912), Pearson (1913),
Pearson and Heron (1913) who lively debated about the probability model with constant
association coefficient, its capability to reproduce the bivariate Normal and, therefore, to
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model frequency surfaces in actual practice. The genesis of the distribution that Plackett
introduced later, in 1965, is strictly related to that debate. The differences with the Nor-
mal distribution are mainly due to the fact that Plackett’s model with Normal margins
is characterized by the skewness of the conditional distributions, the nonlinearity of its
regressions and, by definition, by the fact that the invariance property of the association
coefficient is not verified (as follows by earlier Pearson’s results, 1913; and Mosteller,
1968; Goodman, 1981).

Nevertheless, the Plackett distribution family has found numerous applications be-
ing the base for new types of models for continuous and discrete data. In the latter
case, the distribution is taken as reference to the latent random variable from which a
contingency table is derived by a discretization process. In this regards, overcoming
the restriction on dimensions, which were initially limited to the bivariate or trivariate
case, Molenberghs (1992) successfully extended the results to the multivariate Plackett
distribution. Furthermore, Molenberghs and Lesaffre (1994) exploited that result for
proposing a modelling approach to account the dependence of the association parameter
from explanatory variables. Though marginal distributions are usually supposed to be
continuous, the derivation of the Plackett distribution holds with convenient premises
also in the discrete case.

In the rest of this article, we assume that (X,Y ) is a discrete random variable with
support Sxy = {(x, y) : x = 1, 2, ...,m; y = 1, ...,m} and that the margins are de-
scribed by CUB models. In particular, X ∼ F (x;θx)with θx = (πx, ξx)

′, and similarly
Y ∼ G(y;θy), is characterized by the following distribution function:

F (x;θx) = πx

x∑
j=1

(
m− 1
j − 1

)
(1− ξx)

j−1ξm−j
x + (1− πx)

x

m
, x = 1, 2, ...,m,

(3)
where ξx ∈ [0, 1], πx ∈ (0, 1] and m > 3. The parameter space is therefore given by:

Ω(θx) = Ω(πx, ξx) = {(πx, ξx) : 0 < π ≤ 1, 0 ≤ ξ ≤ 1}. (4)

The formulation of the corresponding probability mass distribution highlights the
role of the two characterizing parameters. CUB model is, in fact, the mixture distribu-
tion:

p(x;θx) = πx

(
m− 1
x− 1

)
(1− ξx)

x−1ξm−x
x + (1− πx)

1

m
, x = 1, 2, ...,m. (5)

The weight πx determines the contribution of the Uniform distribution in the mix-
ture, therefore, (1− πx) is interpreted as a measure of the uncertainty which is intrinsic
to any judgment. Besides, the parameter ξx, characterizes the shifted Binomial distri-
bution and (1− ξx) denotes the degree of liking expressed by raters with respect to the
item. In the former case (1− ξx) > 0.5; the skewness is negative so that the portion of
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raters which give a favourable judgement about the item under evaluation is large. The
opposite is verified when (1− ξx) < 0.5.

Computational issues were solved by Piccolo (2006) who provided an efficient al-
gorithm for the maximum likelihood estimation of CUB models 1. Further statistical
properties and several extensions have been illustrated by Corduas (2011), Iannario and
Piccolo (2010), and Iannario (2010; 2012) who proved that such a model is identifiable
for m > 3 and improved its formulation in ordwer to account for shelter choices.

Given an observed sample of ordinal data, (yi, xi), for i = 1, 2, ...n, the estimation
is performed by means of the two step procedure proposed by Joe and Xu (1996), the so
called inference for the margins (IFM) method. Specifically, in the first stage only the
parameters in the univariate margins, that is the CUB models are estimated by maximum
likelihood. These step leads to: θ̂x and θ̂y . The second stage involves maximum likeli-
hood of the dependence parameter, ψ, with the univariate parameters held fixed from the
first stage. The estimation, therefore, is performed by maximizing each of the following
log-likelihood functions separately:

l1(θx;x) =

m∑
x=1

nx.ln(p(x;θx)), (6)

l2(θy;y) =

m∑
y=1

n.yln(p(y;θy)), (7)

l3(ψ;x,y) =

m∑
x=1

m∑
y=1

nxyln(h(x, y;ψ)), (8)

where, according to standard notation, nxy is the frequency of the occurrence of (x, y)
in the observed sample, nx. and n.y are the related marginal frequencies, and h(x, y;ψ)
is the probability mass distribution implied by (1).

In this respect, Joe (1997) showed that the IFM estimator is consistent, asymptoti-
cally Normal under regular conditions. In addition, Joe (2005) studied the asymptotic
relative efficiency of IFM procedure compared with maximum likelihood estimation and
considered some specific models indicating the typical level of efficiency.

2.1. The simulation experiment

A simulation study has been conducted in order to investigate the goodness of the
Plackett distribution when fitting observations from a bivariate random variable having
CUB margins.

1 Iannario and Piccolo (2009) implemented the R code for the estimation of CUB models
under various specifications. This is available at http://www.teomesus.unina.it/materiali/cub/



Modelling correlated bivariate ordinal data with CUB marginals 113

First, we briefly discuss a technique for simulating a bivariate discrete distribution
with given margins and correlation. Specifically, we illustrate the approach proposed
by Iman and Conover (1982) who introduced a distribution-free technique to generate
observations from a set of random with a desired rank correlation matrix. Assuming
that a sample of n observations from the (X,Y ) random variable with rank correlation
matrix C is needed, the procedure can be summarized as follows.

• A sample of n observations from an auxiliary random variable is generated. For
instance, we generate a sample from a from N(0, 1) random variable and collect
the observations in a column vector v = (v1, ..., vn)

′;

• Construct the matrix W = (w1,w2) where w1 and w2 are two column vectors
obtained by random permutation of v;

• Compute the transformation: W ∗=(w∗
1 ,w

∗
2) so that W ∗=WP ′ where C=PP ′;

• Generate a sample x = (x1, ..., xn)
′ from the marginal random variable X , and

similarly generate y = (y1, ..., yn)
′ from Y ;

• Rearrange the vector x so that it has the same ordering as the first column of the
matrix W ∗, that is w∗

1 , and similarly rearrange y according to the ordering of
w∗

2 . The resulting rearranged vectors will have the desired rank correlation.

The procedure is very simple to implement and, moreover, the choice of the auxiliary
variable is rather flexible since it is not confined to any particular parametric distribution
family.

Then, a simulation study has been performed considering the CUB models in Table
1. The parameter values have been selected so that various situations are represented.
Examples A and B show two CUB distributions with rather similar pattern, whereas
example C displays two distributions with opposite skewness (Figure 1). Note that, in
order to facilitate the interpretation, the distributions in Figure 1 are illustrated by means
of solid lines though they refer to discrete random variables.

Table 1. CUB parameters

Distribution πx ξx πy ξy
A 0.7 0.7 0.9 0.5
B 0.7 0.5 0.8 0.4
C 0.7 0.9 0.8 0.2

Moreover, the following values of rank correlation have been considered: ρs =
{0.2, 0.5, 0.8} for the generation of samples from the bivariate population (X,Y ) with
given CUB margins. It is reasonable to expect that the results will be symmetric with
respect to the null correlation; for this reason we have selected only positive values of
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Figure 1. Marginal probability mass distribution of X (=solid line) and Y (=dashed line)

ρs. Then, the experiment has been conducted according to the following plan where the
simulation was iterated 500 times.

Having selected the values of the CUB parameters and of the correlation ρs:

• two samples x and y, with n=1000, are independently generated by the two CUB
models representing the marginal distributions;

• Iman and Conover procedure is applied in order to rearrange the two samples so
that the requested rank correlation is obtained;

• a CUB model is estimated for each sample leading to F (x; θ̂x) and G(y; θ̂y),
respectively ;

• the parameter ψ is estimated by maximum likelihood according to (8).

The goodness of fit of the estimated bivariate Plackett distribution is evaluated by
means of the following normalized dissimilarity index:

Δ =
1

2

m∑
x=1

m∑
y=1

∣∣∣h(x, y; ψ̂)− nxy

n

∣∣∣ . (9)

It measures the amount of probability mass that has to be moved from one cell to the
others so that the perfect match of the estimated joint distribution with the empirical one
is achieved.
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Figure 2. Joint probability distributions with CUB marginals (by rows: A,B,C)

In order to give an insight into the shape of the joint probability distributions implied
by the three examples, in Figure 2 we illustrate the theoretical Plackett distributions with
ψ held fixed to the average value obtained from the simulation study. The ψ value is in
fact strictly dependent from the selected rank correlation and the average value from
simulation is rather stable across the three cases.

The normalized dissimilarity index is on average rather small and ranges between
0.06 and 0.08 (Table 2). In addition, for the case B with ρs = 0.5 we considered the
contribution to the dissimilarity index originated by each cell of the 7x7 table which is
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Table 2. Dissimilarity index (average)

Distributions \ ρs 0.2 0.5 0.8
A 0.0737 0.0793 0.0791
B 0.0764 0.0831 0.0879
C 0.0624 0.0669 0.0728

generated at a given iteration of the simulation study. Specifically, we evaluated:

0.5
∣∣∣h(x, y|ψ̂)− nxy

n

∣∣∣
for each couple (x, y).

Figure 3 illustrates the box-plots obtained for the 500 values generated in correspon-
dence of one of those cells. The box-plots are collected by columns so that the first panel
refers to the cells in the first column of the 7x7 table and so on.

In particular, the box-plots highlight that the empirical and fitted distribution are
generally close. The worst fitting is obtained about the peak of the distribution where
the dissimilarity shows larger variability. However, the median ranges between 0.00020
and 0.0033, and the third quartile goes from 0.00018 to 0.0053, proving the effectiveness
of the overall performance of the proposed technique.

3. Final remarks

This article is the first study aimed at finding a framework to extend CUB models to
the multivariate case. The results achieved are encouraging.

Despite the known limits, the Plackett distribution seems to fit well the joint distri-
bution having CUB margins.

However, some further investigation is needed. Firstly, we need to solve the compu-
tational problems involved with multiple random variables. Secondly, the model has to
be extended in order to include covariates: this is in fact one of the point of strength of
CUB models. Finally, more flexible probability models should be considered in order to
remove some of the distributional constrains implied by the constancy of the association
parameter which is fundamental for the Plackett distribution.

Acknowledgements: This work has been supported by MUR PRIN2008 grant CUP
E61J10000020001 – University of Naples Federico II.
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Figure 3. Box plots of the absolute differences between empirical and fitted distribution
for each cell of the 7x7 contingency table
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