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Summary:In the last decade there has been an increasing interest in mining time series
data and many distance measures and representations have been proposed for this pur-
pose. This paper illustrates some of the dissimilarity measures introduced in literature
to index time series and discusses their importance and critical aspects.

Keywords:Time Series, Data mining, Dissimilarity measures.

1. Introduction

In recent years the mining of time series data has attracted consid-
erable interest stimulated by the progress in computer technology. Data
mining, however, has not a clear definition. It has been viewed as a part of
the larger process of knowledge discovery in databases (usually denoted
as KDD). It includes all the operational steps necessary forextracting
”knowledge” from observed data organized in very large archives. This
process requires both a preliminary management of information, aimed
at organizing and cleaning data, and the subsequent statistical analysis;
it consists of the following steps: data-warehousing, target data selec-
tion, data cleaning, data transformation and reduction, data mining, model
identification, estimation and interpretation, use of the extracted knowl-
edge (Fayyad, 1997). Besides, data mining has been tied to pattern or
structure discovery in large databases and to the construction of useful
knowledge for predicting and controlling complex systems (Hand, 1998).
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Both the concepts of data mining imply a strong role of data process-
ing and for this reason the related research field has been significantly
occupied by researchers working on database management andmachine
learning who have often rediscovered known statistical techniques (see
the interesting review by Keogh and Kasetty, 2003). Furthermore, it is
relevant, in our opinion, to point out that the inferential problem is rarely
considered and almost all the contributions remain at a descriptive level
and concentrate on the developing of algorithms. The inferential prob-
lem, instead, seems to be fundamental: data mining, in fact,aims at find-
ing unknown patterns in the information recorded in a database, but the
discovered patterns will be really useful only if they reflect a ‘general’
truth.

Prediction and control are typical objectives of time series analysis
and many applications in real-life involve the study of massive data archive
and require some kind of data mining technique. Similarly, the search of
common patterns, such as trend, cycle, seasonality, is a well known prob-
lem in time series analysis. Therefore, the real challenge is the large
amount of data available which makes any traditional ‘ad hoc’ procedure
useless.

With respect to time series data, attention has been generally focused
on four main problems: a)indexing, which, given a time series (a query
sequence), finds the nearest matching time series in a database; b)clus-
tering; c) classificationanddiscrimination; d) segmentation, which rep-
resents a time series through a piecewise model in order to use such a
representation for more complex tasks. In this article we will discuss the
first of the above mentioned problems with special referenceto dissimi-
larity criteria.

In order to make the comparison of time series meaningful, one im-
portant question is to decide what similarity means and whatfeatures have
to be extracted from a time series (Corduas, 2007). This question leads
to the fundamental dichotomy: a) similarity can be based solely on time
seriesshape; b) similarity can be measured by looking at time series dy-
namicstructure.

In this respect, the leading idea is that data mining has to discover
objects that move similarly or closely follow certain givenpattern. The
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final match should be consistent with human intuition. This concept is
typical of shape based dissimilarity measures. However, asthis article
will discuss, the final objective of a statistical analysis,such as forecasting
and control, may lead to different approaches where time series modelling
assumes a definite role.

Finally, data mining involves complex computational problems due to
the large size of data archives (Scepi and Milone, 2007). Forthis rea-
son, an effective dissimilarity measure should allow the user to achieve
an efficient implementation at a low cost. This is in general accomplished
by a pre-processing step where, on the basis of a fast criterion, the ma-
jority of distant series with respect to the ‘query’ are ruled out. For this
purpose, a lower-bound for the chosen distance criterion isneeded. This
bound underestimates the true distance but it only uses a reduced set of
information. This strategy is computationally advantageous although it
may generate a risk of false dismissals. Once the possible matching can-
didates have been selected using the approximated dissimilarity criterion,
the final comparison is made on the basis of the exact distancemeasure.

This paper presents some of the dissimilarity measures introduced in
literature to index time series and discusses their importance and critical
aspects.

2. Shape (dis)similarity

Given the objectives of data mining that we have just illustrated, it is
not surprising to find out that the Euclidean distance is one of the most
common device used in practice for data mining purposes.

The comparison is simply referred to the observations:

DE(xt, yt) = {
n

∑

t=1

[xt − yt]
2}1/2, (1)

wherext andyt, t = 1, 2, ...n, are zero mean time series. The distance
may be referred to standardized time seriesx̃t and ỹt leading to a more
meaningful criterion which is invariant for linear transformation of data.
In such a case,D2

E is just a linear transformation of the correlation coef-
ficient of the two series, beingDE(x̃t, ỹt) = {2n(1 − rxy}

1/2.
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This is a well known descriptive criterion which has been used in
statistics since the beginning of eighties when the interest for time series
classification arose (Piccolo, 1987). In this respect, among others, Zani
(1981) considered this kind of distance and extended the idea in order to
take lagged relationships between time series into account. In fact, he
introduced the following distance:

Ds(x̃t, ỹt−s) = {
n

∑

t=1

[x̃t − ỹt−s]
2}1/2 = {2(n− s)(1 − rxy(s)}

1/2, (2)

whererxy(s) is the s-lag cross-correlation coefficient between the two
series. In such a way, time series, characterized by similarpatterns which
are simply shifted on the time-axis, are recognized as similar.

Indexing is solved exploiting the non decreasing property of the il-
lustrated metrics with respect to added terms in the summation. The
approach for finding the best matching time series is sequential. Given
a time series a possible matching candidate is dismissed as soon as the
distance between the firstk observations is larger than a fixed threshold.

Time series length can affect the quality of the results. Thedistance
(1) requires that the time series being compared have the same length; this
aspect may become critical when a large number of time seriesis involved
in the comparison since it may lead to an inefficient use of available in-
formation. Moreover, when the number of observations is very large,
local changes or structural changes in time series pattern are more likely
and, consequently, the distance (1) becomes less informative. Finally, the
measure is very sensitive to outliers.

Figure 1 illustrates the plot of the ECG’s sine wave of two healthy
people. This is a typical example of time series which show a remarkable
similarity though they are locally out-phase. As a matter offact, the heart
rate differs from one individual to another. Then, the peaksin the series
may not be aligned and, for this reason, the Euclidean distance produces
meaningless results.

Moreover, special attention has to be paid at the choice of the cluster-
ing algorithm. Keogh and Li (2005) showed in fact that k-means cluster-
ing provides meaningless results when time series subsequences grouping
is considered. In particular, the cluster centers tend to appear as simple
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trigonometric functions due to the obvious Slutsky effect caused by the
computation of the average time series (Slutsky, 1937). Besides, the pat-
terns of the identified cluster centers have in general no reference with the
behaviour of the observed time series.

Figure 1. a-b) ECG’s standardized time series c) time series aligned
with respect to the first heartbeat

Finally, it is worth mentioning a novel problem which has recently
raised attention: the search of time series discords. This term refers
to subsequences of longer time series which are maximally different to
all the rest of the time series, in other words, their patternis very far
from the observed temporal behaviour of the rest of the time series. The
search of anomalous pattern is of course of interest for applications in
medicine for detecting specific illness from ECG or ECC recordings, but
other fields such as financial data analysis, text processing, quality con-
trol, seismic wave analysis may also benefit of such techniques. However,
the approach requires the solution of a rather complex algorithmic prob-
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lem since a strategy for the selection of the best subsequence length is
needed (see Keoghet al., 2005).

3. The Dynamic Time Warping

The Euclidean distance is very sensitive to distortion in time axis and
may lead to poor results for sequences which are similar, butlocally out
of phase. For this reason, the Dynamic Time Warping (DTW), origi-
nally introduced for speech processing (Sakoe and Ciba, 1978; Berndt
and Clifford, 1994; Wang and Gasser, 1997), has been reconsidered for
data mining purposes.

DTW allows non-linear alignments between time series. Specifically,
given two data sequencesx = {xi, i = 1, 2, ...,m}, andy = {yj, j =
1, 2, ..., n}, the procedure starts by constructing them×nmatrix∆ where
the (i, j) element is the distance (or dissimilarity)δ(xi, yj) between two
pointsxi andyj. The best matching is found by searching a path through
this matrix such that the total cumulative distance betweenthe aligned
elements of the two time series is minimized.

For this purpose, we denote byw = {(i(k), j(k)), k = 1, ..., K, i(1) =
j(1) = 1, i(K) = M, j(K) = N} with max(m,n) ≤ K ≤ m + n − 1,
a warping path connecting(1, 1) and(m,n). The alignment between the
time series is obtained by searching for the path through thematrix ∆
which minimizes a cost function such as:

C(x, y, w) =
K

∑

k=1

δ(xi(k), yj(k))r(k), (3)

wherer(k) is an appropriate non negative weighting function (this is often
set to1/k). Of course, the choice of the cost function determines the
warping result.

Some constraints are imposed in order to reduce the number ofpaths
considered:

- boundary: i(1) = j(1) = 1, i(K) = M , j(K) = N ; as men-
tioned above, the optimal path has to connect the elements(1, 1)
and(m,n).
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- monotonicity: i(k) ≤ i(k + 1) andj(k) ≤ j(k + 1), that is both index
can never decrease;

- continuity: i(k+1)− i(k) ≤ 1 andj(k+1)− j(k) ≤ 1; which implies
that indices can only increase by0 or 1 going fromk to k + 1;

- window: the path is allowed to move within a definite region around
the matrix diagonal. This region is usually defined as a rectangu-
lar band (assuming|i(k) − j(k)| ≤ h whereh is a given positive
integer, see Sakoe and Chiba, 1978) or a parallelogram (Itakura,
1975);

- slope: the path should be neither too steep nor too shallow.

At the end of the optimizing process, the optimal path also provides a
measure of thedynamic warping distancebetween the two time series:

DTW (x, y) = inf
w

C(x, y, w). (4)

For instance, assumingδ(xi, yj) = (xi − yj)
2, that is the squared

Euclidean distance between two data points, Ratanamahatanaand Keogh
(2004) uses the following cost function:

C(x, y, w) =

√

√

√

√

K
∑

k=1

δ(xi(k), yj(k)) =

√

√

√

√

K
∑

k=1

(xi(k) − yj(k))2. (5)

Note that the Euclidean distance (1) is simply (5) under the constraint
that the warping pathw satisfiesi(k) = j(k) = k.

It is generally recognized that the performance of DTW deteriorates
for noisy data since the search for an optimal alignment tends to privilege
very extreme data by accommodating outliers in one of the time series
with extreme values of the other.

Moreover, the indexing requires the identification of a lower bound
for DTW. In this respect, Keogh (2002) introduced a technique to pro-
duce such a bound for rectangular and parallelogram bands which com-
putationally is very efficient. Later, a general approach which allows for
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Figure 2. Optimal path search

an arbitrary shape of the window has been studied by Ratanamahatana
and Keogh (2004).

Various developments of this technique have been proposed such as,
among the others, the extension to multidimensional data (Vlachoset al.
2006), the use of smoothing for noisy data (Morlini, 2005), the joint use
of DTW andSelf OrganizingMap (SOM) algorithm for improving time
series clustering (Romano and Scepi, 2006), the study of new techniques
for approximating DTW (Chuet al. 2002).

Regardless of the computational complexity, DTW has been used in
several fields in order to compare processes which evolve at varying rates.
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For instance, it has been applied in bio-informatics for gene expression
time series (Aach and Church, 2001), for monitoring chemicaland indus-
trial processes (Kassidaset al. 1998 ), for classifying ECG data (Caiani
et al. 1998) and for comparing time series extracted from video or classi-
fying handwritten texts.

4. Measuring dissimilarity by feature extraction

The idea that the components underlying the dynamic structure of
the phenomena under investigation could help in detecting similarity was
already present in the earlier studies.

Agrawal et al. (1994) exploited the Parseval’s theorem in order to
transposeD2

E(xt, yt) in the frequency domain. They considered theDis-
creteFourierTransform (DFT) of the data:

x(ωj) = n−1/2

n−1
∑

t=0

xt exp(−ıωjt), (6)

whereωj = 2πj/n, j = 0, 1, ..., (n− 1) and introduced the criterion:

D2
A,n =

n−1
∑

j=0

|x(ωj) − y(ωj)|
2. (7)

In particular, they proposed linking each time series in thedatabase
with the firstk coefficients of the respective DFT so that a selection of
potential candidates for the final matching was simply identified by means
of a bound over the Euclidean distance:DA,k < ǫ. Standardizing the data
first will allow for differences in level and scale: althoughthis step is not
clearly stated in many papers, as previously mentioned, it is a necessary
preliminary requirement for meaningful results.

A dimensionality reduction of the original problem is achieved by
keeping a collection of selective Fourier coefficients, since it is reasonable
to expect that those coefficients will summarize prominent features of the
time series which are object of comparison.
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However, the mentioned indexing strategy has two critical issues:
the selection of the threshold (which is data dependent) and, above all,
the assumption that low frequencies will be in general more informative
about the temporal dynamics. This is a very restrictive assumption which
strongly affects the effectiveness of the proposed approach in practice.

In general,DA,k can be used as a measure of diversity over a specific
band of frequency by varyingωj in a sub-interval of(−π, π]. Ng and
Huang (1999) applied this technique for classifying stars light curves.
They discussed the problems of working with large database (the whole
database contained light curves of 20 million stars). The example that
they provided referred to only 20383 time series, but this isalready a
number of subjects which many statistical approaches cannot handle.

The procedure based on DFT was improved by Rafeiet al. (1998)
who exploited the symmetry of the Fourier coefficients in order to provide
a tighter lower bound for the Euclidean distance using the same number
of coefficients. In the same vein, for periodic data, Vlachoset al. (2005)
considered the Euclidean distance between the periodograms of the stan-
dardized series as a measure of dissimilarity between time series. In order
to compress information, they suggested recording for eachtime series
the largest Fourier coefficients (i.e. the coefficients corresponding to the
highest peaks of the periodogram), their related frequencies and a mea-
sure of the approximation error due to the compression. In such a way a
lowering bound for the proposed distance can be easily derived.

A fast preprocessing step can also be combined with computationally
more demanding dissimilarity criteria, such as the Euclidean distance be-
tween the (global and partial) autocorrelation functions or the smoothed
periodogram (Wang and Wang, 2000).

This type of dissimilarity measures also are not new in statistics: Bo-
hteet al. (1980), Kovăcić (1996) proposed several descriptive dissimilar-
ity measures based on the comparison of auto or cross-correlation func-
tions; Mélard and Roy (1984) investigated a test for assessing the equality
of global autocovariance functions; Galeano and Peña (2000) considered
the Mahalanobis distance between autocorrelation coefficients. Besides,
in the frequency domain, Diggle and Fisher (1991) introduced a non para-
metric approach to compare the spectrum of two time series through the
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underlying cumulative periodograms; Anderson (1993) compared the cu-
mulative spectral functions, and, more recently, Caiadoet al. (2006) con-
sidered the Euclidean distance between normalized periodograms as a
measure to discriminate between stationary and non stationary time se-
ries.

The assumption of stationarity of the data generating process is, in our
opinion, a critical issue for all methods which rely on time series features
such as periodogram, spectrum or autocorrelation functions. Of course,
those techniques can be still applied when the non stationarity is removed
from each time series by means of the same differencing operator or de-
trending technique. This approach introduces a subjectivejudgment con-
cerning the way of achieving the stationarity. However, in many papers
the problem is not clearly stated and the dissimilarity measures based on
those features are evaluated both for stationary and non stationary time
series.

4.1. Wavelets

Some contributions have explored the use of wavelet analysis for data
mining in order to find a valid alternative to the traditionalFourier anal-
ysis (see Li et al. 2002 for an extensive review, and Priestley, 1996;
Percival and Walden, 2000, for a comprehensive illustration of wavelet
analysis and related properties).

Wavelets can be viewed as orthonormal basis functions for various
function spaces (though, in general, orthonormal propertyis not strictly
required). The set of basis functions are obtained by dilations and trans-
lations of a single function, a mother waveletψ(t). Specifically, this is
simply defined by:

{ψj,k(t) = 2(j/2)ψ(2jt− k), j, k ∈ Z}, (8)

wherej is the dilation factor andk the translation factor. A suitable choice
of ψ(t) can generate a set of functions{ψj,k} which is an orthonormal
basis forL2(ℜ). Any functionf(t) ∈ L2(ℜ) can be written as a wavelet
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series expansion:

f(t) =
∞

∑

k=−∞

∞
∑

j=−∞

wj,kψj,k(t) (9)

where the coefficients:wj,k =
∞
∫

−∞

f(t)ψj,k(t)dx.

The above expressions show the obvious analogy between wavelet
analysis and Fourier analysis. Both techniques are aimed at representing
a function using orthonormal basis functions, but the former is capable
of providing both time and frequency localization (via translations and
dilations respectively) whereas standard Fourier sine andcosine series
only provide frequencies representations.

In this respect, Priestley (1996) discusses the relationship between
wavelet analysis and time-dependent spectral analysis. The former in fact
is often referred as an effective tool for time-frequency decomposition of
non stationary signals. In general, wavelets are in fact designed to have a
good frequency resolution at low frequencies and a very poorresolution
at high frequencies; the reverse applies to time resolution.

The main technique used for data mining purposes relies on the Dis-
creteWaveletTransform (DWT) and, specifically, the most commonly
used mother wavelet is the Haar wavelet:

ψH(x) =







1, 0 ≤ x ≤ 0.5;
−1, −0.5 ≤ x < 0;

0, otherwise.

Wavelets have several properties, but two of them are relevant for data
mining, under the assumptions stated above: i) Parseval’s theorem still
holds; ii) DWT is computationally easier with respect to DFT:it requires
onlyO(n) multiplications whereas the best Fast Fourier Transform needs
O(n log n) multiplications. Besides, the Haar wavelets are very simpleto
compute and to understand since, in practice, the transformis given by a
recursive pairwise averaging and differencing of data.

Chan and Fu (1999) exploited the former property and showed the
preservation of Euclidean distance in both time and Haar domain. This
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Figure 3. Time series reconstructed by Fourier (A-B) and Haar (C-D)
transform coefficients: A-C first 15 coefficients; B-D largest 15 coeffi-
cients

fact ensures that the Haar transform can be used, by analogy to Fourier
transform, as a tool for extracting characteristic features of a time series.
Specifically, they proposed to use the first few coefficients of the trans-
formed sequences for indexing purposes in order to perform asimilarity
search.

A further use of Haar wavelet transform was suggested by Struzik
and Siebes (1999) who considered some special representations derived
from it: a) the sign based representation, which uses only the sign of
the wavelet coefficients; b) the difference of the logarithms of values of
the wavelet coefficient at the highest scale and at the working scale. As
a similarity measure they introduced the step-wise correlations between
these special representations for the sequences to be compared.

Figure 3 reports the results obtained from the Fourier and Haar trans-
form of a monthly streamflow series (n = 256). Specifically, the graph
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illustrates the first 3 years of the observed time series together with the re-
constructed series obtained by means of the first or ”best” 15coefficients.
The improvement obtained by using the best coefficients (seepanel B
and D) is immediately clear arising from the special nature of the data
which exhibit a strong seasonal pattern. Besides, the pattern of the recon-
structed series enhances the fact that Haar transform is capable to capture
local behaviour (and singularities) of the time series.

5. Structural dissimilarity

It is interesting to note that data mining literature generally considers
time series as a recorded geometric trajectory and it often seems to ignore
the theory of stochastic processes. Only recently, the attention for the dy-
namic structure has inevitably conveyed the investigationto the stochastic
generating process that has originated the observed trajectory.

In this respect, the class of GaussianARIMA processes provides a
useful parsimonious representation (Box and Jenkins, 1976)for linear
time series. Specifically,Zt ∼ ARIMA(p, d, q) is defined by:

φ(B)∇dZt = θ(B)at, (10)

whereat is a Gaussian White Noise (WN) process with constant variance
σ2

a , B is the backshift operator such thatBkZt = Zt−k, ∀k = 0,±1, . . .,
the polynomialsφ(B) = 1 − φ1B − ... − φpB

p andθ(B) = 1 − θ1B −
... − θqB

q, have no common factors, and all the roots ofφ(B)θ(B) = 0
lie outside the unit circle. Moreover, we assume that the time series has
been preliminary transformed in order to improve Gaussianity, to deal
with non-linearities, to reduce asymmetry, and to remove any outlier or
deterministic component (such as deterministic seasonality, trading days,
calendar effects, mean level, etc.).

First of all, we will introduce a distance criterion based oncepstral
coefficients, cx,j, of zero mean stationary series. These are determined by
the following Fourier expansion:

ln fx(ω) =
∞

∑

j=−∞

cx,j exp(−ıωj), (11)
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wherefX(ω), ω ∈ (−π, π] is the spectrum of the processXt (Bogertet
al., 1962).

Assuming that the generating process is well approximated by a pure
stationaryAR(p) model, a simple expression of the cepstral coefficients
in terms of theAR parameters can be derived:

c1 = −φ1;

ck = −φk −
k−1
∑

j=1

1

k
φk−j cj, 1 < k ≤ p;

ck = −

p
∑

j=1

(1 −
1

k
)φj ck−j, k > p.

Thus, for several decades, the cepstral distance:

DC,k =

√

√

√

√

k
∑

j=1

[cx,j − cy,j]
2 (12)

had been widely applied to signal processing both for speechrecognition
and biomedical signal classification (see for instance Grayand Markel,
1976; Kanget al. 1995). More recently, Kalpakiset al. (2001) investi-
gated the use of the Euclidean distance between cepstral coefficients for
data mining purposes comparing it with other dissimilaritycriteria.

Note that, in the expression (12), the term(cx,0 − cy,0)
2 = ln(σ2

x/σ
2
y)

is omitted since it is the log of the White Noise variance ratioand hence
it simply represents a scale factor. Moreover, the cepstralcoefficients
quickly decay to zeros, and then, by analogy to previous methods, just
a few number of cepstral coefficients,M , have to be stored for indexing
purposes so that the Euclidean distance will be computed on the truncated
series of cepstral coefficients.

Finally, an interesting interpretation can be given by considering that:

2D2
C,∞ + ln(σ2

x/σ
2
y) =

∫ π

−π

| ln fx(ω) − ln fy(ω)|2
dω

2π
. (13)

When the WN variances are equal, the cepstral distanceDC,∞ is related
to the root mean square distance between the log spectra.
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Several improvements have been proposed for speech recognition pur-
poses such as the use of Mahalanobis distance or the introduction of a
weighted Euclidean distance in which each coefficient is simply weighted
by the inverse of its variance in order to enhance the contribution of
weights with lower variability (Tohkura, 1987).

5.1. The AR metric

As mentioned before, the strong premise of data mining, which evalu-
ates similarity of time series patterns, limits the role of structural dissim-
ilarity measures. As a matter of fact, when the data generating processes
become the terms of the comparison, the fact that, accordingto some
metric, two stochastic processes are very close does not imply that the
patterns of the specific observed trajectories look ‘visually’ close. How-
ever, some attempts have been made in order to move the research focus
on structural dissimilarity.

Piccolo (1984, 1990) proposed a distance criterion which compares
the forecasting functions of twoARIMA models given a set of initial
values. In particular, assuming thatZt is a zero mean invertible process
which admits theAR(∞) representations:π(B)Zt = at, theπ-weights
sequence and the WN variance completely characterizeZt (given the ini-
tial values).

Exploiting this result the following distance can be introduced as a
measure of structural diversity between twoARIMA processes with given
orders,Xt andYt:

DAR =

√

√

√

√

∞
∑

j=1

(πxj − πyj)
2. (14)

As before, the WN variances are not included in the distance for-
mulation since they depend on the units of measurement. The criterion
has been widely experimented (see Piccolo, 2007 for a review) and the
asymptotic distribution of ML estimator ofDAR has been derived under
general assumptions (Corduas, 2000; Corduas and Piccolo, 2007). The
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approach developed is particularly interesting since it reduces the prob-
lem of comparing time series to an hypotheses testing problem and pro-
vides a more objective strategy for assessing the similarity of two time
series.

It is worth noting that the distance betweenARIMA processes has
been re-discovered by several contributing authors in datamining litera-
ture. For instance, Denget al. (1997) suggested to compress information
concerning a time series by retaining the estimated parameters of the cor-
respondingARMA model. However, the metric that they proposed was
not effective since they measured the distance between two time series by
comparing theAR andMA coefficients separately and it is well known
that those components have a very different role in determining the dy-
namics of a time series. Moreover, the presence of redundancy in one of
the models may originate a very large distance between time series which
are instead very close.

Recently, Bagnall and Janaceck (2005) proposed to translate atime
series into binary sequences considering the median of the data as ref-
erence and to exploit the relationships between GaussianARIMA pro-
cesses and binary time series (see Kedem, 1980) in order to reduce the
amount of storage and computational resources for time series compari-
son. They applied theAR metric (14) to cluster the transformed binary
time series. The approach proved to be useful when data were affected by
outliers; in addition the technique achieved a clustering accuracy which
was equivalent to that obtained by cepstral distance.

Moreover, Baragona and Vitrano (2007) compared the performance
of theAR metric with a criterion based on cross-correlations for data
mining purposes.

In this respect, although one of the objective of data miningis reduc-
ing computing time and resources, we still believe that theAR metric
is a valid alternative to other measure dissimilarity. It can be directly
applied to the original observed time series by using an automatic mod-
elling procedure. In this respect, Liuet al. (2001) provides a relevant
case study which shows that preliminary modelling is not an obstacle to
analyses involving very large time series databases. Specifically, they in-
vestigate the use of well known techniques for automatic identification of
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time series models in order to solve a forecasting problem ofa worldwide
multi-brand fast-food restaurant chain at store and corporate level.

In the same vein, for instance, the Mahalanobis distance between
Autoregressive (AR) models was widely applied to speech recognition.
Again, the approach was developed in an hypotheses testing framework
(see, Thomson and De Souza, 1985, and references therein reported).
Xiong and Yeung (2004), instead, introduced a model-based clustering
approach based on mixtures ofARMA models.

6. Final remarks

Many other measures were introduced in literature such as piece-
wise normalization (Indyket al. 2000), piecewise aggregate approxima-
tion, piecewise probabilistic measures (Keogh and Smyth, 1979), cosine
wavelets (Huntalaet al. 1999), the characteristic-based clustering (Wang
et al. 2006) etc. This article only considered the main approacheswhich
have assumed some importance in this research area.

Much of the work on time series data mining was developed by the
database community that has often rediscovered criteria well known in
statistics (see Corduas, 2003). In this respect the recent review by Keogh
and Kasetty (2003) is illuminating: hundreds of papers haveintroduced
new dissimilarity measures and algorithms to index and classify time se-
ries but only a few of them have really proved to be effective with respect
to other existing criteria. Moreover, the comparison is confined to a mere
description of observed time series patterns and no attemptto introduce a
testing hypotheses framework has been done.

This fact proves that, despite several recommendations to become
more involved with data mining problems (Hand, 1998), the contribu-
tion of statistics and statisticians to this research area is still scarce and a
systematic cooperation with other disciplines is required.
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