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Dissimilarity criteria
for time series data mining

Marcella Corduas
Dipartimento di Scienze Statistiche, Univedsitegli Studi di Napoli Federico Il
E-mail: corduas@unina.it

Summary:ln the last decade there has been an increasing intereshingrtime series
data and many distance measures and representations leewvprbposed for this pur-
pose. This paper illustrates some of the dissimilarity messintroduced in literature
to index time series and discusses their importance andatrispects.

Keywords:Time Series, Data mining, Dissimilarity measures.

1. Introduction

In recent years the mining of time series data has attraciadid-
erable interest stimulated by the progress in computentdoyy. Data
mining, however, has not a clear definition. It has been vikagea part of
the larger process of knowledge discovery in databasesl{ysienoted
as KDD). It includes all the operational steps necessaryekbracting
"knowledge” from observed data organized in very large mesh This
process requires both a preliminary management of infeomaaimed
at organizing and cleaning data, and the subsequent s@tighalysis;
it consists of the following steps: data-warehousing, éadpta selec-
tion, data cleaning, data transformation and reductiota, iekning, model
identification, estimation and interpretation, use of thzaeted knowl-
edge (Fayyad, 1997). Besides, data mining has been tied termpair
structure discovery in large databases and to the constnuot useful
knowledge for predicting and controlling complex systefiar{d, 1998).
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Both the concepts of data mining imply a strong role of datz@ss-
ing and for this reason the related research field has beeifisatly
occupied by researchers working on database managementaatine
learning who have often rediscovered known statisticahrigpies (see
the interesting review by Keogh and Kasetty, 2003). Furttoge, it is
relevant, in our opinion, to point out that the inferentiedlplem is rarely
considered and almost all the contributions remain at argese level
and concentrate on the developing of algorithms. The infexkprob-
lem, instead, seems to be fundamental: data mining, indaus at find-
ing unknown patterns in the information recorded in a dataphut the
discovered patterns will be really useful only if they reflac'general’
truth.

Prediction and control are typical objectives of time sea@alysis
and many applications in real-life involve the study of niasdata archive
and require some kind of data mining technique. Similahg, ¢earch of
common patterns, such as trend, cycle, seasonality, isl&main prob-
lem in time series analysis. Therefore, the real challesgie large
amount of data available which makes any traditional ‘ad pomcedure
useless.

With respect to time series data, attention has been généralised
on four main problems: ahdexing which, given a time series (a query
sequence), finds the nearest matching time series in a datafgrlus-
tering; c) classificationanddiscrimination d) segmentationwhich rep-
resents a time series through a piecewise model in orderedsush a
representation for more complex tasks. In this article wiediscuss the
first of the above mentioned problems with special referéaaissimi-
larity criteria.

In order to make the comparison of time series meaningfud,ion
portant question is to decide what similarity means and Westires have
to be extracted from a time series (Corduas, 2007). This iquelstads
to the fundamental dichotomy: a) similarity can be basedlgan time
seriesshape b) similarity can be measured by looking at time series dy-
namicstructure

In this respect, the leading idea is that data mining has sooger
objects that move similarly or closely follow certain givpattern. The
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final match should be consistent with human intuition. Thoaaept is
typical of shape based dissimilarity measures. Howevethiasarticle
will discuss, the final objective of a statistical analysisch as forecasting
and control, may lead to different approaches where timeserodelling
assumes a definite role.

Finally, data mining involves complex computational peyhk due to
the large size of data archives (Scepi and Milone, 2007). titisrrea-
son, an effective dissimilarity measure should allow therus achieve
an efficient implementation at a low cost. This is in genecabaplished
by a pre-processing step where, on the basis of a fast ontetie ma-
jority of distant series with respect to the ‘query’ are duteut. For this
purpose, a lower-bound for the chosen distance criterioeésled. This
bound underestimates the true distance but it only usesuzeddset of
information. This strategy is computationally advantagealthough it
may generate a risk of false dismissals. Once the possililehing can-
didates have been selected using the approximated diasiyndriterion,
the final comparison is made on the basis of the exact distapesure.

This paper presents some of the dissimilarity measuresdated in
literature to index time series and discusses their impogand critical
aspects.

2. Shape (dis)similarity

Given the objectives of data mining that we have just illatsd, it is
not surprising to find out that the Euclidean distance is drntae most
common device used in practice for data mining purposes.

The comparison is simply referred to the observations:

Di(ws,y0) = {D [ — wi]*}', 1)

wherezx, andy,, t = 1,2,...n, are zero mean time series. The distance
may be referred to standardized time serieaindy; leading to a more
meaningful criterion which is invariant for linear transfation of data.

In such a casel)? is just a linear transformation of the correlation coef-
ficient of the two series, being (7, ;) = {2n(1 — 1., } /2.



110 M. Corduas

This is a well known descriptive criterion which has beenduse
statistics since the beginning of eighties when the intdoggime series
classification arose (Piccolo, 1987). In this respect, agmathers, Zani
(1981) considered this kind of distance and extended treeirderder to
take lagged relationships between time series into accauntact, he
introduced the following distance:

Ds(%ta gtfs) = {Z [jft - @Itfsf}l/z = {Q(n - 5)(1 - Txy(s)}l/Qa (2)

wherer,,(s) is the s-lag cross-correlation coefficient between the two
series. In such a way, time series, characterized by sipai@éerns which
are simply shifted on the time-axis, are recognized as amil

Indexing is solved exploiting the non decreasing propeftthe il-
lustrated metrics with respect to added terms in the sunomatiThe
approach for finding the best matching time series is se@ler@iven
a time series a possible matching candidate is dismissedassas the
distance between the firktobservations is larger than a fixed threshold.

Time series length can affect the quality of the results. diseance
(1) requires that the time series being compared have the leagth; this
aspect may become critical when a large number of time ssrileglved
in the comparison since it may lead to an inefficient use oilai in-
formation. Moreover, when the number of observations iy Varge,
local changes or structural changes in time series pattermare likely
and, consequently, the distance (1) becomes less infaren&iinally, the
measure is very sensitive to outliers.

Figure 1 illustrates the plot of the ECG’s sine wave of two tisal
people. This is a typical example of time series which shoanaarkable
similarity though they are locally out-phase. As a mattefiaof, the heart
rate differs from one individual to another. Then, the paakfe series
may not be aligned and, for this reason, the Euclidean distaroduces
meaningless results.

Moreover, special attention has to be paid at the choiceeotlinster-
ing algorithm. Keogh and Li (2005) showed in fact that k-mealuster-
ing provides meaningless results when time series subsegsigrouping
is considered. In particular, the cluster centers tend peapas simple
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trigonometric functions due to the obvious Slutsky effeatiged by the
computation of the average time series (Slutsky, 1937).d@ssihe pat-
terns of the identified cluster centers have in general reyeate with the
behaviour of the observed time series.

N

Figure 1. a-b) ECG’s standardized time series c) time serigmad
with respect to the first heartbeat

Finally, it is worth mentioning a novel problem which haseety
raised attention: the search of time series discords. Hris trefers
to subsequences of longer time series which are maximdfigreint to
all the rest of the time series, in other words, their patisruery far
from the observed temporal behaviour of the rest of the tienes. The
search of anomalous pattern is of course of interest foriggtns in
medicine for detecting specific illness from ECG or ECC reaaydj but
other fields such as financial data analysis, text procesginglity con-
trol, seismic wave analysis may also benefit of such teclesigdowever,
the approach requires the solution of a rather complex ifgoic prob-
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lem since a strategy for the selection of the best subsequength is
needed (see Keogdt al.,, 2005).

3. The Dynamic Time Warping

The Euclidean distance is very sensitive to distortionnmetiaxis and
may lead to poor results for sequences which are similariooatly out
of phase. For this reason, the Dynamic Time Warping (DTW)giori
nally introduced for speech processing (Sakoe and Ciba,;18&hdt
and Clifford, 1994; Wang and Gasser, 1997), has been rea@esidor
data mining purposes.

DTW allows non-linear alignments between time series. Eipatly,
given two data sequences= {z;,i = 1,2,...,m}, andy = {y;,j =
1,2,...,n}, the procedure starts by constructing the n matrix A where
the (¢, j) element is the distance (or dissimilarigf)z;, y,;) between two
pointsz; andy;. The best matching is found by searching a path through
this matrix such that the total cumulative distance betwtbenaligned
elements of the two time series is minimized.

For this purpose, we denote by= {(i(k),j(k)),k =1,..., K,i(1) =
j(1) = 1,i{(K) = M, j(K) = N} with max(m,n) < K < m+n — 1,

a warping path connecting, 1) and(m,n). The alignment between the
time series is obtained by searching for the path throughthtix A
which minimizes a cost function such as:

K
Cla,y,w) =Y 8@y, yim)r(k), 3)
k=1

wherer (k) is an appropriate non negative weighting function (thidtsro
set to1/k). Of course, the choice of the cost function determines the
warping result.

Some constraints are imposed in order to reduce the numipatiod
considered:

- boundary i(1) = j(1) = 1, i(K) = M, j(K) = N; as men-
tioned above, the optimal path has to connect the elen{éntg
and(m,n).
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monotonicity i(k) < i(k + 1) andj(k) < j(k + 1), that is both index
can never decrease;

continuity i(k+1) —i(k) < landj(k+1) —j(k) < 1; which implies
that indices can only increase byr 1 going fromk to k + 1;

window the path is allowed to move within a definite region around
the matrix diagonal. This region is usually defined as a repia
lar band (assuming (k) — j(k)| < h whereh is a given positive
integer, see Sakoe and Chiba, 1978) or a parallelogram (#aku
1975);

slope the path should be neither too steep nor too shallow.

At the end of the optimizing process, the optimal path alswioes a

measure of theynamic warping distancleetween the two time series:

DTW (z,y) = iIul)fC(x,y,w). 4)

For instance, assuming(z;,y;) = (z; — y;)?, that is the squared

Euclidean distance between two data points, Ratanamahetarigeogh
(2004) uses the following cost function:

K

K
Clz,y,w) = \l > (i), yjr)) = J > (@iw —yiw)® (5)
k=1

k=1

Note that the Euclidean distance (1) is simply (5) under trestraint

that the warping path satisfies (k) = j(k) = k.

It is generally recognized that the performance of DTW detates

for noisy data since the search for an optimal alignmentgéngrivilege
very extreme data by accommodating outliers in one of the weries
with extreme values of the other.

Moreover, the indexing requires the identification of a loweund

for DTW. In this respect, Keogh (2002) introduced a techaitm pro-
duce such a bound for rectangular and parallelogram bana$ wbm-
putationally is very efficient. Later, a general approachchtallows for
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Figure 2. Optimal path search

an arbitrary shape of the window has been studied by Ratarsarah
and Keogh (2004).

Various developments of this technique have been propassgdas,
among the others, the extension to multidimensional dakacf\dset al.
2006), the use of smoothing for noisy data (Morlini, 2006 joint use
of DTW andSelf OrganizingMap (SOM) algorithm for improving time
series clustering (Romano and Scepi, 2006), the study of @eelwiques
for approximating DTW (Chet al. 2002).

Regardless of the computational complexity, DTW has beed umse
several fields in order to compare processes which evolerging rates.
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For instance, it has been applied in bio-informatics foregerpression
time series (Aach and Church, 2001), for monitoring chenaaoal indus-
trial processes (Kassidas al. 1998 ), for classifying ECG data (Caiani
et al. 1998) and for comparing time series extracted from videdassi-
fying handwritten texts.

4. Measuring dissimilarity by feature extraction

The idea that the components underlying the dynamic streiciii
the phenomena under investigation could help in detectmigesity was
already present in the earlier studies.

Agrawal et al. (1994) exploited the Parseval’s theorem in order to
transposeD%(z;, y;) in the frequency domain. They considered Bis-
creteFourier Transform (DFT) of the data:

n—1

r(w;) =n"1? Z zy exp(—ww;t), (6)

t=0

wherew; = 27j/n,j = 0,1, ..., (n — 1) and introduced the criterion:
n—1
Dl =D lo(w;) —ylwy)l” )
§=0

In particular, they proposed linking each time series indatabase
with the firstk coefficients of the respective DFT so that a selection of
potential candidates for the final matching was simply idiextby means
of a bound over the Euclidean distande; ;, < e. Standardizing the data
first will allow for differences in level and scale: althoutftis step is not
clearly stated in many papers, as previously mentioned,dtnecessary
preliminary requirement for meaningful results.

A dimensionality reduction of the original problem is achgd by
keeping a collection of selective Fourier coefficientsgsiitis reasonable
to expect that those coefficients will summarize promineatdres of the
time series which are object of comparison.
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However, the mentioned indexing strategy has two critisales:
the selection of the threshold (which is data dependent) abadve all,
the assumption that low frequencies will be in general mofermative
about the temporal dynamics. This is a very restrictive mggion which
strongly affects the effectiveness of the proposed approapractice.

In general,D 4 ;, can be used as a measure of diversity over a specific
band of frequency by varying; in a sub-interval of—, 7]. Ng and
Huang (1999) applied this technique for classifying staghtlcurves.
They discussed the problems of working with large databisevhole
database contained light curves of 20 million stars). Theagde that
they provided referred to only 20383 time series, but thialisady a
number of subjects which many statistical approaches ¢dramalle.

The procedure based on DFT was improved by Refel. (1998)
who exploited the symmetry of the Fourier coefficients inestt provide
a tighter lower bound for the Euclidean distance using timeesaumber
of coefficients. In the same vein, for periodic data, Vlackbal. (2005)
considered the Euclidean distance between the periodsgrathe stan-
dardized series as a measure of dissimilarity between &mess In order
to compress information, they suggested recording for daoh series
the largest Fourier coefficients (i.e. the coefficients &gponding to the
highest peaks of the periodogram), their related freq@snand a mea-
sure of the approximation error due to the compression. ¢h suway a
lowering bound for the proposed distance can be easily elkriv

A fast preprocessing step can also be combined with compuédly
more demanding dissimilarity criteria, such as the Eueliddistance be-
tween the (global and partial) autocorrelation functionghe smoothed
periodogram (Wang and Wang, 2000).

This type of dissimilarity measures also are not new instia: Bo-
hteet al. (1980), Kov&ic (1996) proposed several descriptive dissimilar-
ity measures based on the comparison of auto or cross-aborefunc-
tions; Mélard and Roy (1984) investigated a test for assessing ttadiggu
of global autocovariance functions; Galeano ani&@000) considered
the Mahalanobis distance between autocorrelation cosftisi Besides,
in the frequency domain, Diggle and Fisher (1991) introdiecaon para-
metric approach to compare the spectrum of two time serresigfn the
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underlying cumulative periodograms; Anderson (1993) carag the cu-
mulative spectral functions, and, more recently, Caietdal. (2006) con-
sidered the Euclidean distance between normalized pegradts as a
measure to discriminate between stationary and non stagidime se-
ries.

The assumption of stationarity of the data generating @®rsg in our
opinion, a critical issue for all methods which rely on tinezigs features
such as periodogram, spectrum or autocorrelation funsti@f course,
those techniques can be still applied when the non stattgmaremoved
from each time series by means of the same differencing tppesade-
trending technique. This approach introduces a subjegtdgment con-
cerning the way of achieving the stationarity. However, iany papers
the problem is not clearly stated and the dissimilarity meas based on
those features are evaluated both for stationary and ntiorstay time
series.

4.1. Wavelets

Some contributions have explored the use of wavelet arsdigsdata
mining in order to find a valid alternative to the traditiofaurier anal-
ysis (see Li et al. 2002 for an extensive review, and Prigsti896;
Percival and Walden, 2000, for a comprehensive illustratibwavelet
analysis and related properties).

Wavelets can be viewed as orthonormal basis functions foows
function spaces (though, in general, orthonormal propsrtyot strictly
required). The set of basis functions are obtained by ditagtend trans-
lations of a single function, a mother waveleft). Specifically, this is
simply defined by:

{Yn(t) = 292927t — k), j.k € Z}, (8)

wherej is the dilation factor and the translation factor. A suitable choice
of ¢(t) can generate a set of functiofig; ,,} which is an orthonormal
basis forL?(R). Any function f(¢) € L*(R) can be written as a wavelet
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series expansion:

f(t) = Z Z w; 1P k(1) 9)

k=—00 j=—00

where the coefficientsy; . = [ f(t)¢;(t)dx.

The above expressions show the obvious analogy betweenewvave
analysis and Fourier analysis. Both techniques are aimezpetsenting
a function using orthonormal basis functions, but the farmecapable
of providing both time and frequency localization (via s&tions and
dilations respectively) whereas standard Fourier sine csine series
only provide frequencies representations.

In this respect, Priestley (1996) discusses the relatipnisétween
wavelet analysis and time-dependent spectral analysesfdrmer in fact
is often referred as an effective tool for time-frequencgaieposition of
non stationary signals. In general, wavelets are in faggdes to have a
good frequency resolution at low frequencies and a very peswlution
at high frequencies; the reverse applies to time resolution

The main technique used for data mining purposes reliesebDit:
creteWaveletTransform (DWT) and, specifically, the most commonly
used mother wavelet is the Haar wavelet:

1, 0<x<0.5
Yvg(r) =< —1, —0.5 <z < 0;
0, otherwise.

Wavelets have several properties, but two of them are neldgadata
mining, under the assumptions stated above: i) Parseva@rém still
holds; ii) DWT is computationally easier with respect to DETequires
only O(n) multiplications whereas the best Fast Fourier Transforeuse
O(nlogn) multiplications. Besides, the Haar wavelets are very sirtple
compute and to understand since, in practice, the transgnen by a
recursive pairwise averaging and differencing of data.

Chan and Fu (1999) exploited the former property and showed th
preservation of Euclidean distance in both time and Haaraiomr his



Dissimilarity criteria for time series data mining 119

Figure 3. Time series reconstructed by Fourier (A-B) and Hg2:D)
transform coefficients: A-C first 15 coefficients; B-D larg&S coeffi-
cients

fact ensures that the Haar transform can be used, by analdggurier
transform, as a tool for extracting characteristic featuriea time series.
Specifically, they proposed to use the first few coefficieffitthe trans-
formed sequences for indexing purposes in order to perfosimaarity

search.

A further use of Haar wavelet transform was suggested byzigtru
and Siebes (1999) who considered some special represestalerived
from it: a) the sign based representation, which uses ordystgn of
the wavelet coefficients; b) the difference of the logarghof values of
the wavelet coefficient at the highest scale and at the workoale. As
a similarity measure they introduced the step-wise cadicgla between
these special representations for the sequences to be mnpa

Figure 3 reports the results obtained from the Fourier arat ians-
form of a monthly streamflow series (= 256). Specifically, the graph
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illustrates the first 3 years of the observed time seriegiegevith the re-
constructed series obtained by means of the first or "bestb&Hicients.

The improvement obtained by using the best coefficients |(seel B

and D) is immediately clear arising from the special naturéhe data
which exhibit a strong seasonal pattern. Besides, the paif¢he recon-
structed series enhances the fact that Haar transformabl=aio capture
local behaviour (and singularities) of the time series.

5. Structural dissimilarity

It is interesting to note that data mining literature getigi@nsiders
time series as a recorded geometric trajectory and it oiems to ignore
the theory of stochastic processes. Only recently, thatadtefor the dy-
namic structure has inevitably conveyed the investigatidhe stochastic
generating process that has originated the observedttajec

In this respect, the class of GaussiaiR/ M A processes provides a
useful parsimonious representation (Box and Jenkins, 1@&f@)near
time series. Specificallyy, ~ ARIM A(p, d, q) is defined by:

¢(B)VZ; = 0(B)a, (10)

whereq; is a Gaussian White Noise (WN) process with constant variance
o2, B is the backshift operator such thatZ; = 7, ;, Vk = 0,+1,.. .,
the polynomialsp(B) =1 - ¢ B — ... — ¢p,B? andf(B) = 1 — 6, B —
... — 0,B%, have no common factors, and all the roots)08)0(B) = 0
lie outside the unit circle. Moreover, we assume that the tdaries has
been preliminary transformed in order to improve Gaussiatd deal
with non-linearities, to reduce asymmetry, and to removwe@utlier or
deterministic component (such as deterministic seasgnaading days,
calendar effects, mean level, etc.).

First of all, we will introduce a distance criterion based aapstral
coefficientsc, ;, of zero mean stationary series. These are determined by
the following Fourier expansion:

[e.9]

In fo(w) = Z Czj exp(—wy), (12)

j=—o0



Dissimilarity criteria for time series data mining 121

where fx(w), w € (—m, x| is the spectrum of the proces§ (Bogertet
al., 1962).

Assuming that the generating process is well approximayea ure
stationaryAR(p) model, a simple expression of the cepstral coefficients
in terms of theA R parameters can be derived:

= —¢r;

Cp = —Qp —
j=1

k—1
Gr—jcj, 1 <k<p;

| =

p
1
ck:—;(l—g)gbjck_j, k> p.
Thus, for several decades, the cepstral distance:

k

Dok = | > lews — eyl (12)

Jj=1

had been widely applied to signal processing both for spesmbgnition
and biomedical signal classification (see for instance Gray Markel,
1976; Kanget al. 1995). More recently, Kalpakist al. (2001) investi-
gated the use of the Euclidean distance between cepstiféiceogs for
data mining purposes comparing it with other dissimilacitiyeria.

Note that, in the expression (12), the tefem, — ¢,0)* = In(02/02)
is omitted since it is the log of the White Noise variance ratnl hence
it simply represents a scale factor. Moreover, the cepswafficients
quickly decay to zeros, and then, by analogy to previous oausthjust
a few number of cepstral coefficients], have to be stored for indexing
purposes so that the Euclidean distance will be computedeoimuncated
series of cepstral coefficients.

Finally, an interesting interpretation can be given by cd&sng that:

dw
2
| o (13)

2% +0(02/02) = [ | fw) I ()

When the WN variances are equal, the cepstral distalcex is related
to the root mean square distance between the log spectra.
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Several improvements have been proposed for speech récogmir-
poses such as the use of Mahalanobis distance or the intronlut a
weighted Euclidean distance in which each coefficient ipgmweighted
by the inverse of its variance in order to enhance the cartdb of
weights with lower variability (Tohkura, 1987).

5.1. The AR metric

As mentioned before, the strong premise of data mining, vénalu-
ates similarity of time series patterns, limits the role tofistural dissim-
ilarity measures. As a matter of fact, when the data gemgratiocesses
become the terms of the comparison, the fact that, accotdirspme
metric, two stochastic processes are very close does ndy gt the
patterns of the specific observed trajectories look ‘vigualose. How-
ever, some attempts have been made in order to move thealedeans
on structural dissimilarity.

Piccolo (1984, 1990) proposed a distance criterion whiahpgares
the forecasting functions of twd R/ M A models given a set of initial
values. In particular, assuming th&t is a zero mean invertible process
which admits theA R(co) representationst(B)Z; = a., the m-weights
sequence and the WN variance completely charactéiizgiven the ini-
tial values).

Exploiting this result the following distance can be intnodd as a
measure of structural diversity between tw& 7 M A processes with given
orders, X; andY;:

Dap = (Taj — ;)" (14)
1

J

As before, the WN variances are not included in the distance fo
mulation since they depend on the units of measurement. fiegi@n
has been widely experimented (see Piccolo, 2007 for a r¢\aew the
asymptotic distribution of ML estimator dP 4z has been derived under
general assumptions (Corduas, 2000; Corduas and Piccol@).208e
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approach developed is particularly interesting sincedtioes the prob-
lem of comparing time series to an hypotheses testing probled pro-
vides a more objective strategy for assessing the sinyilafitwo time

series.

It is worth noting that the distance betwedi?/ M A processes has
been re-discovered by several contributing authors in ohaténg litera-
ture. For instance, Dergf al. (1997) suggested to compress information
concerning a time series by retaining the estimated pasmet the cor-
respondingA RM A model. However, the metric that they proposed was
not effective since they measured the distance betweenrnvecsseries by
comparing thedA R and M A coefficients separately and it is well known
that those components have a very different role in detengithe dy-
namics of a time series. Moreover, the presence of redugdarame of
the models may originate a very large distance between &messwhich
are instead very close.

Recently, Bagnall and Janaceck (2005) proposed to transkiteea
series into binary sequences considering the median ofatee ab ref-
erence and to exploit the relationships between Gaussih\/ A pro-
cesses and binary time series (see Kedem, 1980) in ordedtcedhe
amount of storage and computational resources for timeseampatri-
son. They applied thel R metric (14) to cluster the transformed binary
time series. The approach proved to be useful when data \ffectesl by
outliers; in addition the technique achieved a clusteriogueacy which
was equivalent to that obtained by cepstral distance.

Moreover, Baragona and Vitrano (2007) compared the perfocma
of the AR metric with a criterion based on cross-correlations foradat
mining purposes.

In this respect, although one of the objective of data mimsngduc-
ing computing time and resources, we still believe that Al7é metric
is a valid alternative to other measure dissimilarity. Ihdze directly
applied to the original observed time series by using anmatc mod-
elling procedure. In this respect, Let al. (2001) provides a relevant
case study which shows that preliminary modelling is not lastacle to
analyses involving very large time series databases. faqalyj, they in-
vestigate the use of well known techniques for automatiatifieation of
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time series models in order to solve a forecasting probleawvadridwide
multi-brand fast-food restaurant chain at store and catedevel.

In the same vein, for instance, the Mahalanobis distancedmsst
Autoregressive A R) models was widely applied to speech recognition.
Again, the approach was developed in an hypotheses teséingework
(see, Thomson and De Souza, 1985, and references thereirtecp
Xiong and Yeung (2004), instead, introduced a model-basestering
approach based on mixtures 4 // A models.

6. Final remarks

Many other measures were introduced in literature such @sepi
wise normalization (Indylet al. 2000), piecewise aggregate approxima-
tion, piecewise probabilistic measures (Keogh and Smyafo}, cosine
wavelets (Huntal&t al. 1999), the characteristic-based clustering (Wang
et al. 2006) etc. This article only considered the main approaatesh
have assumed some importance in this research area.

Much of the work on time series data mining was developed by th
database community that has often rediscovered criteribkwewn in
statistics (see Corduas, 2003). In this respect the recaetwrdy Keogh
and Kasetty (2003) is illuminating: hundreds of papers hatreduced
new dissimilarity measures and algorithms to index andsdlaime se-
ries but only a few of them have really proved to be effectiviawespect
to other existing criteria. Moreover, the comparison isfoeed to a mere
description of observed time series patterns and no attenpiroduce a
testing hypotheses framework has been done.

This fact proves that, despite several recommendationsetorbe
more involved with data mining problems (Hand, 1998), thatabu-
tion of statistics and statisticians to this research agestill scarce and a
systematic cooperation with other disciplines is required
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