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1. Introduction

Although the Gaussian model has a prominent role in statistical
applications, the analysis of real data often leads to reject the
hypothesis that data have been generated by a normal distribution
(Hampel et al., 1986; Hill and Dixon, 1982). In these circumstances
the adoption of more flexible models, which allow to represent data
generated by distributions in a neighbourhood of the Gaussian one,
may be appropriate. In particular, models which embed the Gaussian
distribution as a special case, are of great interest, since their use
permits to deal with deviations from normality, while preserving the
possibility to test the adequacy of the Gaussian distribution to the data.
The first papers along this direction (Subbotin, 1923; Box, 1953;
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Vianelli, 1963; Mineo and Vianelli, 1980) propose the normal
distribution of order α, the so-called generalized normal distribution
(g.n.d.) or exponential power distribution, which fits data with heavier
tails for appropriate values of α. Actually, for α=1 it yields the
Laplace distribution, for α=2 it yields the normal model, while the
limit distribution, for α→∞, is Uniform in the range [ σσ,− ] (Chiodi,
2000). Here we focus on the g.n.d. with values of  α between [1,2].

The use of the generalized distribution to fit heavy tailed
distributions, has been suggested by several authors (D'Agostino and
Lee, 1977; Hogg, 1974; among others) as an alternative to the robust
approach (Staudte and Sheather, 1990). The idea underlying the latter
approach is that the assumed model tipically provides only an
approximation to reality while the actual distribution belongs to a
neighbourhood of this model. An approximated model can be adopted
because of its simplicity, as it is often the case when the normal model
is assumed. In some cases, this approximating model is regarded as
the model which fits the majority of data. Under these circumstances,
robust statistics has developed a set of inferential procedures
producing reliable results even when the model is mispecified to some
degree.  In an estimation context, the use of robust techniques leads to
some efficiency loss if the assumed model is correct. On the other
hand, it avoids inconsistent results when the model is only
approximately true. In particular, it yields to estimates which do not
significantly differ from the actual value of the parameters under the
assumed model. However, the meaning of “actual value of the
parameters” is not always clear. If the model is a family of
distributions, the value of the parameters might be such that the model
is as close as possible to the actual distribution or, alternatively, such
that it gives the best fit to most of the data. Indeed, it is not always
clear whether the approximation of the model affects the value of the
parameters which are to be estimated.

The circumstance that the interpretation of the estimated
parameters is sometimes ambiguous may be made clear by a simple
example. Let us consider the case of a location-scale model: if the data
have a symmetric distribution, the location parameter is clearly
identified with the centre of the distribution, whereas what is
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estimated as a scale parameter is not obvious. When the true model is
in a neighbourhood of the normal model, one may wonder whether the
estimated scale parameter is the variance of the approximating model
or should be differently interpreted. In particular, one may wonder
whether the estimated parameter has to be interpreted as the scale of
the entire data set or as the scale of the majority of the data.

In order to overcome these ambiguities, when the true distribution
is in a neighbourhood of the normal model, inference can be carried
out under the generalized normal distribution. By varying the value of
α, this model fits data with heavier tails and can therefore be viewed
as a flexible model able to cope with deviations from normality. In
this respect, we shall refer to this model as a “robust model”. Its use,
as an alternative to robust inference, has the advantage that the
estimated quantities have always a clear interpretation as the
parameters of a given model.

Furthermore, another important advantage that arises when the
g.n.d. is used to cope with deviation from normality is that standard
inferential procedures, based on the likelihood function, can be used.

As a matter of fact, the type of deviations which are taken into
account when considering the g.n.d. with α∈[1,2] are in the specific
direction of heavier tails. Although this is not the only possible
deviation, it is definitely the most frequent one. A more serious
concern is how relevant this type of deviation can be. As it will be
clear in the next section, the g.n.d. considers exponentially decreasing
tails (the limit distribution obtained when α=1 is the Laplace
distribution), thus the extent of its applicability has to be investigated.
Of course, the reliability of the estimates obtained on this model
depends on their influence function, which is to be compared with that
of popular robust estimators.

The flexiblity of the g.n.d. in a neighbourhood of the normal model
is obtained by considering an additional parameter, beyond location
and scale. Thus another issue that has to be considered is the
following one: if the actual distribution is normal, it is desirable that
the presence of an additional parameter has little effect on the
efficiency of the estimators of location and scale. In other words,  a
question to be investigated is whether the need of estimating α leads
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to an efficiency loss in the estimation of the other parameters under
the normal distribution.

The inferential aspects of the extension of the Gaussian distribution
have been studied by some authors. In particular Agrò (1995) obtained
the maximum likelihood (ML) estimates for the three parameters and
derived the covariance matrix. He also examined the regularity
conditions which ensure the asymptotic normality and efficiency.
However the robustness properties of the ML estimators have been
only partially investigated for the location parameter by D'Agostino
and Lee (1977) and the influence function has not yet been studied.

The outline of the paper is the following: in section 2 we introduce
the generalized normal distribution, define the ML estimators and
their asymptotic covariance matrix. In section 3 the robustness
properties of the ML estimators are considered by means of the
influence function. In section 4 ML estimators are compared with the
Huber estimator proposal II and with the estimators of the location
and scale parameters of the Student t distribution.

2. The generalized normal distribution

Let X be a generalized normal variable of order α, with location
parameter µ and scale parameter σ. The probability density function
of X is given by

for +∞<<∞− x , where )/1(2)( 1/1 ααα α Γ= −c , its expected value is
equal to µ while its variance is
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so that nµ  is given by
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Given that ]1,0[1∈−α , )(⋅ω  decreasingly weighs the observations
which are far from the remaining bulk of the data.

In the same way, the estimator of the scale parameter is given by
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The considerations expressed for )(⋅ω in nµ  still hold.
In order to evaluate the efficiency of the ML estimators, we need to

calculate the inverse of the information matrix defined as (Agrò,
1995)
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compare the asymptotic variance of the location and scale estimators
of the g.n.d. with the variance of the corresponding estimators under
the Laplace and the Normal distribution. For  α=1 we have that
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When we use the g.n.d. to estimate the location parameter, in both
cases for  α=1,2 the asymptotic variance of the estimator does not
change. On the other hand, regarding the σ estimator of the g.n.d., for
α=2 its asymptotic variance is equal to (1.19/n)σ2, that is bigger than
the variance obtained for the normal r.v (0.5/n)σ2; and, in the same
way, for  α=1, the asymptotic variance of the estimator is (1.62/n)σ2

while it is (1/n)σ2 for the Laplace distribution. We can conclude that
by using the g.n.d. as a model to estimate the location and scale
parameters of the Normal and Laplace r.v.'s, the estimators  µn and σn

are still uncorrelated but we have a loss of efficiency caused by a
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larger variance for σn. Furthermore, we have to estimate the parameter
α, positively correlated to σ.

3. The robustness properties of maximum likelihood estimators

In order to study the behaviour of the maximum likelihood
estimators of the parameters of the g.n.d., we have to derive the
influence functions (IF) (Hampel et al, 1986: p. 230) of the estimators
and study their properties.

For ML estimators the IF is given by
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Figure 1 shows the IF of µ for discrete values of α=1,1.2,1.5,1.8,2.
For α=1, the IF is bounded as this is the case of the Laplace
distribution where the median is the estimator of the location
parameter. On the other hand, for α=2, the g.n.d. reduces to the
Normal r.v., so the estimator of the location parameter is the sample
mean, whose IF is unbounded. For values of α between 1 and 2 the
IF's of µ are still unbounded but they go to infinity at a slower rate as
α approaches 1. This is due to the fact that, as showed by (4),
observations located far away from the mean have a smaller weight in
the estimation process that they would get when the location
parameter is estimated by the mean. As a drawback, as α approaches
1, the IF becomes steeper and steeper, so that the estimator becomes
extremely sensitive to the rounding errors of the data which are
located around the location parameter.
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Figure 2 shows the IF of the scale parameter for discrete values of
α=1,1.2,1.5,1.8,2. The corresponding estimator appears very sensitive
to outlying observations. In particular, when α is greater than 1.5, the
IF diverges rather quickly.
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Figure.1. The IF of µ  under the g.n.d.
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 Figure 2. The IF of σ under the g.n.d .
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Figure 3 shows the IF for the parameter α for discrete values of
α=1,1.2,1.5,1.8,2. The IF of α is close in shape to the IF of σ but,
especially when α is greater than 1.5, it increases at a rather high rate.
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Figure 3. The IF of α under the g.n.d .

4. A comparison between the generalized normal distribution and
alternative approaches

In the context of location-scale models, the natural competitor to
the estimators obtained under the g.n.d. is the Huber estimator
proposal II (Hampel et al., 1986). The  )(⋅ψ function for the location
parameter is defined as
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Figure 4. The )(⋅ψ  function of Huber estimator of the location parameter
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     Figure 5. The )(⋅ψ  function of Huber estimator of the scale parameter
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Figures 4 and 5 show the plots of the )(⋅ψ  function of the Huber
estimator proposal II for the location and scale estimators, for b=1.5.

Although the IF of the estimators obtained under the g.n.d. and that
of the Huber estimator proposal II are not comparable, as they depend
on the model, an insight on the relationship between the two
approaches can be obtained by comparing their )(⋅ψ  functions for
values of  b=α (Figures 6a-e and Figures 7a-e).

 x

-4 -2 0 2 4

-1
.0

-0
.5

0
.0

0
.5

1
.0

      x

-4 -2 0 2 4

-1
.0

-0
.5

0
.0

0
.5

1
.0

Figure 6a. Huber and ML estimators            Figure 6b. Huber and ML estimators
             of µ, for b=α=1.                                           of µ, for b=α=1.2
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Figure 6c. Huber and ML estimators            Figure 6d. Huber and ML estimators
             of µ, for b=α=1.5.                                        of µ, for b=α=1.8
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Figure 6e. Huber and ML estimators
                                                  of µ, for b=α=2.
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   Figure 7a. Huber and ML estimators       Figure 7b. Huber and ML estimators
               of σ, for b=α=1.                                       of σ, for b=α=1.2
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   Figure 7c. Huber and ML estimators       Figure 7d. Huber and ML estimators
               of σ, for b=α=1.5.                                     of σ, for b=α=1.8
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 Figure 7e. Huber and ML estimators
                                                      of σ, for b=α=2.
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For b=α=1, the estimator of the location parameter obtained under
the g.n.d. is more sensitive to rounding errors than the Huber
estimator. In fact the former, being a signum function, has a
discontinuity for x=0 while the latter varies in the range [-1,1] for
x∈[-1,1]. For |b|>1 the two estimators are equivalent. For b=α=2, the

)(⋅ψ  functions coincide for x∈[-2,2], i.e. for the central 95% of the
normal distribution, then it goes to infinity for the ML estimator while
for the Huber's estimator it is bounded. For intermediate values of
1<b=α<2, the )(⋅ψ  functions are roughly the same within the range
x∈[-b,b]. The overlapping improves as far as b=α tend to 2.

As regards the scale parameter, the )(⋅ψ  functions tend to overlap
as far as b=α tend to 2, for values of x in the range [-b,b], then the
Huber estimator )(⋅ψ  is bounded while for the g.n.d. the )(⋅ψ
diverges.

In this section we also compare the robustness properties of the
location and scale estimators of the g.n.d. with those of the t
distribution. Many authors suggest to use the t distribution as a model
for the data, instead of the normal distribution, because it is
symmetric, can be parametrized by location and scale parameters
(Fraser, 1976) and has the great advantage to fit distribution with
heavier tails. In this respect it can be regarded as a robust model as
well as the g.n.d.. A comparison between these two models has been
conducted by D'Agostino and Lee (1977), who focused on the
robustness of location estimators under changes of kurtosis for the two
distributions.

The density function of the t distribution with ν degrees of
freedom, location parameter µ and scale parameter σ, is
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By remembering that the )(⋅ψ  function is equal to the score
function, we plotted the two score functions for different values of
ν=3,5,10. Figure 8 shows the )(⋅ψ  functions of the location estimator
which are redescending. The )(⋅ψ  function for the scale parameter is
depicted in Figure 9, as |x|→∞ it approaches ν, the d.f. of the referring
t distribution, while the )(⋅ψ  function of the ML estimator diverges
for |x|→∞. Compared to the )(⋅ψ  functions of the estimators of the
g.n.d. parameters, they show a better performance given that they are
bounded functions and therefore more robust in the presence of
outliers.
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    Figure  8. The )(⋅ψ  function of the location estimator of the t distribution
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Figure 9. The )(⋅ψ  function of the scale estimator of the t distribution
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5. Final remarks

In this paper we analysed some robustness properties of the
generalized normal distribution, for α∈[1,2]. The IF’s for the ML
estimators of the g.n.d. were derived and plotted for different values of
α. The advantage to use the g.n.d. is the possibility to refer to a well
defined model, even if this leads to a loss of efficiency for the
asymptotic variance of the scale estimator which increases as α
increases. Furthermore the ML estimators are sensitive to outlying
observations. In fact their IF’s are unbounded, mostly if compared to
the Huber estimator proposal II and to the location and scale
estimators of the t distribution. From this point of view, it seems
preferable to refer to the Student t distribution as a robust model.

Here we focused on the properties of the ML estimators of the
location and scale parameters, considering α fixed. Possible further
research can be carried out by estimating α from a real data set in
order to test the fitness of the data to the Gaussian distribution.
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