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Summary: The number of reported cases of measles, in the pre-vaccination period in 
large communities, are generally characterized by the presence of a seasonal 
component and a long-term cyclical component which ranges, in general, between two 
and four years and which is better known as the inter-epidemic period. Researchers 
tend to resort to causal mathematical models in order to explain the inter-epidemic 
period, paying less attention, with some rare exceptions, to stochastic statistical 
models. This paper illustrates how simple time series autoregressive moving average 
models could provide a better fit to the long-term dynamics of the spread of measles 
and then proceeds to an analysis of the long term component in each series in an 
attempt to discover whether clusters of Regions having the same time path can be 
defined.  
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1. Introduction 
 

Many time series reporting the cases of childhood infectious disease 
on a weekly or monthly basis exhibit a trend, a 12 month cycle and a 
longer cycle, which may be taken as a proxy for the so called inter-
epidemic period, of varying length; bi-weekly data for English and 
Welsh urban centres exhibit a surprisingly regular two year cycle (see 
Bjornstad et al. (2002), Grenfell et al. (2002)), whereas Italian data 
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collected for each of the 20 Regions appears to have an inter-epidemic 
period which, on average, is slightly longer than three years (see 
Manfredi et al. (2002)). Many explanations are possible for these 
differences, beginning from the different geographical areas considered, 
but before that can be seriously done, it is fundamental that a better 
understanding of the Italian data be gained. In Manfredi et al. (2002)  an 
analysis of the cyclical behaviour of the monthly regional time series 
was carried out. In this paper the long-term cycle is scrutinised in more 
detail by means of time series analyses carried out mostly in the 
frequency domain.  

Before being analysed, the series were log transformed, then 
detrended using a deterministic function of time and finally 
deseasonalised using monthly dummies; several tests, including those 
by Dicky and Fuller (1979) and by Philips and Perron (1988) rejected 
the unit root hypothesis. A value of one was added to each data point 
before the log transformation to avoid the problem of log(zero) for 
those months, few in number, when no cases were reported. A 
numerical illustration which justifies the detrending and 
deseasonalisation methods used here may be found in Cleur et 
al.(2003). 

We begin by identifying the peak frequencies of the long-term cycle 
through a non-harmonic Fourier analysis and then compare these results 
with those provided by a deterministic compartmental mathematical 
model of the SEIR type (Manfredi et al. (2002)). The paper then 
proceeds with the estimation of univariate autoregressive (AR) models 
and their transformation to the frequency domain in order to obtain the 
parametric spectra. The ability of the parametric spectra to reproduce 
the cycles identified through the non-harmonic Fourier analysis is taken 
as a criterion for evaluating these time series models.  Finally, the long-
term components are estimated via the demodulation-remodulation 
technique and an attempt is made to classify their evolution in time into 
distinct groups.  

This study considers only the pre-vaccination data, i.e. January 1949 
to December 1976, for the simple reason that the true dynamics of the 
disease are not affected and altered by an external regulator such as 
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vaccination. The Italian regions are treated as separate epidemiological 
units. 

 

2. Identification of the peak frequency of the inter-epidemic period 
 

Research into the transmission dynamics of infectious diseases such 
as measles has tended to favour a deterministic mathematical models 
approach focusing on the causal mechanisms underlying the infection 
process.  

Such an approach relies on deterministic compartmental models 
(Anderson and May, 1991) often having the SEIR structure by which 
individuals who experience the infection are assumed to move from the 
susceptible (S) state to the exposed state (E), in which individuals are 
infected but not yet infectious, then to the infected (I) state, in which 
individuals are capable of transmitting the infection, and finally recover 
from the disease, by entering the removed (R) state, in which they are 
permanently immune. Statistical modelling, on the other hand, has 
rarely been taken into account with very few significant exceptions such 
as Anderson et al. (1984), Bjornstad et al. (2002), Finkenstadt et al. 
(1998a, 1998b, 2000) and Grenfell et al. (2001, 2002) in which 
demographic variables such as age structures, birth rates and population 
size play a fundamental role in explaining the dynamics of the number 
of infected cases. 

A simple form of the SEIR model, for details see Manfredi et al. 
(2002), provided among other results estimates of the inter-epidemic 
period, reported in the first column of Table 1, for each of the 20 Italian 
Regions. These results, in contrast with those obtained for England and 
Wales, reveal dynamics which are not common to all Regions and this 
makes it extremely difficult to understand the mechanisms which 
generate the spread of the disease. 
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Table 1. Periodicity (in months) of long term cycle identified by non - 
parametric spectral analysis, by direct estimation of the peak frequency, 
and by the parametric estimate of the spectrum. 
 

Periodicity of long-term cycle 
SEIR model

1971-76 
Nonparamet 

spectrum 
Direct 

method 
Parametric 
spectrum 

 
Lag AR 
model 

Val d’Aosta 37.2 42 38.55 38.57 27 
Piemonte 37.2 30 28.69 29.92 30 
Lombardia 34.8 30 28.43 28.43 9 
Veneto 36.0 36-42 38.55 38.55 8 
Trentino 34.8 36 34.15 34.33 23 
Friuli 36.0 36 33.24 33.78 33 
Emilia-Rom. 37.2 42 40.02 40.02 32 
Liguria 39.6 60 64.11 58.72 36 
Toscana 39.6 36 34.15 34.15 17 
Umbria 38.2 42 40.80 41.07 16 
Marche 38.2 42 39.27 39.27 23 
Lazio 37.2 42 38.79 40.80 7 
Abruzzo 37.2 48 40.80 40.27 25 
Molise 36.0 60 70.60 77.57 14 
Campania 34.8 36 36.32 35.70 34 
Puglia 33.6 48 45.53 45.53 35 
Basilicata 33.6 48 44.88 30.65 17 
Calabria 34.8 36-42 41.34 40.54 34 
Sicilia 33.6 36 37.62 37.62 30 
Sardegna 34.8 48 45.53 45.53 27 

As against this procedure, based on causal relationships, results from 
a univariate time series approach based on spectral analysis were also  
reported in Manfredi et al. (2002). Briefly, it was observed that the non-
parametric estimate of the spectral density for each series was 
concentrated in three narrow frequency bands: (in order of magnitude) 
around frequency π/6 corresponding to the annual cycle, around zero 
frequency which was identified as being due to a gradually decreasing 
trend and, finally, around a frequency with periodicity varying between 
3 and  5 years. As often happens, the spectral analysis was able to 
establish only tentatively the peak frequency at which the long-term 
cycle was present. A more precise knowledge of the peak frequency is 
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obtained in this paper via the following non-harmonic analysis (see 
Damsleth and Spjotvoll (1982)) instead of the classical periodogram 
analysis  which assumes that the periodicities of the cyclical 
components are dependent on the length of the series, T, an assumption 
not often confirmed by empirical data. 

Suppose that λ is the true peak frequency of a cycle in the series 
analysed, Xt ; since λ need not be a function of the length of the series 
analysed, the cycle often corresponds to a non harmonic function. Then 
one might estimate λ by minimizing the quantity  

 
Q(α, β, λ) = ∑

t
[ Xt − µ − α cos(λt)  − β sin(λt) ] 2 (1) 

Where µ is the mean of the series, α and β are unknown Fourier 
coefficients and  λ is the desired peak frequency. 

The spectral density may be used for identifying a starting value for 
λ. This procedure encounters problems if many cycles are present at 
nearby frequencies. For this reason, the procedure followed in this 
paper was to apply ordinary least squares in minimizing (1) with respect 
to α and β, over a grid of frequencies centred around the starting value 
suggested by the spectral density estimate. This grid search method 
finally provides estimates of λ as well as of the corresponding  α and  
β. As can be seen from Table 1 the starting value, in column two, and 
the final result, in column three, are not too far apart. The peak 
frequencies correspond to periods varying from approximately 28 
months in Piemonte to 70 months in Molise; Molise is a rather special 
case due to it being a very small region with a very sparsely distributed 
population. On the other hand, in most cases there is little agreement 
between the periodicity identified this way and that predicted by the 
SEIR model which consequently obliges us to conclude that the 
mathematical modelling carried out, although useful for causal analysis, 
needs to be refined if we are to have a clearer understanding of the  
phenomena. 

Having ascertained that a deterministic compartmental mathematical 
model of the SEIR type very often failed in correctly predicting the 
long-term cycle (it should be stated that this was not one of the 
objectives of that analysis although, a posteriori, it evidences one of the 
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shortcomings of the estimated mathematical model), we proceed with 
an investigation into the use of AR models as a more reliable 
alternative.  The question to be answered is whether AR models can 
provide a better prediction of the long-term cycle. 

 

3. AR models  for  the inter-epidemic period. 
 
For investigating the capability of an AR model in predicting the 

presence of a long-term cycle in the spread of measles, resort is again 
made to a frequency domain analysis and, in particular, to  the 
parametric spectrum (see Hamilton (1994), Priestley (1981)) 
corresponding to the estimated AR model. If the estimated parametric 
spectrum indicates the possible presence of a cyclical component which 
has a periodicity near that identified above from an application of the 
Damsleth and Spjotvoll (1982) procedure, we will conclude that the 
parametric model for which the spectrum was calculated provides a 
reliable prediction of the inter-epidemic period. 

The models have been estimated from the pre-whitened (detrended 
and deseasonalised) data and the criterion  for determining the order is 
the following: 

2))(( parspdmMin
p

−
where dm is the periodicity determined by the Damsleth and Spjotvoll 
method and arsp(p) is the periodicity corresponding to the peak 
frequency in the autoregressive spectrum calculated from an 
autoregressive model of lag p. The maximum lag was arbitrarily set to 
36. The relevant results are summarised in the last two columns of 
Table 1.

The parameter estimates and their standard errors in each AR model 
are not reported here in order avoid problems connected with the 
presentation of a notable amount of information in a single Table and 
limited space, but they may be obtained shortly from the authors web 
site www.cleur.ec.unipi.it.

Since the parametric spectrum may be estimated at any frequency  in 
the interval [0, π] this makes it possible to identify the peak frequency 
up to any desired degree of  precision.  
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As can be seen from Table 1, the long-term cycles reproduced by the 
spectra of the identified AR models, with the exceptions of Liguria and 
Molise, are in close agreement with those identified in each series using 
a direct estimate of the peak frequency. This suggests that, if good 
fitting is an objective of the analysis, then high order AR models, 
although lacking the capacity to explain causal relationships, could 
provide a good alternative to the more popular mathematical models 
used in this field of research. We could also reasonably go on to 
conclude that given the better prediction of the long-term cycle, the AR 
models should provide better forecasts for the individual series. 

 

4. Isolating the long-term cycle 
 
Attention will now be given to a more detailed analysis of the long-

term component in each series. To do so we must first be able to extract 
this component through filtering. 

It is widely accepted that cyclical behaviour in phenomena like the 
spread of measles is never regular, but varies in periodicity as well as in 
amplitude; for instance, the annual cycle identified and estimated by 
time series methods is a sort of average of  oscillations with periodicity 
varying around 12 months, i. e. in a frequency band around frequency 
π/6. Hence when attempting to estimate the annual cycle, we are never 
interested in the component at frequency π/6, but rather in components 
varying in a narrow band of frequencies around frequency π/6. The 
same is true of the long-term cycle. This objective may be realised by 
applying demodulation-remodulation techniques (see Granger and 
Hatanaka (1964) for a clear and simple description). Briefly the method 
consists in the following: 

Suppose we are interested in isolating the component around 
frequency λ0 in the series Xt. First demodulate by forming the series 

 
Ytc = Xt cos(λ0 t)      and  Yts = Xt sin(λ0 t) 

 
Next, filter the series  Ytc and  Yts using a low pass filter, [.]F , with a 
narrow bandwidth to form the series 
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is the instantaneous power of the spectrum of  Xt , at time point t, and is 
useful for discovering changes in the power of the spectrum over time.   

An estimate of the desired component may be obtained by 
remodulating, i. e. by forming  

 
Xt(λ0) = 2 c

tY~ cos(λ0t)  +   2 s
tY~ sin(λ0t)                   

 
Often moving averages are used in defining the low pass filter. This 

has the big disadvantage of resulting in losses of averages at the 
beginning and end of the series. This problem is overcome here by 
applying  kernel smoothing as a low pass filter. In particular, if  Xt is to 
be smoothed, the following kernel smoothing is carried out (see Wand 
et al.(1995), Shumway(2000)): 
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is the Naradaya-Watson density estimator with i, t = 1, 2, … , T; )(⋅K is 
the standard normal kernel function with  b= 40  which was set after 
experimenting a number of values.  
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Figure 1.  Long-term components estimated by demodulation-
remodulation. Northern and Central Italian Regions. 
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Figure 1 (contd.).  Long-term components estimated by 
demodulation-remodulation. Central and Southern Italian 
Regions. 
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Figure 2. Instantaneous Spectrum of long-term component. Northern 
and Central Regions 
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Figure 2 (contd). Instantaneous Spectrum of long-term component. 
Central and Southern Regions 
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The estimated long-term components in each regional series and the 
corresponding instantaneous spectra are shown in Figures 1 and 2
respectively. Comments on single graphs would be of little use and will 
therefore be avoided. The amplitudes of the long-term cycles are clearly 
non stationary and do not follow the same pattern for all the Regions. 
However, from a visual examination of the graphs in Figures 1 and 2,
where t=1 corresponds to January 1949, and from the correlation matrix 
of the long-term components reported in Table 2, the following 
similarities may be observed: 
- Umbria, Marche and Lazio, form the core of a cluster of Regions also 
comprising Abruzzo, Emilia-Romagna and Campania; 
- a smaller cluster of Regions is formed by Friuli and Trentino together 
with Veneto; 
- there are also two isolated high correlations between Piemonte and 
Lombardia (0.91) and between Puglia and Basilicata (0.83). 

A further observation may be made on examining Figure 1. It 
appears that when the number of reported cases reaches an unusual ( for 
the particular series) low (see the trajectories for Friuli, Emilia-
Romagna, Toscana,  Molise), it takes some time before the 
phenomenon returns to it’s previous level. Such a behaviour often 
suggests dynamics that are amplitude dependent. 

Confirmation of the similarities observed above is given by a 
principal components analysis carried out on the correlation matrix of 
the estimated long-term components. There is no universally 
established and reliable method for determining the number of principal 
components to take into consideration, so the widely used empirical 
rule of considering only those which together account for 
approximately 80% of the total variance will be applied here; the first 
five principal components account for 76% of the total variance. The 
correlations between each of these components and the 20 Regions are 
reported in Table 3  and are useful for purposes of identification. In 
fact, paying attention to correlations which are greater than 0.70, this 
too is a common practice, leads to the following conclusions: the first 
principal component (27% of total variation) may be associated with the 
Regions Umbria, Marche, Lazio, Abruzzo, Campania and Emilia-
Romagna, and the second principal component (15% of total variation) 
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with Regions Veneto and Friuli (the correlation with Trentino is just 
below 0.70). In other words, the first two principal components in order 
of importance identify the same cluster of Regions obtained above from 
an examination of the correlation matrix between the estimated long-
term components and the visual examination of the instantaneous 
spectra  and time paths of the long-term component in each Region. If 
we ignore Emilia-Romagna, we may conclude that the analysis carried 
out so far has identified a relationship in the long-term spread of 
measles in nearby areas.   

 
Table 3. Correlations between first 5 principal components and  

the Regions (p.c. = principal component) 
Region p.c. 1 p.c. 2 p.c. 3 p.c. 4 p.c. 5 

Val d'Aosta -0,0104 -0,0965 0,8238 -0,1645 -0,0406
Piemonte 0,3042 0,4606 0,585 0,0569 0,0853
Lombardia 0,2971 0,4058 0,5527 0,0578 0,0896
Veneto 0,107 0,9006 -0,1564 0,0692 -0,0321
Trentino 0,5087 0,695 0,1961 0,0605 0,0298
Friuli 0,3117 0,7394 0,1568 0,0549 0,0061
Emil-Rom 0,784 0,1958 -0,4251 -0,0446 0,0557
Liguria 0,0309 -0,0766 -0,0345 -0,1326 0,8922
Toscana 0,4576 -0,1793 -0,1912 0,2314 0,0393
Umbria 0,8749 -0,2055 -0,0001 -0,2992 -0,0618
Marche 0,9414 -0,2622 -0,0235 -0,0013 -0,0089
Lazio 0,787 -0,2739 -0,0772 -0,2305 -0,0132
Abruzzo 0,8075 -0,2998 0,0001 0,0825 -0,1094
Molise 0,0391 0,04 0,058 0,2169 -0,8451
Campania 0,7272 -0,22 0,4832 -0,2169 -0,0429
Puglia 0,3748 -0,2036 0,0109 0,7851 0,1673
Basilicata 0,3683 -0,2342 0,0694 0,8543 0,0696
Calabria -0,2752 -0,1061 0,67 0,425 0,1136
Sicilia 0,2385 0,4952 -0,6025 0,3684 0,0499
Sardegna -0,3663 -0,1777 0,0436 0,5759 -0,0016
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The remaining three principal components taken into consideration 
indicate three additional and distinct patterns among the long-term 
components, i. e., the distinct trajectory for Valle d’Aosta which is 
correlated with the third principal component (13% of total variation), 
the common path for Basilicata and Puglia (remember the correlation 
coefficient between these two components in Table 2 is 0.83) which 
identifies the fourth principal component (12% of total variation), and, 
finally, the contrasting trajectories present in the long-term components 
for Liguria and Molise, both with a relatively long periodicity of 
approximately five years, and associated with the fifth principal 
component (8% of total variation). 

 

5. Conclusion.

Epidemiologist as well as sanitary authorities are interested in the 
mechanisms which might generate the spread of infectious diseases. It 
is natural that causal models, which often take into account 
demographic variables, should constitute the main theoretical tool of 
analysis. However, evidence at times suggests shortcomings in such an 
approach and this gives rise to the need for alternative analyses. There 
is not much evidence in the published literature of  the methods of time 
series analysis applied in this paper although their usefulness is well 
illustrated here. 

We have shown that AR models, identified through a comparison of 
the parametric and nonparametric spectra, are capable of providing 
better predictions of the long-term cycle in the regional spread of 
measles during a pre-vaccination period in Italy than one of the 
commonly used causal mathematical model. This leads to the 
possibility of obtaining better forecasts, although a causal explanation is 
missing. 

Unlike England and Wales where the long-term cycle has a constant 
periodicity of two years, the Italian regions are characterised by long-
term cycles which vary from just over two years to more than five years 
which means that inter-regional relationships are limited or not simple 
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to model. However, the estimates of the trajectories of the long-term 
cycles have enabled us to identify, principally, two cluster of regions 
with similar dynamics. The interesting point with this result is that the 
regions involved are all neighbouring Regions in central Italy and in the 
north east. 

Finally, the information contained in Figures 1 and 2, such as the 
changes in the amplitudes of the long-term oscillations as well as 
changes in the power of  the spectrum in time, should be useful to the 
model builder in selecting those exogenous variables which would 
result useful in explaining such dynamics.  
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