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Summary: When the information matrix is singular the classic asymptotic properties
of the maximum likelihood estimator are not clear and an inferential procedure based
on it is not viable. In the paper a solution of a loglikelihood equation appropriately
penalized is shown to be consistent and asymptotically normal distributed with variance-
covariance matrix approximated by the Moore-Penrose pseudoinverse of the information
matrix. These properties allow one to get a quadratic function based on a standard Chi-
square distribution for hypothesis testing. A simulation applied to a simplified Engle’s
model is presented to support the theoretical results.
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be a density function continuous on
�

defining the dis-
tribution corresponding to the parameter

�
in a neighborhood of a true

unknown parameter value,
� �* 
+� � �* � �* � . Denote with , �-� * 	 the infor-

mation matrix in an observation. In this paper we tackle the problem of
the asymptotic properties of maximum likelihood estimator when , �-� * 	
is singular. We propose an estimator which allows one to make inference
on the whole set of parameters,

� * or on the parameter of interest
� * , say.
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Statistical literature on the singularity of the information matrix is
large (see Rotnitzky et al. (2000) and the associated bibliography). Mod-
els more relating to this paper concern hypothesis tests involving parame-
ters not identifiable under the null hypothesis. Models of this type abound
in nonlinear regression where several ad hoc solutions have been sug-
gested. For example, Cheng and Traylor (1995) proposed an “intermedi-
ate model” between the model where parameters are missing and where
they are present. The solution proposed is based on suitable reparame-
terizations and the success depends on how well the reparameterization
positions the “intermediate model” between the two extremes. This pro-
cedure seems to be very difficult to apply when the number of vanishing
parameters is relatively high. Davies (1977, 1987) proposed an interesting
approach to the problem of hypothesis testing when a nuisance parameter
is present only under alternative. Given a suitable test statistic he sug-
gested treating it as a function of the underidentified nuisance parameter,
basing the test upon the maximum of this function. The asymptotic dis-
tribution of this maximum is not standard but Davies provided an upper
bound for the significance level of his procedure. It has been observed
(Cheng and Traylor, 1995) that, though elegant, “Davies’ method is quite
elaborate to implement in practice and difficult to generalize”.

In general, most of the solutions proposed in the statistical literature
are based on suitable reparameterizations of the particular model analyzed
so as to remove the causes of singularity and to obtain (stable) asymptotic
estimates. As a consequences of this approach the solutions are often dif-
ficult to generalize because they usually depend on the particular issue
being investigated. not clear.

Perhaps the author who first suggested a solution to the singular-
ity of the information matrix susceptible of a generalization was Silvey
(1959). Within the non-identification problem he proposed to replace
the information matrix by , �-� * 	/.10 where

0
is an appropriate matrix

obtained imposing some restrictions on the parameters of the model so
that the restricted parameters are identified and the “new” matrix is pos-
itive definite. More precisely, he suggested to set

02
43(�! 35!
where36!

is the jacobian of 7 ad hoc constraints imposed on
�
. In his work

Silvey showed that statistical tests (Wald or Score) based on the inverse
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9� , �-� * 	:.;3<�! 36!�	�&�= are “standard” in the sense that under the
null hypothesis they are asymptotically central chi-square distributions.
Silvey’s approach is very simple and elegant but, is not applicable when
the singularity of , �-� * 	 cannot be removed by constraining some param-
eters because the singularity of the matrix is caused, for example, by one
or more nuisance parameters vanishing under the null hypothesis.

Several authors (Poskitt and Tremayne, 1981) have pointed out that, �-� * 	�& is a generalized inverse of , �-� * 	 . Then, a first step towards a
generalization of the above approach could be based on the search of an
estimator and consequently on the choice of an appropriate matrix

0
such

that a “standard” test based on a generalized inverse of the information
matrix is possible. Unfortunately, this approach is unfeasible because of
the non-uniqueness of , �-� * 	�& which causes some difficulties in finding
a test invariant to the choice of this matrix. To overcome the invariancy
problem we propose to replace , �-� * 	 & by the Moore-Penrose pseudoin-
verse , �-� * 	?> which always exists and is unique. Of course, in this case
the main problem is to find an estimator compatible (at least asymptot-
ically) with this matrix. The search of this estimator is the goal of the
paper.

The work is organized as follows. In Section @ we review the asymp-
totic properties of maximum likelihood estimator in the regular case. In
this section we repropose well known results which are preliminary for
subsequent sections. In Section A we analyze the consequences of the sin-
gularity of the information matrix on the asymptotic properties of maxi-
mum likelihood estimator. We show that in a neighborhood of the true pa-
rameter still exists a solution to the likelihood equations but this solution
is no more unique. Nothing we can say about the asymptotic distribution
of the estimator. Section B describes how to pick up one of the solutions
which exist near the true parameter. We show that such an estimate can be
chosen, following Silvey’s idea, replacing , �-� * 	 by , �-� * 	C.EDGF , with the
scalar

DEHJI
. We prove that this estimator is consistent and asymptoti-

cally normally distributed with variance-covariance matrix approximated
by the Moore-Penrose pseudoinverse. These properties allow one to con-
struct a Wald-type test statistic with a “standard” distribution both under
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the null and the alternative hypotheses. Finally, in Section K we analyzed
an application of the estimator proposed.

2. The regular case

The theory is said to be regular if, in a neighborhood of the true pa-
rameter

� * , “the log-likelihood function is closely approximated, in prob-
ability, by a concave quadratic function whose maximum point converges
in some efficient sense to the true parameter value as the sample size in-
creases. Conditions ensuring this are called regular conditions” (Cheng
and Traylor, 1995).

Let L�M 
�N��O��PQ�SR)� * PUT;V
W be a neighborhood of
� * where

PYX�P
is the

square norm; Z 
[� Z =�\ ZC] \ X^X^X \ ZG_ \ X^X^X^X`	 a given sequence of independent
observations on a and bdcfe�g �-�
	h
�i _jdk = bdcfe �:� Z j ���
	 the log-likelihood
function defined on

�
. We assume the following conditions (Aitchison

and Silvey, 1958).lnmfRo�
is a compact subset of the Euclidean p R space and

� * is an
interior point.l @ R For every

�q�r�
, s �-�t	u
�v * � bdcwe �:��� \ �
	x� that is, the expected

value of bdcfe �:���Q���t	 taken with respect to a density function characterized
by the parameter vector

� * , exists.l A R For every
�E� L:M (and for almost all

�u�y�
) first and second

order derivatives with respect to
�

of bdcfe �:���Q���t	 exist, are continuous func-
tions of

�
and are bounded by functions independent of

�
whose expected

values are finite.l B R For every
�h� L�M and for z \|{t\~} 
�m \������ p ,� �-�������C� j �C���'�C����	 bdcwe �:��� \ �
	 �t�y� ����	 where

v * � � ����	x��
1� ����	 .l K R For every
�)� L�M the information matrix in an observation, is

positive definite with latent roots � = T ��] T ���Y� T � � .
In the regular case the classical proof of the consistency of a solution

of the likelihood equations is based on the (asymptotic) analysis in L/M of
the behavior of the maximum point of the quadratic model obtained from
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a Taylor series expansion of � &�= bdcfe�g �-�
	 about
� *m� bdcfe�g �-�
	�
 m� bdcfe�g �-� * 	�. m� � � bdcfe�g �-� * 	��5. m@�� � � � ] bdcfe�g �-� * 	��5.��

(1)
where

��
%��Rq� * ; � 
�� �����C� j � z 
�m \�������\ p is the column vector of a
differential operator;

� ] 
�� � ] ���C� j �C����� z \x{ 
�m \�������\ p is the matrix of
second derivatives;

��
r�~m����t	G�O���u� Z ���f�Q	 .� � Z �¡�f�Q	 is a vector whose z|¢^£ component may be expressed in the
form � &�=��-� R1� * 	x�d¤ j �-�f�'	��-� R1� * 	 , ¤ j �-�f�Q	 being a matrix whose

� {t\~} 	
element is

�-�������C� j �C���'�C����	 i _¢ k = bdcfe �:� Z ¢ \ �
�'	 and
�f�

a point such thatP��
�¥R)� * P � P��SR)� * P .
By imposing the first order necessary conditions for a maximum to

the function
�~m�	

, or by expanding the likelihood equations about
� * after

rescaling by � &�= , we have:m� � bdcfe�g �-� * 	�. m� � ] bdcfe�g �-� * 	��5. m@ �u� Z ��� � 	�
yI (2)

Conditions
lnmhR1l B ensure that, for large enough � , � &�= bdcfe�g �-� * 	

is near s �-� * 	 , P � &�= � bdcwe�g �-� * 	(P is small,
R � &�= � ] bdcfe�g �-� * 	 is near a

certain positive definite matrix , �-� * 	 and
�-�������C� j �C�Q�'�C����	 bdcfe ��� Z ¢ \ �f�Q	

is bounded in L:M . As � goes to infinity, the
� {
\�} 	 element of � &�=�¤ j �-�f�Q	

converges in probability to its expected value that exists and does not de-
pend on

�
. Therefore,

�u� Z ���
�Q	 converges in probability to a function,} � Z ���t	 , continuous on L:M and such that
P } � Z ���t	"P is bounded in L:M by

a positive number ¦ , say. Then, for large � , � &�= bdcfe�g �-�
	 can be approxi-
mated by the following quadratic model,§u�-�t	¥¨ s �-� * 	:R m@ � � , �-� * 	��5.q� � } � Z �¡�
	?V ] (3)

Moreover, we have the following result:

Lemma 1. (Aitchison and Silvey, 1958). Subject to the conditions
lnm�Rl B for large enough n, and

V
sufficiently small, the likelihood equations

have a solution © �ª
 ©� _ R)� * � L:M if (and only if) it satisfies a certain
equation of the form
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	?V ] 
1I (4)

where } � Z ���t	 is a continuous function on L/M and
P } � Z ���
	UP is bounded

in L�M by a positive number ¦ , say.

The fact that , �-� * 	 is positive definite (condition
l K ) allows one to

state that, if
V

is less than a certain value, a solution to the system of
equation

� B 	 exists, is unique and belongs to L/M . Because
V

can be chosen
arbitrarily small, this is sufficient to show the statistical consistency of
a solution to the likelihood equations. Indeed, we have the following
Lemma

Lemma 2. If , �-� * 	 is positive definite and
V � � = � ¦ where � =�« I is the

minimum eigenvalue of , �-� * 	 , then © � is the unique solution of equation� B 	 belonging to L�M .
Therefore, under conditions

lnm¬R;l K , for large enough � , and
V �� = � ¦ there exists a (unique) consistent solution to the likelihood equa-

tions. Moreover, by a straightforward generalization of Huzurbazar’s re-
sults (1948) we can show that © � maximizes the log-likelihood function.

As to the asymptotic distribution of the maximum likelihood estima-
tor, taking the probability limit of equation

� @ 	 after replacing
�

by © � , we
have ­C® z }°¯ m� � ] bdcfe�g �-� * 	�. �S�@��U±6² �(© �ª
[R�³ (5)

where
³ ´�µE�-I \ , �-� * 	�	 is the asymptotic distribution of the score scaled

by � &�=-¶ ] and
�S�

is a matrix whose z-¢·£ component may be expressed as© �¸�d¤ j �-�f�'	 and
�f�

a point such that
P��
�¥R)� * P � P��SRE� * P .

Under above conditions ­C® z } � � &�=�	 � ] bdcfe�g �-� * 	�
�R , �-� * 	 . More-
over, because of the consistency of the estimator, ­C® z } �6�Q� @�� 
1¹�º
�~m�	 so
that ­C® z } � =-¶ ] © �ª
 , &�=»�-� * 	¼³ and asymptotically � =-¶ ] © �ª´°µE�-I \ , &�=»�-� * 	�	 .
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3. Singular information matrix

As known, the whole problem of maximum likelihood estimation is
closely bound up with the behavior of the function s �-�
	 which should
have a unique maximum at

� * (local asymptotic identifiability condition).
The demands that s �-�
	 is a maximum at

� * and that the information matrix
in an observation, , �-� * 	 , is positive definite are related. In fact, under
regularity conditions on

�:���Q�¡�
	
, a Taylor series expansion of s �-�t	 about� * , yieldss �-�t	:R s �-� * 	¥
[R m@ � � , �-� � 	�� \ PQ� � RE� * P � PQ��RE� * P

so that , �-�
�'	 is positive definite if s �-�
	¥R s �-� * 	 � I in a neighbourhood
of
� * . If one assumes that the rank of , �-�t	 does not change in an open

neighborhood of
� * (the Rothenberg’s regularity condition of , �-�
	 in � * ),

then one can conclude that , �-� * 	 is positive definite. Moreover, if , �-�
	 is
regular in a neighborhood of

� * , the positive definiteness of , �-� * 	 implies
local identifiability of

� * .
The singularity of , �-� * 	 , only by itself, does not necessarily imply

the local unidentifiability of
� * . This fact can be understood from a Taylor

series expansion of s �-�
	 near
� * ,s �-�t	:R s �-� * 	¥
[R m@ � � , �-� * 	��5.�½u�QPQ�SR)� * P � 	

the higher order terms can ensure that s �-�t	:R s �-� * 	 � I for every
�#¾
y� *

in a neighbourhood of
� * , even though the quadratic form in the above

expression be null.
Moreover, in some statistical applications , �-�
	 could not satisfy the

Rothenberg’s regularity condition in
� * . It might happen that , �-�
�Q	 is of

full rank and positive definite for some
� �

in a neighborhood of
� * while, �-� * 	 is of lower rank.

This situation occurs, for example, in the so called “indeterminate
parameter problem” (Cheng and Traylor, 1995) where the information
matrix is usually block diagonal with the northwest submatrix positive
definite and the southeast submatrix equal to zero.



8 M. Barnabani

Then, when the information matrix is singular we can ask how to
make inference on the whole set of parameter

�
or on the parameter of in-

terest,
�

. In this regard the starting point is the analysis of the asymptotic
properties of maximum likelihood estimator when the information matrix
is singular.

Let begin with the statistical consistency. We observe that g�¿ }<}#À m
is still valid because the asymptotic result given by equation

� B 	 does not
involve the assumption on the singularity of the information matrix. The
problem arises with g�¿ }<}(À @ . More precisely, the problem concerns the
existence of a unique solution in L/M that satisfies equation

� B 	 .
By g�¿ }<}#À m this system is consistent and we can write a solution as© �ª
 , > �-� * 	 } � Z ���
	?V ] .$ÁÂF5R , > �-� * 	 , �-� * 	xÃ�Ä

for some
Ä

with , �-� * 	 , >��-� * 	 } � Z �¡�
	?V ] 
 } � Z �¡�
	?V ] because of the con-
sistency of the system of equations

� B 	 . Of course there is no guarantee
that © � is unique unless

� F5R , >¥�-� * 	 , �-� * 	x�YÄ does not vanish for all
Ä

inL�M . Then, when the information matrix is singular, a solution to the like-
lihood equation is not statistically consistent.

To detect the asymptotic distribution of the maximum likelihood es-
timator we refer to

� K 	 . Taking the probability limit of the expressions
on the left-hand side of

� K 	 , problems arise with
���Q� @�� which is now a

quantity
½�ºt�~mY	

because the estimator is no more consistent. Then, we
have

­C® z } ¯ m� � ] bdcwe�g �-� * 	�. �S�@�� ±�² �(© � 
 �`R , �-� * 	�.�0U� ­C® z }�Å ² �Æ© �ÈÇÉ
[R�³
where the symbols are the same as in

� K 	 . From above equality we ob-
serve that if the information matrix is singular nothing we do know about
the invertibility of the matrix

�`R , �-� * 	�.�0U� and we can not derive the
asymptotic distribution of � =|¶ ] © � .
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4. A solution to the singularity of the information matrix

As said above, in the identification problem Silvey (1959) proposed to
replace the singular information matrix , �-� * 	 by , �-� * 	».�0 where

0
is an

appropriate matrix obtained imposing some restrictions on the parameters
of the model so that the restricted parameters are identified and the new
matrix is positive definite. To generalize Silvey’s approach we suggest to
modify the information matrix adding an arbitrary positive constant

D ] to
the diagonal element of , �-� * 	 producing ÊUË �-� * 	�
 , �-� * 	�.ÌD ] F whereF

is an identity matrix of appropriate dimension. To investigate the con-
sequences of this transformation we replace , �-� * 	 by ÊUË �-� * 	 wherever it
appears in the regular theory.

4.1. An unfeasible solution

By construction, ÊnË �-� * 	 is positive definite with eigenvalues given by� j .qD ] \ z 
[m \»���Y��\ p \ � j�Í I and
D « I arbitrarily chosen.

Consider first what happens to the quadratic approximation
� A 	 . Adding

and subtracting the quantity
=] D ] P���RÎ� * P ] to

�~m�	
, taking the probability

limit of both sides and using conditions
lnmSR�l B , we have that for large� , � &�= bdcfe�g �-�
	/R =] D ] P���R)� * P ] can be approximated by the following

quadratic model, Ï �-� \ DC	�¨°§u�-�
	:R m@ D ] P��SR)� * P ] X (6)Ï �-� \ DC	 may be seen as a penalty function given by
§u�-�
	

“penalized”
by a quadratic term,

PÐ�ªR�� * P ] , with a penalty parameter
D ] . If we

maximize
�-�
	

, by imposing the first order necessary conditions we getR5� , �-� * 	�.qD ] FO	��5. } � Z �¡�
	?V ] 
[R ÊUË �-� * 	���. } � Z �¡�
	?V ] 
1I (7)

where ÊUË �-� * 	 is positive definite for any
D « I . The system of equations�xÑf	

has a unique solution given byÒ � Ë 
 Å Ò� Ë RE� * ÇÉ
�Ó , �-� * 	�.qD ] F¸Ô &�= } � Z �¡�
	?V ]
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It is interesting to observe that this solution can be obtained premulti-
plying © � by the matrix

� , �-� * 	�.qD ] FO	 &�= , �-� * 	 producing a unique solu-
tion to the system

� B 	 . Indeed,Ó , �-� * 	�.qD ] F Ô &�= , �-� * 	 © �ª
 Ó , �-� * 	�.qD ] F Ô &�= , �-� * 	 , > �-� * 	 } � Z ���
	?V ]
�Ó , �-� * 	�.qD ] FtÔ &�= } � Z ���
	?V ]
because the arbitrary component of © � becomes null.

Moreover,
P Ê &�=Ë �-� * 	 , �-� * 	 , >��-� * 	 } � Z �¡�
	UPYT[� � � j _ .qD ] 	 &�= ¦ where� � j _ is the minimum eigenvalue non-zero of , �-� * 	 . This implies thatP Ò � Ë P�T4� � � j _ .qD ] 	 &�= ¦ V ] . Therefore, if

V � � � � j _ .qD ] 	 ¦ &�= thenP Ò � Ë P is in L:M . That is, given
D « I there always exists a sufficiently

small
V

such that

Ï �-� \ DC	 has a unique maximizing point in a neighbor-
hood of

� * .
In this case

Ï �-� \ DC	 plays the same role as
§ �-�
	

for the regular case
and equation

�xÑf	
may be seen as an asymptotic result of a Taylor series ex-

pansion about
� * of what we call “penalized” likelihood equations. That

is, if we maximize the following “penalized” likelihood functionm� bdcfe�g �-�t	:R m@ D ] P���RE� * P ] D « I
then, by imposing the first order necessary conditions, we get the “penal-
ized” likelihood equations given bym� � bdcwe�g �-�
	:RÕD ] �-�SR)� * 	¥
1I (8)

that now plays the same role as the likelihood equations for the regular
case. Then, we can restate g�¿ }#}#À m as follows:

Theorem 1. Subject to the conditions
lnm�R�l B , for large enough � and

sufficiently small
V
, the “penalized” likelihood equations have a solutionÒ � Ë 
 Ò� Ë R;� * � L�M if (and only if) it satisfies a certain equation of the

form given by
�xÑf	

where
D « I , } � Z �¡�
	 is a continuous function on L/M

and
P } � Z �¡�
	UP is bounded in L�M by a positive number ¦ , say.
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Sketch of the Proof. A Taylor series expansion of
�-Öt	

about
� * givesm� � bdcfe�g �-� * 	�. ¯ m� � ] bdcfe�g �-� * 	:R�D ] F ± �5. m@ �u� Z ��� � 	�
yI (9)

Then, under conditions
lnm�R�l B , equation

�xÑf	
is obtained following the

same lines of reasoning as in the regular case.

Then, above arguments allow one to state that a solution to the “pe-
nalized” likelihood equations,

Ò � Ë is statistically consistent for any
D « I .

Moreover, following the same line of reasoning as in the regular case,
it is immediate to show that asymptotically � =-¶ ] Ò � Ë ´°µ8�-I \ �5	 where��
 Ê &�=Ë �-� * 	 , �-� * 	 Ê &�=Ë �-� * 	 is singular with

� À ��p �x��	¥
 7 .
As it emerges looking at the “penalized” likelihood equations, the

main problem connected to the estimator proposed is its feasibility be-
cause given

D
the search of a solution to

�-Öt	
depends on the unknown true

parameter. In this paper the problem is solved fixing appropriately the
magnitude of

D
so that the knowledge of

� * is unnecessary.

4.2. A feasible solution

Our assumption is to take
D

small enough, formally
D�H×I

. In this
case we must investigate the consequences of this assumption on the
asymptotic properties of a solution to the “penalized” likelihood equa-
tions. Giving in implicit form the argument of the limit as

DyHØI
, we

must investigate the following equationsb^Ù^ÚËQÛ *nÜ m� � bdcfe�g �-�
	:R�D ] �-��RE� * 	�
yI�Ý (10)

when � is large. The main result is the following Theorem

Theorem 2. Let
� À ��p � , �-� * 	�	�
 7 � p . Subject to the conditions

lnmSRl B for large enough � and
V

sufficiently small, equations
�~m�It	

have a
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(unique) solution, b^Ù^ÚuËQÛ * Ò � Ë 
 Ò � Ë * in L�M if (and only if) it satisfies a
certain equation of the formb^Ù^ÚËQÛ * Á�R5� , �-� * 	�.qD ] FO	��5. } � Z �¡�
	?V ] 
1I�Ã (11)

Moreover,b^Ù^ÚËQÛ * ² � Å Ò� Ë R)� * ÇÉ
 ² � Å Ò� Ë * RE� * ÇÐ
 ² � Ò � Ë * ´°µÞÓxI \ , > �-� * 	~Ô
and ß * 
 � Ò � � Ë * , �-� * 	 Ò � Ë * ´áà ] � 7 	
Proof. The if and only if part of the theorem follows immediately from
the “regular” case. We show that as

DÉHâI
, for large enough � , �~m�It	 has

a unique solution in L�M if
V

is sufficiently small. We first observe that
(Albert, 1972) b^Ù^ÚËQÛ * Ó , �-� * 	�.qD ] FtÔ &�= , �-� * 	�
 , > �-� * 	 , �-� * 	
Then,b^Ù^ÚË�Û * Ò � Ë 
 Ò � Ë * 
 , > �-� * 	 , �-� * 	 , > �-� * 	 } � Z �¡�
	?V ] 
 , > �-� * 	 } � Z �¡�
	?V ]
and
P Ò � Ë * P � V if

V � � � j _ � ¦ which proves the first part of the Theorem.
The asymptotic distribution. We apply the probability limit to

�-ãt	
after replacing

�
by
Ò � Ë , letting

DÌHäI
and following the same lines of

reasoning as in the regular case. Then, we have that b^Ù^Ú ËQÛ * ² � Å Ò� Ë R)� * Ç
tends in distribution to a random vector b^Ù^Ú ËQÛ * � , �-� * 	�.qD ] FO	 &�= ³ where³u´°µ �-I \ , �-� * 	�	 . Therefore, asymptoticallyb^Ù^ÚËQÛ * ² � Å Ò� Ë RE� * Ç ´°µ Å I \ b^Ù^ÚËQÛ * Ó , �-� * 	�.qD ] F Ô &�= , �-� * 	 Ó , �-� * 	�.qD ] F Ô &�= Ç
It is immediate to show that (Albert, 1972)b^Ù^ÚËQÛ * Ó , �-� * 	�.qD ] FtÔ &�= , �-� * 	¥Ó , �-� * 	�.qD ] FtÔ &�= 
 , > �-� * 	
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Finally, we analyze the last part of the Theorem. By the properties of, > �-� * 	 , the matrix , �-� * 	 , > �-� * 	 is idempotent, then� À ��p Ó , �-� * 	 , > �-� * 	~Ôå
 � 7 Ó , �-� * 	 , > �-� * 	~Ô
 � 7 Ó ÏSæ�Ï � ÏSæ > Ï � ÔS
;� 7 Ó ÏSæ�æ > Ï � Ô
with

æ > 
1ç z Àfè Ó � > = \ � >] \»�Y����\ � >� Ô where� >� 
oé � &�=� if � � « II
if � ��
yI

Therefore,
� À ��p � , �-� * 	 , >¥�-� * 	�	¥
 7 
�� À ��p � , �-� * 	�	 . Moreover,, > �-� * 	 , �-� * 	 , > �-� * 	 , �-� * 	 , > �-� * 	¥
 , > �-� * 	 , �-� * 	 , > �-� * 	

then by a Theorem on the quadratic forms (Searle, 1971, p. 69), the chi-
square distribution follows.

5. An application

In order to have graphical representations, we consider the following
simplification of Engle’s (1984) modelê � Z ´°µ8�-� ZÈë \¡ì ] 
[m�	 \ Z « I \ 3 *Uí ��
yI
where Z is non-stochastic. In the model the parameter

�
is estimable

only when the null hypothesis is false. Under
3 * the hessian matrix is

non-singular while the (expected) information matrix in an observation, �-�8
yI \ �¥	�
 Ü Z ] ë II I Ý
is nonnegative definite. In small samples the log-likelihood function of
both
�

and
�

can be maximized under the null and the alternative hypoth-
esis, but because of the singularity of the information matrix the asymp-
totic properties of the joint estimator is not clear.
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A solution of the model can be found observing that a first order ap-
proximation of equation

�-Ö
	
about

� * gives

b^Ù^ÚË�Û * Ü m� � bdcfe�g �-� * 	:R ¯ R m� � ] bdcfe�g �-� * 	�.qDGF ± �-�SR)� * 	¥
1I�Ý
that is,

b^Ù^ÚË�Û *�î �SR)� * 
 ¯ R m� � ] bdcfe�g �-� * 	�.qDGF ± &�= m� � bdcwe�g �-� * 	|ï
then, we used the following algorithm

(i) Fix a decreasing sequence
NwD j W

, typically
N¸m \ m�It&�= \ m�I
& ] \»�Y��� W and

choose a starting point
�¸ð !?ñ

.

(ii) Check the termination condition. When a sufficiently small value ofD j
has been reached the algorithm terminates.

(iii) Find iteratively a solution to� ð ! >ò= ñ 
1� ð !¼ñ . ¯ R m� � ] bdcwe�g �-� ð !?ñ 	�.qD j F ± &�= m� � bdcfe�g �-� ð !?ñ 	
call
�tð`ó ñ

such a solution.

(iv) Set
�tð !?ñ 
y�¸ð`ó ñ

, set z 
 z .ym , and return to
� z|z 	 .

An estimate of the information matrix , �-� * 	 can be computed replacing� * by
Ò� Ë * .

A simulation applied to the Engle’s model is presented to support the
theoretical results. Fig.

m
� À 	 shows the simulated distribution of an esti-
mate of

�
obtained as a solution to the penalized log-likelihood equation

from 100 generated random samples of size 1000. This estimate is com-
pared with an underlying normal distribution. In Fig.

m
�|ô»	
the cumulative
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Figure 1. Simulated cumulative distribution functions of
Ò� Ë * (panel a)

and of
ß * (panel b) for the Engle’s model.

3 *Uí �8
yI , sample size 1000,
100 replications.

distribution of an estimate of
ß * , õ ß * is compared with a

à ] �~m�	 distribu-
tion. The two Figures show the good fits of the simulated distributions. 6.

Conclusions

In this paper we proposed a way to make inference when the infor-
mation matrix is singular. The approach is based on the definition of
a penalized log-likelihood function with the penalty parameter going to
zero. In this way we get a solution with attractive statistical properties.
More precisely, the estimator is consistent and asymptotically normally
distributed with variance-covariance matrix approximated by the Moore-
Penrose pseudoinverse of the information matrix which always exists and
it is unique. These properties allow one to construct a Wald-type test
statistic with a “standard” distribution both under the null and alternative
hypotheses.

Acknowledgements: We thank the referees for critical suggestions that signifi-
cantly improved a preliminary version of the paper.
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