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Summary: In the present paper we evaluate the performance of a non linear
parametric model in forecasting high-frequency data. In particular we consider the
TAR-ARCH model (Li and Lam ,1995) to fit and forecast the daily and 5-minute
returns of the Mibtel Stock Index.
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1. Introduction

In the last few years the analysis of high frequency data has been
widely developed in the literature. Among the others, Andersen,
Bollerslev et al. (1998) have shown that the heteroscedasticity is
better cached as the sample frequency grows and the use of intra-daily
data allow to obtain more accurate forecasts.

The aim of the present paper is to evaluate the performance of a
particular non-linear parametric model in forecasting time series at
frequencies higher than daily.

More precisely, we consider a threshold type non-linear model
(Tong, 1990), that allows for asymmetry in the conditional mean,
combined with a non linear model for the changing conditional
variance (TAR-ARCH, Li and Lam, 1995).
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The prediction ability of the TAR-ARCH model is investigated for
different sampling frequencies. Therefore we analyse the empirical
behaviour of the daily and intra-daily Mibtel Stock Market Index.
The structure of the paper is the following: section 2 illustrates some
issues connected with high frequency data and briefly reports the
modelling procedure; section 3 shows the estimated models and their
forecasting performances and gives some concluding remarks.

2. Modelling High Frequency Data

The availability of financial data at frequencies higher than daily
allows for a wide range of issues in financial market. In the recent
literature many authors have investigated the empirical evidence of
high frequency financial time series (among the others, Andersen and
Bollerslev, 1998b; Goodhart and O’Hara, 1997 ). The low frequency
data often mask the real features of markets and their high volatility
which is often not adequately recognised.
The high frequency data give a new opportunity in the analysis of
volatile time series and the advantage of their use in estimating and
forecasting volatility is pointed out in different  empirical works
(Andersen, 2000). Employing high frequency data also give the
opportunity to uncover the microstructure pattern of the market and
the effects of intra-day seasonality.
These features are well recognised in the high frequency Mibtel
returns. The pronounced periodicity of the Mibtel returns during the
trading day establishes that the volatility is higher at the beginning and
at the end of the trading day and falls quite rapidly to lower levels
during the mid-day assuming the typical U shaped pattern (Andersen
and Bollerslev, 1997). In Fig.1 the average 5-minute returns of the
Mibtel are shown. Each value is obtained as ∑= =

− N
i h,ih,t YNX 1

1 ,
where N is the total number of trading days from January 2 to July 30,
1998 and h is the intra-daily observation, h=1,...,85 (a more detailed
description of the data is available in section 3).
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Theoretical and empirical evidence show how the response of stock
market index exhibits a pronounced asymmetric cyclical behaviour
due to the different reaction to positive and negative shocks. The
piece-wise linear threshold model by Tong (1983) allows to modelling
asymmetry in the conditional mean. In order to take into account, also,
the changing conditional variance of many financial time series Li and
Lam (1995), following a suggestion in Tong (1990), introduced an
ARCH specification (Engle, 1982), defined on the TAR model
residuals, obtaining the so called TAR-ARCH model.
Let {Yt} be a time series generated by a stationary process, a TAR-

ARCH ( )q;p,...,p,p,l l21  model is given by:
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for j=1,2,...,l, the threshold values, {r0, r1, r2,..,rl}, are such that,

r0<r1<...<rl, −∞=0r  and +∞=lr  with Rj = (rj-1,rj] and {εt} is i.i.d.
with zero mean and conditional variance ht.
For the testing and identification procedure we follow the proposal of
Tsay (1989), further developed and extended in Tsay (1998), based on
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Figure 1. Intra-day average of the Mibtel returns
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the value of an arranged regression on the increasing order of the
threshold variable.

3. Forecasting daily and intra-daily Mibtel Stock Index

In order to assess the predictive ability of the SETAR-ARCH model,
we have analysed the Mibtel Index of the Italian stock market from
January 2, 1998 through July 30, 1998 observed at different sampling
frequencies.
Following the standard practice, we have analysed the returns time
series data obtained as )YYlog(DY h,th,th,t 1−≡  where t refers to the
trading day and h refers to the intra-daily observation of the high-
frequency series.
In the following two subsections we show the results of the analysis of
the daily and intra-daily Mibtel Stock Index and evaluate the
forecasting performances of the SETAR-ARCH model. For the intra-
daily data we consider the AR-ARCH model as a benchmark for the
forecast comparison.

3.1 Daily Mibtel Stock Index

For the daily Mibtel series the sample period include 148
observations. The time plots of the daily levels and of the transformed
Mibtel Index series are given in Fig.2a) and 2b) respectively.
The model has been fitted to a sample of 132 daily returns (from
January 2 to July 10, 1998) living the next 15 (from July 13 to July
30) to assess the model forecasting performance.
The histogram of the returns in Fig.3a) shows the high kurtosis of the
data distribution, confirmed by the value of the kurtosis index,
K=4.6652, and the fatter tails than the normal distribution.
The subsequent analysis of data highlights that the seeming whiteness
shown by the correlogram of the autocorrelation function (ACF) hides
a non linear structure of the data generating process which is further
investigated by means of two tests: the Tsay’s linearity test (Tsay,
1989) and the ARCH-LM test (Engle, 1982).
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The results of the former test, which evaluates the threshold type non
linearity, are shown in Tab.1 where the hypothesis of linearity is
strongly rejected for different time delays.

It is commonly know that the behaviour of the stock market returns is
influenced by what has happened in the previous days. This suggests
to consider as threshold variable a lagged value of the returns which
leads to the identification of a SETAR (Self Exciting Threshold
Autoregressive Model; Tong, Lim, 1980).
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Figure 2. Time plots: a) daily Mibtel; b)DMib
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Figure 3. Correlogram of the ACF and histogram with normal density
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The heteroscedasticity of the series is also confirmed by the ARCH-
LM test which equals to 32.772 (p-value 0.0000) at lag 1.

Table 1. Tsay’s linearity test
d 1 2 3 4 5

Test 2.535 1.109 12.435 7.100 5.944
d.f. 1 1 1 1 1

The Tsay’s linearity test indicates that the test statistics is maximised
at the threshold lag d=3, suggesting this as the optimal choice for the
delay of the threshold variable. Setting the AR order to lie in the range
[1,2], given d=3 and the number of regimes j∈[2,3], we select the
threshold value 005703 .r̂t −=−  that gives the minimum Akaike
Information Criteria (AIC), as shown in Fig.4.

The final estimated model is the following SETAR(2;1,1)-ARCH(1)
(standard deviations of the least squares estimates are given in
parenthesis):
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The residual analysis has been performed on the basis of the Ljung –
Box (1978) and the Jarque-Bera (1980) tests. As shown in Tab.2  the
SETAR-ARCH residuals have not a significant structure, even if the
presence of residual kurtosis in the series affects the results of the
Jarque-Bera test.

Table 2. Residual Tests
L-B(20) Jarque-Bera

Test 9.0155 6.0074
p-value 0.983 0.05

The forecasting performance of the SETAR-ARCH model has been
assessed on the basis of different loss functions that achieve to the
evaluation of the forecasts of the conditional mean and conditional
variance differently.
The Mean Square Error (MSE), the Root Mean Square Error (RMSE)
and the Mean Absolute Error (MAE) indexes, in this context, evaluate
the magnitude of the conditional mean forecast errors; the Proportion
of Correct Sign (PCS) index (Brooks, 1997) evaluates the ability of
the model to predict direction changes irrespective of their magnitude;
the LL and the LAE index (Pagan and Schwert, 1990) are two loss
functions which penalise volatility forecasts asymmetrically and are
defined as:
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Table 3. Forecast Evaluation of the SETAR-ARCH model
Conditional Mean

MSE×106 RMSE×102 MAE×102 PCS
SETAR-ARCH 0.61299 0.02476 0.01841 0.5333

Conditional Variance
LL LAE

SETAR-ARCH 7.31691 1.83834
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where )(ˆ kht is the predicted variance and kt+ε  is generated taking into
account the distribution of the errors of the conditional mean model.
The forecast evaluation indexes are presented in Tab.3.

3.2 Intra-daily Mibtel Stock Index

The growing sampling frequency has a very strong impact on the
distributional properties of the data. In this section we show the results
of the analysis of the intra-daily Mibtel returns series. They are the 5
minute Mibtel Index from 10 a.m. to 5 p.m. from January 2, 1998 to
July 30, 1998 which consists of 85 intra daily-data for a total of
12.535 observations.
The models are fitted to a sample of 11.267 observations and the data
relative to the last 15 trading days have been used to assess the
forecasting performances of the fitted models.
The intra-daily Mibtel time plot is given in Fig.5a) and its returns are
presented in Fig.5b). The latter plot shows the high volatility of the
intra-daily returns which have the typical pattern of high-frequency
financial time series. Some summary statistics of the returns are given
in Tab.4 where the excess kurtosis indicates the necessity of fat tailed
distributions to describe the data. The correlogram of the ACF and of
the Partial ACF are presented in Fig.6.
Following the same steps of the previous analysis, the non-linearity
has been investigated by means of the Tsay’s test and the ARCH-LM
test.

Table 4.  Summary Statistics
Mean Max Min

1.46E-05 0.009374 -0.011102
S.D. Skewness Kurtosis

0.000655 0.137058 47.18535
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In both cases the linearity is not accepted and the Tsay’s test (Tab.5)
strongly suggests threshold non-linearity for the conditional mean
model, with the highest value for d=1.
Following the identification procedure proposed by Tsay (1989), the
threshold values are selected in order to minimise the AIC with j∈2,3,
given the delay d=1 and the range of the autoregressive order p∈[1,6].
The further investigation of the series highlights a conditional
variance structure which is modelled by means of a GARCH(2,1)
model. The least squares estimates of the coefficients of the refined
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Figure 5. Time plots: a) daily Mibtel; b)DMib
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Figure 6.   Correlogram of DMib ACF and PACF
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SETAR(3;1,2,4)-GARCH(2,1) model and the estimated threshold
values are given in Tab.6.

Table 5. Non-linearity tests
Tsay’s test

d 1 2 3 4
Test 21.485 19.154 3.980 10.764
d.f. 5 5 5 5

Engle ARCH-LM test
Test 117.2328 p-value 0.0000

The analysis of the residuals of the SETAR-GARCH model does not
indicates significant correlations in the residuals and in the squared
residual series which have been investigated by means of the Ljung-
Box test which equals 27.813 (p-value 0.114) and 1.7979 (p-value
0.999) respectively, for up to 20-th order serial correlation.

Table 6. Estimated Coefficients SETAR-GARCH model
SETAR

a0 a1 a2 a3 a4

I -0.00004
(0.00001)

0.10963
(0.01898)

II 0.00002
(0.00001)

0.07971
(0.02235)

III 0.00004
(0.00002)

0.12025
(0.02197)

0.04575
(0.01911)

0.06166
(0.02009)

Threshold 1 -0.0001 Threshold 2 0.00017
GARCH

c α1 α2 β1

6.87E-08
(2.98E-08)

0.13333
(0.00966)

0.04444
(0.00933)

0.53333
(0.01213)

In order to evaluate the forecasting performance of the fitted SETAR-
GARCH model we have fitted an AR(1)-GARCH(1,1) model to the
intra-daily returns. The coefficient estimates of the AR-GARCH
model are given in Tab.7.
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Table 7. Estimated Coefficients AR-GARCH model
φ0 φ1

AR 1.45E-05
(7.14E-06)

0.14409
(0.00932)

α0 α1 β1

GARCH 1.31E-07
(2.49E-08)

0.15
(0.00828)

0.6
(0.00925)

In Fig.7 and Fig.8 we have compared the fit obtained from the
SETAR-GARCH and the AR-GARCH models respectively with the
original data of one trading day.
Fig.7 show that the high volatility of the opening of the stock market
is adequately captured by the SETAR-GARCH model which appears
less sensible to the random pattern of the last 20 observations which
correspond to the closing time of the market.

In order to evaluate the forecasting performance of the SETAR-
GARCH model with respect to the AR-GARCH, we have used
different loss functions (presented in section 3.1) for the conditional
mean and the conditional variance.

Figure 7.  SETAR-GARCH model fitted to data
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A further aim of the forecast assessment study is the evaluation of the
multi-steps ahead forecasts generated by means of the conditional
mean models. In this contest we have generated the 6-steps ahead
forecasts of the intra-daily returns (which correspond to 30 minute
ahead forecasts) for both the models under study.

Table 8. Conditional Mean Forecast Evaluations
MSE×106 RMSE×102 MAE×102 PCS

AR-ARCH 1-step 0.2674 0.05171 0.02961 0.53549
6-steps 0.2665 0.05163 0.02983 0.48580

SETAR-ARCH 1-step 0.2709 0.05205 0.03018 0.49211
6-steps 0.2664 0.05161 0.02982 0.4874

Table 9. Conditional Variance Forecast Evaluations
LL LAE

AR-ARCH 14.87057 3.12506
SETAR-ARCH 4.49392 1.96743

The results of the forecast assessment shown in Tab.8 and Tab.9
highlight that the good fitting performances of the SETAR-GARCH
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Figure 8.  AR-GARCH model fitted to data



169

model do not guarantee a good performance of the forecasting
procedure.
The forecasting performances of the conditional mean of the SETAR-
GARCH and AR-GARCH models imply that:
- the one-step ahead forecast performances measured in terms of

MSE, RMSE, and MAE are similar for both models;
- the six steps ahead forecast performance of the SETAR-GARCH

model, measured in terms of the same loss functions, is slightly
better than that of the AR-GARCH model;

- the Proportion of Correct Sign of the AR-GARCH model is
relatively better for the one-step ahead forecast but in the 6-steps
ahead case the SETAR-GARCH model slightly outperforms the
previous model.

These results show that the high volatility of the intra-daily series
influences the forecast performance of the conditional mean of both
models.
The results of the conditional variance forecast evaluation are
completely different (Tab.9). In this case, we observe a substantial
improvement of the predictive performance of the SETAR-GARCH
model with respect to the AR-GARCH model in terms of LL and LAE
indexes.
Fig.9 and Fig.10 show the one-step ahead forecasts of the SETAR-
GARCH and AR-GARCH models within one trading day. The
narrower prediction bounds in Fig.9, with respect to Fig.10, are
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Figure 9. One step ahead SETAR-GARCH forecasts
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evident. This confirm, in this case, the non trivial reduction of the
forecast uncertainty obtained using the SETAR-GARCH model
instead of the AR-GARCH model.
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