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Summary: This paper analyses the exploitation dynamics of marine resources by 
partitioning the Italian fleet into six segments according to fishing method. 
RegARIMA models are used to identify the main components of the dynamics of 
catches and revenues per gross tonnage unit, and the Autoregressive metric to identify 
the distance between time series. The outcome is a classification of fishery segments 
that can be interpreted in the light of the parametric formulation of their models. This 
classification can be clearly linked to the regulation activity levels established by law. 
Such a link would be justified, among other things, by the effect of high levels of 
regulation on the seasonality of the phenomena analysed. 
Keywords: AR Metric, RegARIMA Models, Fishery Management. 
 

1. Introduction 
 

The fisheries sector is characterised by both its economic and its 
biological importance. Compared to other types of economic activity, 
the fisheries sector requires constant planning and control to preserve 
the natural resources that it affects. Fish stocks must be renewed in 
order to compensate for the mortality due to both natural causes and 
fishing. It is for this reason that the Public Administration (PA) 
continues to develop planning and intervention policies to restrict 
exploitation of stocks. Policy interventions do not affect all fishery 
operators equally, however, owing to their differing impacts on stock 
impoverishment. The Italian fleet can be conveniently partitioned into 



2 P. Accadia, V. Placenti 
homogeneous segments based on bio-economic criteria. Vessel size and 
fishing equipment are the main indicators used for such partitioning. 
IREPA, Istituto di Ricerche Economiche per la Pesca e l’Acquacoltura 
(Fishery and Aquaculture Economic Research Institute), distinguishes 
among six fishery segments: bottom trawl, mid water pair trawl, purse 
seine, small-scale fishery, mechanised dredge, and polyvalent (IREPA, 
1999). 

The purpose of this paper is to analyse the exploitation dynamics of 
each segment in order to determine potential similarities. This may 
prove useful to the PA when defining its policy to preserve fishery 
stocks. 

The time series analysed in the paper relate to catches and to 
revenues per GT (gross tonnage1) unit. These series provide an 
indication of, respectively, the technical and economic efficiency of the 
above fishery segments. It should be noted that the series are affected by 
changes in legislation as well as by exceptional weather conditions 
during data collection. It was therefore necessary to correct the time 
series for these effects before estimating the similarities among the 
dynamics of fishery segments. To this end, linear regression models 
with ARIMA errors, regARIMA models in short (Planas, 1997, Chapter 
8), were applied to the data. These models comprise a deterministic 
component, which measures the trading day and movable feast (Easter) 
effects as well as the possible anomalous-value ones, and a stochastic 
component, which is explained using ARIMA models (Box and Jenkins, 
1976). Once the series had been corrected for the deterministic effects, 
and once possible non-linearities had been eliminated by using a 
logarithmic transformation, the residual stochastic components were 
compared and classified using the Autoregressive metric introduced by 
Piccolo (1984, 1990). 

The paper is organized as follows. Section 2 describes the time series 
used for the analysis. Section 3 illustrates the methodology employed to 
construct and classify the models, while Section 4 deals with analysis of 
the results. For the purpose of interpreting the resulting clusters, Section 

 
1 A volume measurement equal to 100 cubic feet, or 2.832 cubic meters. 
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5 illustrates the basic concepts of fishing activity regulation. Finally, 
some conclusions are drawn in Section 6. 

 

2. Italian fishery time series 
 

The 12 monthly time series - 6 for captures per GT unit and 6 for 
revenues per GT unit - analysed in this paper are listed in Table 1 and 
shown in Figure 1. The time period employed for each series was 
January 1993-October 2000, giving a total of 94 observations. The time 
series were obtained from the sampling database compiled by IREPA as 
part of the programme entitled “Economic Observatory on the 
Production Structure of Italian Marine Fishing” (Osservatorio 
economico sulle strutture produttive della pesca marittima in Italia) (see 
IREPA, 1999). 
 

Table 1. Time series analysed. Period: 01/1993 - 10/2000. No. of 
observations: 94. 
 

Abbreviation Time series 
BT-CAT Bottom trawl captures by tonnage unit 
MT-CAT Mid water pair trawl captures by tonnage unit 
PS-CAT Purse seine captures by tonnage unit 
SF-CAT Small-scale fishery captures by tonnage unit 
MD-CAT Mechanised dredge captures by tonnage unit 
PO-CAT Polyvalent captures by tonnage unit 
BT-REV Bottom trawl revenues by tonnage unit 
MT-REV Mid water pair trawl revenues by tonnage unit 
PS-REV Purse seine revenues by tonnage unit 
SF-REV Small-scale fishery revenues by tonnage unit 
MD-REV Mechanised dredge revenues by tonnage unit 
PO-REV Polyvalent revenues by tonnage unit 
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Figure 1. Time series plots. Captures expressed in kg; revenues 
expressed in EUR. 

3. The Autoregressive metric and the regARIMA model 
 

The Autoregressive metric proposed by Piccolo (1984; 1990) has 
been used for various purposes, such as analysing demographic changes 
(Corduas and Piccolo, 1995), classifying stationary time series 
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(Maharaj, 1996), assessing the adequacy of seasonal adjustment 
procedures (Corduas and Piccolo, 1999), and evaluating and optimising 
the efficiency of environmental monitoring networks (Costanzo and 
Sarno, 2000). In this paper, we use the AR metric to classify fishing 
methods and to evaluate similarities among their exploitation dynamics 
of marine resources. 

To introduce the AR metric, we may consider the generic process 
Zt ∼ ARIMA(p, d, q)(P, D, Q)s:

t
s

t
D
s

ds aBBZBB )()()()( Θ=∇∇Φ θφ ,

where at is a normal identically and independently distributed white-
noise variable ),0( 2

aσ . When all the roots of the characteristic equation 
associated with the MA components - that is, 0)()( =Θ BBθ - are 
external to the unit circle, the Zt process can be inverted and allows for 
the linear representation AR (∞):  
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To measure the structural diversity between two invertible processes, 
say Xt and Yt, the AR metric compares their respective sequences of 
autoregressive weights xjπ and yjπ (with j = 1, 2, …), by means of a 
Euclidean distance: 
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=
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Consideration of a convenient finite approximation of the above 
AR(∞) representations and suitable estimates of the autoregressive 
coefficients yield the AR distance estimator:  
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Its asymptotic distribution is known in the case of AR (Piccolo, 
1989) and ARMA (Corduas, 1996) model comparisons under ML 
estimates, and in the case of MA models under LS estimates (Sarno, 
2000, 2001). In particular, Piccolo (1989) showed that the asymptotic 
distribution of the ML estimator is a linear combination of independent 
Chi-squared random variables. 

The data used to estimate the autoregressive coefficients were 
previously corrected for deterministic effects. For this purpose we used 
the regARIMA models developed by the U.S. Census Bureau and 
described by Findley et al. (1998). Considering the generic time series 
yt, the model can be written as: 

t
s

k

i
itit

D
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ds aBBxyBB )()()()()(
1

Θ=−∇∇Φ ∑
=

θβφ
where xit are the k deterministic regressors and βi are the regression 
coefficients. In the analysis reported by this paper, we took account of 
the regressors most often used in practice, i.e., trading day, movable 
feast (Easter) and outliers (for more details see Planas, 1997, Chapter 8). 

4. Analysis and results 
 

The models were identified and evaluated using the TRAMO 
procedure2 (Gomez and Maravall, 1997). The identification step was 
 
2 TRAMO is the first part of a more complex procedure called TRAMO-SEATS. It is the 
official procedure used by ISTAT since 1999 for the seasonal adjustment of time series. 
TRAMO (Time series Regression with Arima noise, Missing observation and Outliers) 
identifies the statistical models that effectively describe the temporal evolution of the time 
series; SEATS (Signal Extraction in Arima Time Series) performs the actual seasonal 
adjustment of the series, using the structure of the statistical models identified by TRAMO. 
ISTAT’s decision to use this new procedure and to abandon the X11-ARIMA (Istat, 1987) one 
was taken in the light of recommendations by the Scientific Commission SARA. This choice 
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carried out by using the automatic module of Demetra 2.0 software, a 
graphical interface of TRAMO-SEATS for Windows. The default 
parameters were used, except when correcting for the trading day effect, 
where the use of a single regressor was preferred to the seven default 
ones, given that only the difference between working and non-working 
days (Saturday and Sunday) was deemed to be relevant to the fisheries 
sector. 

 
Table 2. Final models 

Time 
series 

ARIMA 
models Av

era
ge

ad
jus

tm
en

t
Lo
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rith

m
W

ork
ing
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eff
ect

Ea
ste

r
eff

ect Outliers 

BT-CAT (0 1 1)(0 1 1) No Yes Yes No AO JUN1999, AO SEP1998, 
MT-CAT (0 1 1)(0 1 1) No No Yes No TC FEB2000, 
PS-CAT (0 1 1)(0 1 1) No No Yes No AO JUN2000, AO MAY1995, 

AO OCT1995, 

SF-CAT (0 1 1)(0 1 1) No Yes Yes No AO JAN1996, 
MD-CAT (0 1 1)(0 1 1) No No No No LS JAN1995, TC JUL1996,   

TC OCT1995, LS AUG1994, 
AO MAR1994, 

PO-CAT (0 1 1)(0 1 1) No Yes Yes No 
BT-REV (1 0 0)(1 0 0) Yes Yes Yes No AO SEP1996, 
MT-REV (1 0 1)(1 0 0) Yes No No No LS JAN2000, 
PS-REV (1 0 0)(0 1 1) No No Yes No TC JUN2000, AO JUL1999, 

AO AUG2000, AO OCT1995, 
SF-REV (1 0 0)(0 1 1) No Yes Yes No 
MD-REV (0 0 0)(1 0 0) Yes No No No AO OCT1995, 
PO-REV (1 0 1)(0 1 1) Yes Yes Yes No  

has been adopted by other national statistical institutes and by the Statistical Office of the 
European Community (Eurostat). Indeed, the DEMETRA 2.0 software, a graphical interface of 
TRAMO-SEATS for Windows, developed by Eurostat was used in this paper. 
The scientific commission SARA (Seasonal Adjustment Research Appraisal) headed by prof. D. 
Piccolo, University of Naples Federico II, concluded its work in 1998. For a review of the 
results achieved see Istat (2000). 
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By default, TRAMO verifies the need for logarithmic transformation 

and mean correction, the significance of trading day and Easter effect 
regressors, and identifies the presence of possible outliers, taking three 
separate kinds into account: additive outliers (AO), temporary changes 
(TC), and level shifts (LS). 

The models identified were estimated with the same software and 
using the exact maximum likelihood method (Gomez and Maravall, 
1994). They were validated by means of residuals analysis and 
specification tests. 

 The 12 final models are shown in Table 2, and the estimate for the 
autoregressive and moving average parameters in Table 3.  

 
Table 3. Estimate for the parameters of the ARIMA model 
Models AR(1) MA(1) SAR(1) SMA(1) 
BT-CAT  0.82 (0.057)  0.37 (0.197) 
MT-CAT  0.78 (0.076)  0.34 (0.129) 
PS-CAT  0.69 (0.086)  0.67 (0.146) 
SF-CAT  0.57 (0.091)  0.98 (0.020) 
MD-CAT  0.71 (0.090)  0.42 (0.136) 
PO-CAT  0.67 (0.088)  0.90 (0.351) 
BT-REV 0.36 (0.099)  0.51 (0.091)  
MT-REV 0.93 (0.072) 0.79 (0.130) 0.74 (0.080)  
PS-REV 0.39 (0.103)   0.94 (0.038) 
SF-REV 0.45 (0.101)   0.86 (0.192) 
MD-REV   0.32 (0.098)  
PO-REV 0.74 (0.186) 0.43 (0.243)  0.99 (0.003) 
Standard error of the estimate in parentheses 
 

As regards the deterministic component (Table 2), it may be 
observed that the Easter effect was not statistically significant for all six 
fishing systems, while the calendar effect was statistically significant for 
all systems except dredges (MD), and a considerable number of outliers 
were identified. 

The ARIMA models identified and estimated by TRAMO using the 
series corrected for deterministic effects display a parsimonious 
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parameterisation (Table 2) with the prevalence of the Airline model, 
ARIMA(0 1 1)(0 1 1). For the purpose of comparing and classifying 
these models, they were re-formulated in their purely AR 
representation, with m = 48 selected as the truncation point. This value 
enabled account to be taken of the most “important” coefficients. The 
results are shown in Tables 4 and 5, from which the dendrograms are 
obtained (Figures 2 and 3) by using the single linkage as the cluster 
algorithm.  

 
Table 4. Matrix of the Euclidean distances for ARIMA models for 
captures by tonnage series. 

 BT-CAT SF-CAT PO-CAT MT-CAT PS-CAT MD-CAT
BT-CAT 0      
SF-CAT 5.82 0     
PO-CAT 5.07 1.45 0    
MT-CAT 0.73 5.61 4.97 0   
PS-CAT 2.78 3.26 2.54 2.53 0  
MD-CAT 1.61 4.96 4.43 0.97 1.91 0 

Table 5. Matrix of the Euclidean distances for ARIMA models for 
revenues by tonnage series. 
 BT-REV SF-REV PO-REV MT-REV PS-REV MD-REV
BT-REV 0      
SF-REV 3.66 0     
PO-REV 4.33 1.22 0    
MT-REV 0.39 3.81 4.46 0   
PS-REV 4.09 0.61 0.75 4.22 0  
MD-REV 0.45 3.52 4.2 0.5 3.96 0 

Of the two phenomena analysed, the most straightforward 
classification was the one obtained for the revenues by tonnage. The 
dendrogram (Figure 3) splits the fishing systems in the following two 
groups: 
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• Bottom trawl (BT), mid water pair trawl (MT) and mechanised 

dredge (MD); 
• Small-scale fishery (SF), purse seine (PS) and polyvalent (PO). 
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Figure 2. Dendrogram for the data in Table 4. Euclidean distance – 
Single linkage. 

The matrix of the Euclidean distances (Table 5) associated with this 
phenomenon exhibits, for practical purposes, almost identical values 
between elements of the first group, while in the second the polyvalent 
(PO) is closer to purse seine (PS) than to small-scale fishery (SF). 
The captures by tonnage dendrogram (Figure 2) confirms the presence 
of the same two groups, save for the purse seine (PS). Indeed, the latter 
is not included in the second group, but instead occupies an intermediate 
position. This is evident from the matrix of the Euclidean distances 
(Table 4), where the purse seine (PS) is equidistant from the mid water 
pair trawl (MT) and from the polyvalent (PO). It is therefore impossible 
to classify it in either of the two groups. 
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Figure 3. Dendrogram for the data in Table 5. Euclidean distance – 
Single linkage. 

But which components of the temporal dynamics of the phenomena 
analysed give rise to these results? In order to answer this question, a 
comparison between the groups resulting from analysis of the Euclidean 
distance matrices was performed, using the parametric formulation of 
the respective ARIMA models. 

The element that differentiates the models built on the revenues 
series by tonnage in group 1 from those of group 2 is the seasonal 
component. This is of the (1 0 0) type for bottom trawl (BT), mid water 
pair trawl (MT) and mechanised dredge (MD), and of the (0 1 1) type 
for all the other systems. This difference suggests the more marked 
seasonality of the systems in the second group, as can be easily 
demonstrated analytically. Let us consider, for example, the models of 
bottom trawl (BT) and small-scale fishery (SF) (Table 2): 

 
BT-REV ∼ ARIMA(1 0 0)(1 0 0): 

ttxtxtxt aXXXX +−+= −−− )( 131121211 φφφ
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SF-REV ∼ ARIMA(1 0 0)(0 1 1): 

)()( 1212131121211 −−−− −+−+= tyttytytyt aaYYYY θφφφ .

In both cases, the seasonal component is represented by an 
autoregressive coefficient of the first order, although for bottom trawl 
(BT) 11 12 <<− xφ , while for small fishery (SF) 112 =yφ . This means 
that the seasonal link characterising the systems in the first group is 
weaker than that characterising the systems in the second. 

The models built on the series of the captures by tonnage are all of 
the Airline, ARIMA(0 1 1)(0 1 1), type. Consequently, information to 
explain the grouping obtained through the application of the AR metric 
cannot be extracted from their formulation. However, one can infer 
from the analysis of the estimates of the regular and seasonal MA 
parameters (Table 3) that the models in group 1 have higher values of 
the regular component and lower values of the seasonal one, whereas 
the models in group 2 behave in exactly opposite manner, with purse 
seine (PS) occupying an intermediate position. This accurately reflects 
the pattern emerging from the dendrogram in Figure 2 and confirms the 
lesser seasonal dependency of the bottom trawl (BT), mid water pair 
trawl (MT) and mechanised dredge (MD) systems. 

 

5. Activity regulation 

The results obtained by applying the Autoregressive metric can be 
interpreted by taking into account the different levels of regulation to 
which the fishery systems are subject. 

Bottom trawl (BT) and mid water pair trawl (MT) exert greatest 
pressure on fishery resources and are therefore subject to mandatory 
biological and technical closures. The period of biological closure 
usually coincides with the phase immediately following reproduction of 
the economically and biologically most important species, while the 
technical closure restricts the number of fishing days per week 
permitted during the eight weeks following biological closure. This 
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regulation, which is applied to both systems, inevitably gives rise to a 
similarity in the temporal dynamics of their production levels.  

Restrictions are imposed on fishing activity as regards dredges (MD) 
as well, but for different reasons. The local managing consortiums, as 
officially provided for by the Third Triennial Plan and activated in 1997 
by specific ministerial decree (DM 10.04.1997), determine, amongst 
other things, the nature and timing of the biological closure, which may 
last up to a maximum of two months between May and September. The 
presence of the biological closure period for dredges (MD) explains its 
similarity to bottom trawl (BT) and mid water pair trawl (MT). 

Conversely, there is no specific regulation of fishing activity as 
regards the other three systems, i.e., small-scale fishery (SF), polyvalent 
(PO), and purse seine (PS). It is consequently continuous throughout the 
year. A partial exception is purse seine fishing (PS), for which a 
biological closure was required in the past, albeit at the discretion of the 
operators. This explains the system’s intermediate position in the tree 
diagram shown in Figure 2.  

 

6. Conclusions 
 

In general, the results obtained by applying the Autoregressive 
metric closely match the following subdivision of fishing systems based 
on the level of activity regulation to which they are subject. 

 
Regulation level Regulation type System 

Regulated Bottom trawl  
Mid water pair trawl  High 

Self-regulated Mechanised dredge 

Low No specifically 
regulated 

Small scale fishery 
Purse seine 
Polyvalent 
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It can be explained by taking into account the level of seasonal 

dependence shown in the ARIMA formulations of the corresponding 
models. Seasonality is undoubtedly present in the fishery sector, and it 
is due mainly to meteorological conditions and to the biological cycles 
of the species fished. Its importance obviously depends on the fishing 
system considered. Restrictions of activity levels linked not to seasonal 
factors, but to interventions by the Public Administration authority to 
increase fish stocks, inevitably interfere with the temporal aspects, and 
especially the seasonal characteristics, of the phenomenon’s evolution. 
As a consequence, the systems subject to regulation display less 
seasonality in production levels when compared to other systems. 

The results obtained could be verified by applying the same 
methodology to regional time series. This would also enable 
classification of the various regions according to the regional production 
level dynamics of the sector, thereby providing the Public 
Administration with useful information for the formulation of 
management programmes intended to rationalise and develop the 
fishery sector. Moreover, regional-level analysis would introduce a 
richer deterministic component into the regARIMA models by taking 
local deterministic effects into account. As the foremost among these 
effects, the biological and technical closures would make the most 
difference by being regulated in different forms and with different 
activation timetables along the Italian coastline. Further research is 
planned on this. 
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