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Summary In this paper it is shown that feed forward neural networks can be
considered as series estimators. This allows to give a statistical interpretation to the
parameters and to estimate them using standard statistical techniques. In particular,
it is proved that the hidden layer size is related to a smoothing parameter and,
therefore, it can be estimated minimising the mean squared error of a particular
neural estimator, as proposed in a previous paper (Perna and Giordano, 1999).
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1. Introduction

Let {Y,}, t=1, ..., n be a time series generated according to the
regression model:

Y¢=ﬂxl)+6| t:], vasy I (1)

where fis a non linear continuous function, X, = (X, X5, ...,Xq) is a
vector of d non stochastic explanatory variables defined on a compact
XcR, and the {e} are zero mean random variables with constant
variance .



Neural networks can be used to estimate the function f because of
their approximation properties. Many authors have demonstrated that,
under general regularity conditions, a sufficiently complex single
hidden layer feed-forward network can approximate any member of a
class of functions to any degree ui «evwacy (Hornik er al., 1989;
Barron, 1993). The complexity of a single hidden layer feed-forward
network is measured by the number of units in the hidden layer.

In this paper we prove that neural networks can be considered as
series estimators. In this context, the parameters can be interpreted and
determined using standard statistical techniques. In particular, we
show that the hidden layer size can be considered as a smoothing
parameter. This justifies the approach proposed in Perna and Giordano
(1999), where this parameter is estimated on the minimisation of the
mean squared error of a particular neural network

The paper is organised as follows. In the next section the feed-
forward neural networks are introduced and the architecture used in
the analysis is presented. In section 3, after a brief review of classical
Fourier series estimators, we prove that Neural Networks are series
estimators. In section 4, using the relationship between series
estimators and a particular kernel estimator, we interpret the hidden
layer size as a smoothing parameter and illustrate a procedure for the
determination of this parameter based on the approach proposed in
(Perna and Giordano, 1999). Finally, in section 5 some concluding
remarks are presented

2. Feed-forward Neural Networks

An artificial Neural Network is composed by a multilayer of
processing units. In the feed forward architecture each unit in the
hidden layers receives information from the previous layer, processes
it through a weighted sum of the input and, using a non linear
activation function, transfers the result to the next layer units.

In the application of Neural Networks in time series analysis, a
single hidden feed-forward neural network with one output unit is
usually considered. This has the form:
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where ¢k (k=1, ..., m) represents the weight of the connection between
the k-th hidden unit and the output unit; ay; is the connection between
the j-th input unit and the k-th hidden layer unit. The parameters ¢
and ay,..., a,, are the bias terms of the output unit and of the m units of
the hidden layer. We can suppose that these constants are zero.

In (2) the functions g and ¢ represent the activation functions of the
two layers; the first one concerns the output layer; the second is
relative to the hidden layer. The function g can be chosen to be the
identity function while the function ¢ must be a non linear function. It
is almost always taken to be a sigmoidal function that is a bounded
measurable function on R for which ¢(z)—1 as z—e and ¢z)—0 as
z— —oo. Barron, (1993) has shown that feed forward networks with
one layer of sigmoidal nonlinearities achieve integrated squared error
of the order O(1/m).

In this paper we have supposed that g is the identity function, as it
usually happens in regression and in time series analysis, and ¢ is the
standard Normal cumulative distribution function:

1§ —u* 2
0(2) = e du
N2 _'[,

Under these hypotheses the model (2) can be written as:
- mn d
Y, =260 XayX 3)
k=1 j=1
Set:
0= (cl ooy C

a, ',...,am')

m?
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where ay= (ayi, ..., axqg) is the vector of the connection weights
between the d input units and the j-th hidden layer unit.

In order to highlight the dependence of Y,* on the unknown
parameters we can write:

Y, =Y, (0)
If we fix m and d, we can estimate the vector € minimising the mean
squared error function. The parameters are determined recursively
from output to input by using a chain rule procedure known as
backpropagation (Haykin, 1994; Lachtemacher and Fuller, 1995).
Therefore if it is:

n
~

6, =argmin=Y (¥, ~v," )

e N <

we obtain:

3.Feed forward neural networks as series estimators

To gain insight into the relationship between neural networks and
series estimators it is necessary to review some definitions and basic
results on classical Fourier series estimators.

Consider the model (1) and, without loosing in generality, suppose
that d=1. The compact set X is assumed to be the interval [0, /].

The generalised Fourier series estimator of the function f{.) is defined
as:

fi*@ =3 BZi () )
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where the sequence of functions Zi(x) is a complete orthonormal
system for L[0, 1].

It can be shown (Eubank, 1988) that Y f,Z, (x)converges to the
function f{x), that is:

”/'(-\') = Ji ® (x)”2 —0 as s—oo,

Consider now the neural network estimator defined in (3); this can
be rewritten as:

Y, =) 620
k=1
where
d
Z,=¢ Y ayX, |.
=1
The sequence of functions Z(t) is a complete system for L; [a, b]

but is not orthonormal. Nevertheless, it can be shown (Barron, 1993)
thatVf(.)e C*[a, b] c L[a, b] it is:

If -y, * (-\‘)”2 —0 as m—oo,

Thus neural networks can be considered as series estimators.

4. The interpretation and derivation of the hidden layer size
Using the results of the previous section, we show that the hidden

layer size, that governs the approximation of the neural network to the
unknown function, is related to a smoothing parameter. This justifies
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the approach, proposed by Perna and Giordano (1999) who suggest
estimating this parameter through the minimisation of the mean
squared error of a particular neural network

At first, let us consider the estimator (4).
A complete orthonormal system for L,[0, 1] is provided by the
complex exponential functions defined as:

Zi(x) = exp[(2mikx)]

where i°= -1.
A useful expression (Eubank, 1988) for f, *(x)is:

for==3" Y% explrij(x-X,)]=

1

= 12”_ Y.K (x-X,)
i e=l '

1
1

where Ki(x) is the Dirichelet kernel defined as:

sen[7(2s +1)x]
sen(7ry) '

K, (x)=

Thus the generalised Fourier series estimator can be considered as a
Priestley—-Chao estimator with a particular kernel function. The
parameter s is related to the number of elements in the bandwidth
window and therefore it is:

s=1/h
where / is the smoothing parameter
To determine the asymptotic optimal parameter i we can use the

classical approach to the bandwidth selection problem based on the
minimisation of the mean squared error. In this case it is:
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where:

Cg = -[K(ll)lflll : dy = J.uzK(u)(lu g
x x

The latter expression permits to obtain the rate of convergence for s
that is O(n”s).

For what concerns neural networks, they are series estimators and
the parameter m, the hidden layer size, can be assimilated to the
parameter s. In this case, since the functions Z(x) are not orthonormal
the relationship between m and & can be formulated only in this way:

m=t(1/h)

where 1(.) is an appropriately chosen function.

Thus it is natural to make some assumptions similar to those
usually formulated for kernel smoothing.
We suppose:

5

m=m(n); m(n)—eo; [m(n)]/n -0  as n—eo (5)
Thus, even in this case, this parameter can be estimated using the
classical approach based on the minimisation of a particular mean
squared error.

As proposed in Perna and Giordano (1999) we can consider the
integrated mean squared error defined by:

IMSQ(Y )= j MSE(Y,)dX =IVAR(Y )+ j(E(f/“, )= j'(X))ldX ’
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where
=i m. d
b= ch‘P Zf‘ijjr
k=1 j=1
It can be shown (Giordano and Perna,1998; 1999) that :
2
VAR ygm® e L
o9 (x, )bd
where

min(a; -1)SupX if min(a, -1) <0
X =
min(a, -1)InfX if min(a, -1) >0

1=(1, ..., 1) and b, is the volume of the d-dimensional cube.
Using the Barron’s approximation (Barron, 1993) it is:

JEF) - Fo0fax <=L

m

where c,=(2r‘C)2, r is the radius of the compact set X and
C= f|w||j~'(w)’dw with f (w) the Fourier transform of the function f;
R4

An approximation for m can be obtained minimising the function:

A(m) = i

n m

where:



1

Ly=—5——
9~ (xp)b,

As shown in Perna and Giordano (1999) it is

1/3
Cy
m* = ——n
2Ly

5.Concluding remarks

The value m* verifies the conditions imposed in (4). It is a function
of ¢, Ly and V*.

The dependence on ¢;, derives from the integrability of the squared
partial derivatives of order two of the unknown function; therefore if
the function is not sufficiently smooth this quantity increases. Since ¢,
is the bias component of the criterion IMSE, when it increases also m*
increases to guarantee a good fit of the estimated values to the
observed ones.

For what concerns vz, it is clear that a high value of this parameter
implies a great perturbation in the data. This condition implies a
decrease of m* to guarantee the consistency of the neural estimators.
Therefore, in this case even a very large hidden size does not produce
a good fit to the data.

Finally, the relationship with /& produces a dependence of m* on the
activation function ¢.

It is interesting to compare the value m* with 1/h,, which is related
to the number of elements in the bandwidth window. The quantity in
the numerator of m* depends only on the unknown function f, as it is
for the denominator h,, . The denominator of m* includes two
different components: a variance component and a quantity depending
on the activation function. Similarly, the numerator of A, is given by



a combination of the same variance component in m* and a second
quantity depending only on the kernel function.

This implies that the activation function of the hidden layer is
equivalent, in this context, to the kernel function.
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