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Summary: In this paper the use of two model-based bootstrap procedures, parametric
bootstrap and residual bootstrap, is implemented to get an estimate of the sampling
distribution of the conditional least squares estimators. Some results of a Monte
Carlo experiment, that give insight about the performance, in small samples, of the
proposed approaches are also discussed.
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1. Introduction

Non linear parametric modelling of time series is a promising
approach both in theoretical and applied time series analysis
(Priestley, 1988; Tong, 1990 inter alia). It is well known that
Gaussian linear time series models fail to capture characteristics
commonly observed in practice such as asymmetry between the ascent
and descent periods of the series. Non linear modelling moves time
series analysis a step closer to reality improving forecasting accuracy.

Bilinear models are the easiest way to introduce a non linear
structure in time series analysis modelling (Subba Rao, 1981). This
class is obtained by adding to an ARMA structure interaction
components between the observed series and the innovations. In this
way a class of models is defined which is able to describe stationary
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level and occasional sharp spikes, typical of environmental and
financial time series. For this class of models, probabilistic properties
concerning stationarity, invertibility and ergodicity have been proved
(see Liu and Brockwell, 1988 inter alia). However, identification and
inferential problems seem to be more difficult to cope with. For
stationary and ergodic time series several different approaches are
already avaliable in the literature for the estimation of bilinear models.
Unfortunately, their nonlinear structure makes quite complex to study
the sampling properties of these estimators analytically. For sub-
classes of bilinear models some asymptotic results, such as
consistency, are available but often very little is known about the
sampling distribution of the estimators involved. For the conditional
least squares estimator considered in this paper, it is known that under
mild conditions on the higher moments of the process the sampling
distribution converges to a Gaussian distribution. However, no closed-
form expression is known for the variance-covariance matrix of the
estimators and, therefore, no use of this result can be done for
inferential purposes.

In this paper we propose to use model based bootstrap procedures
to get an estimate of the sampling distribution of the conditional least
squares estimators. The paper has the following structure. In section 2
the estimation of bilinear models is briefly reviewed. In section 3 the
use of two model based bootstrap inference procedure, parametric
bootstrap and residual bootstrap, is discussed to approximate the
sampling distribution of the conditional least squares estimators in a
wide class of bilinear models. In section 4 some results of a Monte
Carlo simulation, performed to study the performance of the proposed
procedure in small samples, are reported. Some concluding remarks
are provided in section 5.

2. Conditional least squares estimation of bilinear models

The general form of a bilinear time series {X,, t=0:£1,% 2,...}
denoted by BL(p,q,k, r), is defined by
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where {¢, } is an iid sequence of random variables (innovations) with

zero mean and common variance o >. For stationary and ergodic
bilinear time series models, estimation has received considerable
attention in the literature but, unfortunately, asymptotic properties are
known only in some restrictive models or cannot be used for
inferential purposes. The most popular methods for estimating the
parameters of the bilinear models are the least squares method
(Guegan and Pham, 1989) and the method of moments (Kim et al.,
1990). But even for the first order bilinear model BL(0,0,l,l), the
simplest specification, nothing is yet known about the limiting
distributions of the least squares estimators. If attention is restricted to
Gaussian innovations, estimators obtained by the method of moments
are strongly consistent and asymptotically normally distributed only if
q=0. For the Gaussian innovation case maximum likelihood
estimators have been also derived (see Gabr, 1993) but only for the
special bilinear model BL(p,O, P, 1).

The most interesting and promising estimation approach seems to
be the conditional least squares approach (COLS) proposed by Grahn
(1995). The COLS estimators have nice asymptotic properties and
can be computed in a quite general class of bilinear models specified
as

q k r
X, =§:aixr-i+icj£1—j+2 ZbUE,_,—X,_j+£, (1)
i=1 j=1

i=] j=w

where w=max{gk}+1. The process {X,} is assumed to be
stationary, ergodic, causal and square integrable solution of the
equation (1). The process {¢, } is assumed to be such that E(e?)zo

and E(es,4 )< oo,
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The COLS estimation procedure for the parameter vector
{a,,...,ap,c,,...,cq,blw,...,l)k,,az} can be sketched as follows (see

Grahn, 1995 for details).
Step 1. The coefficients of the AR component a,,a,,...,a, are

estimated by the Yule-Walker equations.
Step 2. The conditional least squares method is used to estimate proper

quantities, functions of {Cl ,...,cq,blw,...,bk,,oz }, which are
uniquely determined by the conditional second order moments of the
AR residual process v, =X, = a; X,_;.

Step 3. Finally, from the estimates of the previous step, the estimates
for the parameters \c, ,...,cq,blw,...,bk,,crz} are identified.

Under mild assumptions on the existence of higher moments of the
bilinear process, one can prove that the COLS estimators are strongly
consistent, asymptotically normally distributed and the law of the
iterated logarithm applies.

Unfortunately, even if in principle it should be possible to compute
the asymptotic variance-covariance matrix, no closed-form expression
for this matrix has been so far provided in the literature (Grahn, 1995,
p. 517). This is quite usual in nonlinear time series analysis where,
due to the complexity of the models involved, approaches based on
analytic derivations become very soon extremely difficult. In this
context, resampling techniques, such as the bootstrap, can be
effectively used to consistently estimate both the sampling distribution
of the estimators involved and its limiting normal distribution.
Moreover, it is well known that the use of the bootstrap allows greater
accuracy than estimated normal approximations.

3. Model based bootstrap inference in bilinear models
In their classical form, as first proposed by Efron (1979), bootstrap
methods are designed for application to samples of independent data.

Under that assumption, they implicitly produce an adaptive model for
the marginal sampling distribution. Extensions to dependent data are
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not straightforward and modifications of the original procedures are
needed in order to preserve the dependence structure of the original
data in the bootstrap samples. In the context of stationary time series
models two alternative groups of techniques are available.

On one hand, nonparametric, model-free bootstrap schemes have
been proposed. In these procedures blocks of consecutive observations
are resampled randomly with replacement, from the original time
series and assembled by joining the blocks together randomly in order
to obtain a simulated version of the original process (Kunsch, 1989;
Politis and Romano, 1992 inter alia). These approaches, known as
blockwise bootstrap or moving-block bootstrap, generally works
satisfactorly and enjoys the properties of being robust against
misspecified models. However, the resampled series exhibits spurious
features which are caused by randomly joining selected blocks. The
major drawback with these block schemes is that the dependence
between different blocks is neglected in the resampled series. As a
consequence, the asymptotic variance-covariance matrices of the
estimators based on the original series and those based on the
bootstrap series are different and a modification of the original scheme
is needed. A possible solution is the matched moving-block bootstrap,
(Carlstein et al., 1996), based on a quite complex procedure which
resamples the blocks according to a Markov chain whose transitions
depend on the data. A further difficulty, is that the bootstrap sample is
not (conditionally) stationary. This can be overcome by taking blocks
of random length, as proposed by Politis and Romano (1994), but a
tuning parameter, which seems difficult to control, has to be fixed.
Morever, a recent study of Lahiri (1999) shows that this approach is
much less efficient than the original one.

On the other hand model-based approaches have been proposed. In
this case, the dependence structure of the series is modelled explicitly
and the bootstrap sample is drawn from the fitted model. Freedman
(1984) and Bose (1988) introduced this scheme for autoregressive
models and Kreiss and Franke (1992) for ARMA models. A model
based procedure runs as follows: (i) fit a suitable model to the data;
(i) construct residuals from the fitted model; (iii) generate new
pseudo-series by incorporating random samples of the residuals in the
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fitted model. Obviously, these procedures are sensitive to model
misspecification, in which case they lead to bootstrap estimators
which are not consistent. This is the major drawback of these schemes
especially when both the parameters of a model and its structure have
to be identified from the data. This problem is less serious when the
model is selected by strong subject-matter considerations or when the
selection is well supported by extensive data. In this case model based
bootstrap schemes are more efficient than nonparametric ones (see
Horowitz, 1995) and so they could be a straightforward choice.

A model based scheme for bilinear time series can be constructed
as follows. Assume that a bilinear model as specified in equation (1)
is given. Let x;,...,x, be the observed time series and let Xi_ poessaXp

be the initial conditions.
1. By COLS method obtain an estimate of the parameter vector

A
A

p A oA A po a2
0= (al,...,ap,Cl,...,Cq,blw,...,bkr,O' )
2. Obtain an estimate ﬁg for F,, the distribution of the residuals.

* * * * . -
Generate € +€0, € »...,€, independently from F, .

i
. * *
3. Given \X|_apseeaXep [ 1X]=pser X enerate a boostra
1-2p P I-p 0
pseudo-series as

* R 4 . x oG Ak # *
X, = ﬁ:aixt—i'*' icjgt—j'*' b3 Zbygr—ixr—j+81
J=1

i=l i=lj=w

with r=12...n.
4. By COLS obtain the bootstrap counterpart 0 of 6.
0.

5. Approximate the sampling distribution of with the

1
bootstrap distribution of 97‘.

As usual, the bootstrap distribution can be approximated
numerically (by Monte Carlo simulation) repeating B times steps 2—4.
The empirical distribution function of the bootstrap replicates
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a3

[ — 0:-;, can be used to study the sampling properties of the

estimator 6, or to construct confidence intervals for 6,.

Estimation of the residual distribution, in step 2, can be obtained in
different ways. If it is reasonable to assume for it some kind of
parametric model, that is F, = F, ,, a parametric bootstrap scheme

can be used. In this case bootstrap innovations can be generated from
Fe 4, with @ estimated from the data at hand. A typical assumption

is that all the nonlinear structure present in the data is correctly
captured by the specified model, hence the innovations can be

assumed Gaussian, that is FE.{UEN(O,O'Z). Thus, bootstrap

innovations can be generated from N(O, G2 )

If no parametric model for the residuals is plausible residual
bootstrap can be employed. In this case the distribution of the

—1on

residuals is estimated by 13“5 (x)=n il I(r, -7 <x) where

-ln

=1 I and I(-) is the indicator function and bootstrap

r=n
innovations can be generated from F, .

The good asymptotic properties of COLS estimators (strong
consistency, asymptotic normality and law of iterated logarithm) and
the structure of the parameters involved (which can be viewed as
functions of means) ensure the minimal regularity conditions for the
validity of the bootstrap schemes previously discussed (Kunsch,
1989).

Confidence intervals based on the bootstrap distribution, ‘can be
constructed in several different ways. The simplest way is to exploit
the asymptotic Gaussian distribution of the estimators by using the
bootstrap just to estimate this limiting distribution. In this case an
approximated confidence interval of nominal level 1 —2a can be
~ constructed as
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where z,, is the a-quantile of the standard Gaussian distribution,
* [ A —1 B Ax % B
Var (01 ): (B—l) 2_[:](6‘/ —-0,- )

i . : Py i A%
is the bootstrap variance estimator and 0; =B 12?21 o

Alternatively, the bootstrap percentile method of Efron (1981) can
be employed and an approximate equal-tailed confidence interval of

nominal level 1-2a is given by |07 .6°0®) | where 6] is the o
quantile of the bootstrap distribution obtained as the solution to

B+1)" 35,105 <6;)=a.

Unfortunately others approaches, which are known to be more
accurate, are difficult to use. The bootstrap-t percentile requires a
closed-form expression for the variance-covariance matrix of the
estimators and so it is not feasible in this case. The BCa method
requires the estimation of a tuning parameter which is usually
obtained by the influence function which is not known in our case
where a complex, multi-step, estimator is involved. Numerical
approaches to improve accuracy such as Loh correction (Loh, 1987)
or double bootstrap can be used in principle but they can be extremely
time consuming.

4. Simulations results

To investigate the performance of the proposed procedures in small
samples a simulation experiment has been performed. The simple

model X, =be,_|X,_, +¢€,, with {¢, } independent random variables

distributed as N (O, o’ ) was considered. The model structure is quite
simple but it allows to identify easily all the necessary regularity
conditions. If b°c” <1 the process is stationary and if bc® <1/105

the COLS estimators (I;,d‘z) for the parameters (b,az) are



asymptotically normally distributed. Moreover, this simple bilinear
structure can be used to model residuals in more complex models such
as regression models with bilinear residuals.

We fixed 0’ =1 and let b varying from 0.0 to 0.6. The value
b=0.6 violates the condition for the asymptotic convergence to the
normal distribution (which is b <0.559 in this case). Three sample
sizes n = 200, 500 and 1,000 were used.

To get a deeper knowledge of the experimental context we
estimated, by a Monte Carlo experiment of 50,000 runs, the sampling
distribution of the estimators involved. Both calssical and resistant
statistics were computed (Tab. 1 and Tab. 2). Due to the nature of the
bilinear model, where interactions components are present, we found
in the sampling distributions many outlying and even very extreme
outlying values, especially when b increases approaching the non-
stationary region. This is quite evident from the increasing difference
between non robust and robust indexes and from the sharp increase in
the range of the distributions. When the value of b increases we
observe an increasing bias for the estimator of » and an increasing
skewness for the sampling distribution. The skewness is even greater
if we consider the non robust index, which makes evident the presence
of a long right tail. When looking at the estimator of the variance we
observe almost no bias and almost no skewness. Therefore, we expect
that a bootstrap estimate of the whole distribution should work better
than the estimated normal distribution for the approximation of the

sampling distribution of b . On the contrary, this estimated asymptotic
normal distribution should work quite well for the sampling

distribution of 6 7.
In Fig. 1 we reported parallel box-plots of the distribution of the

difference Av :Var*(ls)— Var(l;) where Var(l;) is the “true” variance,
estimated by 50,000 Monte Carlo runs, and Var® (l;) is its bootstrap
estimate, for different values of b and for different time series length.
In Fig. 2 we reported the distributions of Av =Var*(o"2)—Var(6'2).

Due to scale effects, we did not report extreme outlying values, those
with a distance greater than 3 times the interquartile range from the
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first and the third quartile. In both cases, increasing b, we observe
distribution with increasing bias and greater number of outlying
observations. Estimation obtained by parametric bootstrap (on the left
of each sub-panel) and the residual bootstrap are quite similar even if
residual bootstrap gives more median-biased estimates. In any case
both bootstrap estimators improve their performance as the time series
length increase.

We also compared the results for the parametric bootstrap (PB) and
the residual bootstrap (RB) approaches for confidence intervals based
on both the normal approximation (NBCI) and on the Efron’s
percentile method (BPCI), we considered 1,000 simulation runs and
999 bootstrap replicates for each run. The nominal confidence level
has been fixed to 0.90.

The empirical coverages for b are reported in Tab. 3. Confidence
intervals based on the bootstrap percentile present a lower coverage
error than the normal based ones. The bootstrap distribution succeeded
in capturing the asymmetric behaviour of the sampling distribution.
When comparing the two bootstrap schemes, as expected parametric
bootstrap works better than residual bootstrap. However, residual
bootstrap gives reasonable coverage errors especially for parameters
not too close the limit of the region of asymptotic normality and for
time series not too short. For both procedures, coverage error
increases as b approaches the border of the region of convergence to
the normal limit.

If we look at the median and the MAD of the length of the
confidence intervals we see that again the BPCI gives better results.
The intervals have a shorter length and are less variable. In any case
the length and its dispersion increase as the parameter b gets close to
the non- stationary region (see Tab. 5).

The empirical coverages for o’ are reported in Tab. 4. Here the
results are less stable and with different behaviour with respect to the
parameter b. When using the BPCI in the residual bootstrap scheme
we find sensitive coverage errors which do not disappear increasing
the sample size. The other schemes works quite well with low
coverage errors. All the bootstrap schemes considered have a similar
length distribution (see Tab. 5).
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Similar results, not reported here, have been obtained for a nominal
confidence level of 0.95.

5. Concluding remarks

In this paper we implemented two different model-based bootstrap
schemes to estimate the sampling distributions of conditional least
squares estimators for bilinear models. Because of the complexity of
the estimators involved, no analytical inference procedure is available
in this case. Bootstrap approaches, instead, seem to offer an effective
and computationally efficient solution to this problem. Also, their
relative performance tracks rather well our a priori expectations.
Parametric bootstrap gives better results than residual bootstrap and
Efron’s bootstrap percentile confidence intervals are better, both for
the empirical coverage and for the median length, than those based on
the normal approximation with bootstrap variance estimation.

In almost all cases the performance improves greatly for increasing
sample size.

Acknowledgments: This paper is supported by MURST 98 “Modelli statistici per
Ianalisi delle serie temporali”.
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Appendix. Tables and figures.

Table 1. Descriptive statistics for the sampling distribution of b based
on 50,000 Monte Carlo runs.  Experimental  model:

X, =bX 58 +E,; 6= N(O,oz) with 6% =1.

b n |Mean Med | SD MAD | SK RSK Range
0.0 200 [ 0.000 0.000 [ 0.071 0.086 |-0.001 -0.006 0.655
500 | 0.000 0.000 | 0.045 0.055 |-0.025 -0.005 0.389
1000| 0.000 0.000 | 0.032 0.040 [-0.002 -0.007 0.276
0.1 200 [0.098 0.095[0.075 0.089|0.352 0.020 0.793
500 0.099 0.098 | 0.048 0.058 | 0.215 0.014 0.479
1000{ 0.100 0.099 | 0.034 0.042 | 0.155 0.023 0.294
0.2 200]0.195 0.187|0.088 0.101 [0.775 0.055 1.070
500 0.198 0.195 | 0.056 0.067 | 0.531 0.040 0.820
1000] 0.199 0.197 | 0.040 0.048 | 0.362 0.040 0.465
0.3 200(0.291 0277 [0.110 0.118|1.326 0.083 1.585
500 0.297 0.289|0.072 0.081 | 1.016 0.067 1.268
1000/ 0.298 0.294 | 0.051 0.059 | 0.692 0.050 0.770
0.4 200 |0.382 0.360 | 0.140 0.140|1.972 0.108 2.531
500 | 0.393 0.380|0.095 0.099 | 1.643 0.091 1.461
1000{ 0.396 0.388 | 0.069 0.075 | 1.224 0.078 1.001
0.5 200[0.465 0.432]0.177 0.163 |2.649 0.135 6.735
500 0.484 0462 |0.132 0.122|5.188 0.117 7.321
1000{ 0.491 0.476 | 0.097 0.096 | 2.155 0.110 2.018
0.6 200 (0.527 0.484 [0.220 0.184 |4.989 0.151 15.881
500 [ 0.558 0.525(0.171 0.146 | 1.595 0.146 11.601
1000| 0.573 0.547 [ 0.139 0.121 [4.098 0.138 5.787

Legenda. Med=Median, SD=Standard Deviation, MAD=Median
Absolute Deviation, SK=Skewness, RSK=Resistant Skewness.
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Table 2. Descriptive statistics for the sampling distribution of
6% based on 50,000 Monte Carlo runs. Experimental model:

X, =bX 081 +E & ~N(O,02) with 6% =1. .

b n |Mean Med | SD MAD | SK RSK Range
0.0 200 1.004 1.000|0.123 0.1530.216 0.031 1.007
500 | 1.002 1.001 | 0.078 0.097 | 0.103 0.001 0.696
1000| 1.001 1.000 | 0.055 0.067 | 0.053 0.004 0.460
0.1 200 1.005 1.001|0.124 0.155|0.197 0.028 1.034
500 | 1.002 1.001 | 0.079 0.098 | 0.104 0.008 0.652
1000{ 1.001 1.000 | 0.055 0.068 | 0.058 0.011 0.463
0.2 2001 1.008 1.0020.128 0.158 [ 0.207 0.036 1.062
500 | 1.003 1.003 |0.081 0.101 | 0.096 -0.001 0.690
1000| 1.001 1.001 | 0.057 0.071]0.054 0.009 0.514
0.3 200 1.014 1.008 |0.134 0.166 |0.217 0.035 1.140
500 | 1.006 1.006 | 0.086 0.106 | 0.073 -0.002 0.747
1000/ 1.003 1.002 | 0.061 0.076 | 0.022 0.012 0.586
0.4 2001|1.026 1.020(0.146 0.179 [ 0.228 0.035 1.320
500 | 1.013 1.013]0.095 0.116 {0.010 -0.004 0.868
1000| 1.007 1.007 | 0.070 0.085 |-0.110 0.009 0.763
0.5 200 1.051 1.043|0.167 0.202]0.257 0.034 2.345
500 1.029 1.029 | 0.113 0.134 |-0.092 0.002 1.522
1000| 1.017 1.020 | 0.086 0.102 |-0.360 -0.018 0.938
0.6 200 1.106 1.092|0.209 0.243 |0.484 0.042 4.700
500 | 1.069 1.069 | 0.145 0.170 |-0.067 0.001 3.306
1000] 1.048 1.054 |0.116 0.132 [-0.392 -0.025 1.731

Legenda. Med=Median, SD=Standard Deviation, MAD=Median
Absolute Deviation, SK=Skewness, RSK=Resistant Skewness.
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Figure 1. Distribution of Av =Var*(l;)— Var(i;). Var(l;) estimated by
50,000 Monte Carlo runs. Parametric bootstrap on the left and
residual bootstrap on the right in each sub-panel.

0.10

0.06

0.02

-0.02

-0.06

010

0.06

0.02

-0.02

-0.06

010

0.06

0.02

-0.02

-0.06

n=200
]
0.0 0.1 02 03 04 0.5 0.6 b
=300
o VN S - S - I >-g....g. .g...g. I ..i, I
00 01 02 0.3 04 035 0.6 b
n=1000
g
o SV GRS U5 $. SRR O R . S - 38 .ig éé g
00 01 02 03 04 05 06 b

170



Figure 2. Distribution of Av =Var® (62 )— Var(d o ) Var(d‘z) estimated
by 50,000 Monte Carlo runs. Parametric bootstrap on the left and
residual bootstrap on the right in each sub-panel.
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Table 3. Empirical coverage for b and o 2. Time series length n: 200,
500 and 1,000. Monte Carlo runs: 1,000. Bootstrap replicates 999.
Nominal confidence level 0.90.

b PB RB
b Method 200 500 1000 | 200 500 1000
0.0 NBCI 933 907 901 923 910 .900
BPCI 916 .906 .898 907 904  .896
0.1 NBCI 930 .903 906 914 920 .908
BPCI 916 .899 .897 896 909  .904
0.2 NBCI 921 904 903 901 916 .90l
BPCI 909  .890 .889 881 911  .902
0.3 NBCI 908 906 906 926 .930 .907
BPCI 905 .892 .891 931 925 .897
0.4 NBCI 905 910 909 878 .891 .909
BPCI 917 916 904 892 902  .906
0.5 NBCI 848 895 .893 825 875 .887
BPCI 852 .908 909 836 .884 .899
0.6 NBCI a73 811 .839 770 .802  .863
BPCI 763 .823 .854 760  .804  .866

o PB RB
b Method | 200 500 1000 | 200 500 1000
0.0 NBCI | 881 .892 890 '| .880 .895 .900
BPCI 887 895 889 | 937 955 .943
0.1 NBCI | 892 891  .884 | .899 .886 .897
BPCI 899 894 886 | .935 .950 .943
0.2 NBCI | 896 .898  .876 | .896 .894 .898
BPCI 896 .899 874 | 936 962 .950
0.3 NBCI | 902 899  .876 | .901 .888 .897
BPCI 906 .892 878 | 943 962 .966
0.4 NBCI | 910 903 903 | .877 .909 .907
BPCI 885 888 900 | .934 961 .96l
0.5 NBCI | 904 902 914 | .877 891 .889
BPCI 854 868  .894 | 933 929 933
0.6 NBCI | 905 867 .891 | .850 .825 .859
BPCI 715 729 792 | 853 .845 .84l
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Table 4. Median and MAD of CI lengths for b. Time series length n:
200, 500 and 1,000. Monte Carlo runs: 1,000. Bootstrap replicates:
999. Nominal confidence level 0.90.

Median PB RB

b Method | 200 500 1000 200 500 1000
0.0 NBCI | .2394 1483 .1046 | .2410 .1497 .1048
BPCI | 2402 .1490 .1049 | .2412 .1498 .1052

0.1 NBCI | .2495 .1565 .1109 | .2488 .1570 .1110
BPCI | 2478 .1568 .1110 | .2483 .1574 .1114

0.2 NBCI | .2849 1825 .1304 | .2815 .1831 .1307
BPCI | .2796 .1812 .1301 | .2768 .1821 .1305

0.3 NBCI | .3414 2283 .1648 | .3375 .2253 .1657
BPCI | .3282 2218 .1626 | .3245 .2200 .1621

0.4 NBCI | 4166 .2917 2185 | 4019 .2883 .2163
BPCI | .3868 .2754 .2090 | .3760 .2740 .2074

0.5 NBCI | 4896 .3806 .2999 | 4683 .3591 .2844
BPCI | 4446  .3457 2726 | .4297 .3299 .2626

0.6 NBCI | .5584 4577 .3825 | .5239 4379 .3816
BPCI | 4880 .4020 .3374 | 4729 .3933 .3350

MAD PB RB

b Method | 200 500 1000 200 500 1000
0.0 NBCI | .0214 .0081 .0049 | .0205 .0074 .0043
BPCI | .0209 .0088 .0052 | .0199 .0081 .0050

0.1 NBCI | .0287 .0134 .0074 | .0258 .0121 .0069
BPCI | .0274 .0138 .0077 | .0246 .0118 .0074

0.2 NBCI | .0520 .0267 .0141 | .0514 .0249 .0140
BPCI | .0463 .0250 .0136 | .0468 .0232 .0138

0.3 NBCI | .0893 .0499 .0267 | .0836 .0468 .0269
BPCI | .0756 .0432 .0247 | .0700 .0404 .0248

0.4 NBCI | .1355 .0844 .0498 | .1275 .0832 .0488
BPCI | .1133 .0700 .0421 | .1023 .0690 .0421

0.5 NBCI | .1827 .1375 .0987 | .1544 .1152 .0828
BPCI | .1427 1056 .0788 | .1213 .0934 .0670

0.6 NBCI | .2259 .1783 .1570 | .1728 .1576 .1402
BPCI | .1617 .1358 .1187 | .1350 .1214 .1058
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Table 5. Median and MAD of CI lengths for 0. Time series length
n: 200, 500 and 1,000. Monte Carlo runs: 1,000. Bootstrap replicates:
999. Nominal confidence level 0.90.

Median PB RB
b Method | 200 500 1000 200 500 1000

0.0 NBCI | 4030 .2552 .1793 | .3950 2524 1787
BPCI | 4042 2562  .1804 | .3962 2528 1798

0.1 NBCI | 4060 .2573  .1811 3981 2541 1807
BPCI | 4075 .2586  .1821 .3994 2552 1813

0.2 NBCI | 4195 2658 .1876 | .4090 2622 .1866
BPCI | 4210 .2672  .1885 4121 2638 .1880

0.3 NBCI | 4438 .2836  .2014 | .4308 2782 1997
BPCI | 4466 .2840  .2024 | 4316 2796 2012

0.4 NBCI | 4834 3131  .2282 | .4573 2982 2233
BPCI | 4838 .3139  .2271 4577 .3000 2230

0.5 NBCI | .5328 .3682 .2779 | .4974 3395 2611
BPCI | .5308 .3670 .2748 | .4992 .3404 2587

0.6 NBCI | .6437 4483  .3559 | .5617 4056 3419
BPCI | .6384 4474  .3506 | .5602 4053 3365

MAD PB RB
b Method | 200 500 1000 200 500 1000

0.0 NBCI | .0603 .0252 .0138 .0550 0227 .0133
BPCI | .0609 .0269 .0144 .0559 .0234 .0140

0.1 NBCI- | .0655 .0257 .0138 0570 .0238 .0139
BPCI | .0674 .0266  .0150 0577 .0243 .0141

0.2 NBCI | .0753 .0282 .0155 0631 .0269 0154
BPCI | .0764 .0282 .0l6l .0640 .0273 0157

0.3 NBCI | .0871 .0356  .0200 .0746 .0334 0210
BPCI | .0887 .0358 .0210 0717 .0339 .0220

0.4 NBCI | .1107 .0544  .0335 .0928 .0450 0317
BPCI | .1126  .0555 .0322 .0932 .0440 .0309

0.5 NBCI | .1670 .0966  .0632 .1098 .0748 .N496
BPCI | .1635 .0913  .0604 .1099 .0752 0477

0.6 NBCI | .2680 .1646 .1271 1621 1138 .1082
BPCI | .2544 .1641 .1254 1573 1141 1071
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